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where n is an integer with n− 1 ≤ α < n and Γ(·) is the gamma function. If α = 2,
then n = 3 and

D2
0+u(t) =

1

Γ(1)

d3

dt3

∫ t

0
u(s)ds = u′′(t).

Recently, there have been studies concerned with initial value problems for singu-
lar fractional differential equations, for instance, see [7], [9] and [10]. But in the
obtained results, initial value problems (1.1) cannot be treated.

In this paper, we show the existence and uniqueness of solutions of the Cauchy
problem (1.1) in a class of singluar fractional differential equations. Let 1 < α ≤ 2.
We consider the Cauchy problem Dα

0+u(t) = p(t)tau(t)σ,

lim
t→0+

u(t) = 0, lim
t→0+

u′(t)

tα−2
= (α− 1)λ

(1.3)

where p is continuous, a, σ, λ ∈ R with σ < 0 and λ > 0 If α = 2, then the Cauchy
problem (1.3) is the problem (1.1).

2. Main result

In this section, we derive first the integral equation which is equivalent to the
problem (1.3) (Lemma 2.2). Next, by using the Banach fixed point theorem, we
establish the existence and uniqueness result for solutions of the problem (1.3)
(Theorem 2.3).

Let u be a continuous function of (0,∞) into R and α be a positive real number.
The αth Riemman-Liouville fractional integral of u is defined by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds.

The following lemma can be found in [1] and [5]. We denote by C(0, 1) the space
of all continuous functions of (0, 1) into R. Moreover we denote by L(0, 1) the space
of all integrable functions of (0, 1) into R.

Lemma 2.1. Let α > 0. Let u ∈ C(0, 1)∩L(0, 1) satisfying Dα
0+u ∈ C(0, 1)∩L(0, 1).

Then
Iα0+D

α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n

for some C1, C2, . . . , Cn ∈ R and an integer n with n− 1 ≤ α < n.

Next we derive the integral equation which is equivalent to the problem (1.3).

Lemma 2.2. Let 1 < α ≤ 2. Let p be a continuous function of [0, 1] into R. Let
a ∈ R and σ < 0. Let λ > 0. If u is a solution of the Cauchy problem (1.3), then
u is a solution of the equation

(2.1) u(t) = λtα−1 +
1

Γ(α)

∫ t

0
(t− s)α−1p(s)sau(s)σds.

Moreover if p satisfies

(2.2) lim
t→0+

ta+(α−1)σ+1

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−2ds = 0,
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then u is a solution of the Cauchy problem (1.3) if and only if u is a solution of the
equation (2.1) under the assumption that λ

2 t
α−1 ≤ u(t) for all t ∈ (0, 1].

Proof. Let u be a solution of (1.3). Since Dα
0+u(t) = p(t)tau(t)σ, we obtain the

integral equation

u(t) = Iα0+p(t)t
au(t)σ + C1t

α−1 + C2t
α−2

for some C1 and C2 by Lemma 2.1. By the definition of the Riemman-Liouville
fractional integral Iα0+, we have

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1p(s)sau(s)σds+ C1t

α−1 + C2t
α−2.

The condition limt→0 u(t) = 0 implies C2 = 0. Thus

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1p(s)sau(s)σds+ C1t

α−1.

Since

lim
t→0

u′(t)

tα−2
= (α− 1)C1,

we have C1 = λ. Therefore we obtain that u is a solution of the equation (2.1).
Let u be a solution of the equation (2.1) under the assumption that λ

2 t
α−1 ≤ u(t)

for all t ∈ (0, 1]. Suppose that p satisfies (2.2). We will show that u is a solution of
the Cauchy problem (1.3). Since u satisfies (2.1), we have Dα

0+u(t) = p(t)tau(t)σ.
Since

|u(t)| ≤ λtα−1 +
1

Γ(α)

∫ t

0
(t− s)α−1|p(s)|sau(s)σds

≤ λtα−1 +
1

Γ(α)

(
λ

2

)σ ∫ t

0
(t− s)α−1|p(s)|sa+(α−1)σds

= λtα−1 +
1

Γ(α)

(
λ

2

)σ

ta+(α−1)σ+α

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−1ds

≤ λtα−1 +
1

Γ(α)

(
λ

2

)σ

ta+(α−1)σ+1

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−2ds

and (2.2), we obtain that limt→0+ u(t) = 0. Since

u′(t) = (α− 1)λtα−2 +
α− 1

Γ(α)

∫ t

0
(t− s)α−2p(s)sau(s)σds,

we obtain that∣∣∣∣u′(t)tα−2
− (α− 1)λ

∣∣∣∣ ≤ α− 1

Γ(α)

∫ t

0

(
1− s

t

)α−2
|p(s)|sau(s)σds

≤ α− 1

Γ(α)

(
λ

2

)σ ∫ t

0

(
1− s

t

)α−2
|p(s)|sa+(α−1)σds

=
α− 1

Γ(α)

(
λ

2

)σ

ta+(α−1)σ+1

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−2ds.
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By (2.2), we have limt→0+
u′(t)
tα−2 = (α− 1)λ. Therefore u is a solution of the Cauchy

problem (1.3). □
If a continuous function p satisfies the condition (1.2)∫ 1

0
|p(s)|sa+σds < ∞,

where a, σ, λ ∈ R with σ < 0 and λ > 0, then p satisfies (2.2). Indeed, by (1.2), we
have

lim
t→0+

∫ t

0
|p(s)|sa+σds = 0.

Since ∫ t

0
|p(s)|sa+σds = ta+σ+1

∫ 1

0
|p(ts)|sa+σds,

we have

lim
t→0+

ta+σ+1

∫ 1

0
|p(ts)|sa+σds = 0.

Therefore p in [6] satisfies the condition (2.2).
Using Lemma 2.2, we can show our main result.

Theorem 2.3. Let 1 < α ≤ 2. Let p be a continuous function of [0, 1] into R
satisfying (2.2) for a ∈ R and σ < 0. Let λ > 0. Then there exists a unique
solution u : (0, h] → R of the Cauchy problem (1.3) satisfying λ

2 t
α−1 ≤ u(t) for all

t ∈ (0, h].

Proof. By Lemma 2.2, we consider the integral equation

u(t) = λtα−1 +
1

Γ(α)

∫ t

0
(t− s)α−1p(s)sau(s)σds.

Let K ∈ (0, 1). Choose 0 < h < 1 satisfying

ta+(α−1)σ+1

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−2ds ≤ Γ(α)

(
λ

2

)1−σ

and

ta+(α−1)σ+1

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−2ds ≤ Γ(α)

|σ|

(
λ

2

)1−σ

K

for all t ∈ (0, h]. We denote by C[0, h] the space of all continuous functions of [0, h]
into R with the maximum norm given by ∥u∥ = max0≤t≤h |u(t)| for u ∈ C[0, h].
Let X be a subset of C[0, h] defined by

X =

{
u ∈ C[0, h] | u(0) = 0, lim

t→0+

u′(t)

tα−2
= (α− 1)λ,

λ

2
tα−1 ≤ u(t), ∀t ∈ (0, h]

}
.

Since a mapping t 7−→ λtα−1 belongs to X, we have X ̸= ∅. Let A be an operator
of X into C[0, h] defined by

Au(t) = λtα−1 +
1

Γ(α)

∫ t

0
(t− s)α−1p(s)sau(s)σds.
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Then A(X) ⊂ X. Indeed, let u ∈ X. Then we can show similarly as in the proof

of Lemma 2.2 that Au(0) = 0 and limt→0
(Au)′(t)
tα−2 = (α − 1)λ. Moreover we obtain

that

Au(t) ≥ λtα−1 − 1

Γ(α)

∫ t

0
(t− s)α−1|p(s)|sau(s)σds

≥ λtα−1 − 1

Γ(α)

(
λ

2

)σ ∫ t

0
(t− s)α−1|p(s)|sa+(α−1)σds

= λtα−1 − 1

Γ(α)

(
λ

2

)σ

ta+(α−1)σ+α

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−1ds

≥ λtα−1 − 1

Γ(α)

(
λ

2

)σ

ta+(α−1)σ+α

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−2ds

= λtα−1 − 1

Γ(α)

(
λ

2

)σ (
ta+(α−1)σ+1

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−2ds

)
tα−1

≥ λtα−1 − λ

2
tα−1

=
λ

2
tα−1.

Therefore we have Au ∈ X.
We will find a fixed point of A. Let φ be an operator of X into C[0, h] defined by

φ[u](t) =

{
u(t)
tα−1 , t ̸= 0,

λ, t = 0.

Then we have

φ[X] =

{
z ∈ C[0, h] | z(0) = λ,

λ

2
≤ z(t), ∀t ∈ [0, h]

}
and φ[X] is a closed subset of C[0, h]. Hence it is a complete metric space. Let ΦA

be an operator of φ[X] into φ[X] defined by

ΦAφ[u] = φ[Au].

By the mean value theorem for all u1, u2 ∈ X there exists a mapping ξ such that

uσ1 (t)− uσ2 (t)

u1(t)− u2(t)
= σξ(t)σ−1,

where

min{u1(t), u2(t)} ≤ ξ(t) ≤ max{u1(t), u2(t)}
for almost every t ∈ [0, h]. For t ∈ (0, h], we have

|ΦAφ[u1](t)− ΦAφ[u2](t)| = |φ[Au1](t)− φ[Au2](t)|

=

∣∣∣∣ 1

tα−1Γ(α)

∫ t

0
(t− s)α−1p(s)sa(u1(s)

σ − u2(s)
σ)ds

∣∣∣∣
≤ 1

tα−1Γ(α)

∫ t

0
(t− s)α−1|p(s)|sa|u1(s)σ − u2(s)

σ|ds.
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Since

|u1(s)σ − u2(s)
σ| = |σ||ξ(s)|σ−1|u1(s)− u2(s)|

≤ |σ|
(
λ

2
sα−1

)σ−1

|u1(s)− u2(s)|

for all s ∈ (0, h], we have

|ΦAφ[u1](t)− ΦAφ[u2](t)|

≤ 1

tα−1Γ(α)

(
λ

2

)σ−1 ∫ t

0
(t− s)α−1|p(s)|sa+(α−1)σ

∣∣∣∣u1(s)sα−1
− u2(s)

sα−1

∣∣∣∣ ds
≤ 1

tα−1Γ(α)

(
λ

2

)σ−1(∫ t

0
(t− s)α−1|p(s)|sa+(α−1)σds

)
∥φ[u1]− φ[u2]∥

≤ 1

Γ(α)

(
λ

2

)σ−1(
ta+(α−1)σ+1

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−1ds

)
∥φ[u1]− φ[u2]∥

≤ 1

Γ(α)

(
λ

2

)σ−1(
ta+(α−1)σ+1

∫ 1

0
|p(ts)|sa+(α−1)σ(1− s)α−2ds

)
∥φ[u1]− φ[u2]∥

≤ K∥φ[u1]− φ[u2]∥

for all t ∈ [0, h]. Therefore we obtain that

∥ΦAφ[u1]− ΦAφ[u2]∥ ≤ K∥φ[u1]− φ[u2]∥.
Hence ΦA is contractive. By the Banach fixed point theorem, there exists a unique
mapping φ[u] ∈ φ[X] of ΦA. Since ΦAφ[u] = φ[u], we have Au = u. By Lemma
2.2, u is a unique solution of the Cauchy problem (1.3). □
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