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ABSTRACT. In this paper, we show the existence and uniqueness of solutions of
the Cauchy problem in a class of singular fractional differential equations. Let
1 < a < 2. We consider the Cauchy problem

{ D u(t) = p(O)t"ult)”,

. .u(t)
t£%1+ u(t) =0, t1_1>%1+ e (. —1)A

where p is continuous, a,0, A € R with ¢ < 0, A > 0 and Dg is the Riemann-
Liouville fractional derivative. If a = 2, then this problem is the problem in
[6].

1. INTRODUCTION

In [6], Knezevié-Miljanovié considered the Cauchy problem for singular differen-
tial equations

(1) { u”(t) = p(t)t*u(t)?,

. - : Iy
tg%’l-‘r u(t) =0, tLHglJru () =2,

where p is continuous, a,0,A € R with ¢ < 0 and A > 0. She proved that if p
satisfies

1
(1.2) / Ip(t)[t* 7 dt < oo,
0

then the problem has a solution. For related results of the Cauchy problem for
singular differential equations (1.1), see [2], [3] and [4].

On the other hand, fractional differential equations have been studied by many
mathematicians. For instance, in [1] and [8], the authors considered the fractional
differential equation

Dg,ult) + f(t,u(t)) = 0

where 1 < a <2 and Df, is the Riemann-Liouville fractional derivative. The ath
Riemann-Liouville fractional derivative of u is given by

L d /O(ts)"_a_lu(s)ds
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where n is an integer with n —1 < a < n and I'(+) is the gamma function. If a = 2,
then n = 3 and

3t
DE u(t) = Fgl)cclit?’/o u(s)ds = u’ ().

Recently, there have been studies concerned with initial value problems for singu-
lar fractional differential equations, for instance, see [7], [9] and [10]. But in the
obtained results, initial value problems (1.1) cannot be treated.

In this paper, we show the existence and uniqueness of solutions of the Cauchy
problem (1.1) in a class of singluar fractional differential equations. Let 1 < a < 2.
We consider the Cauchy problem

Dgult) = ple)eeu(t)’,
1. t
(13) lim w() =0, Tim 28— (0 1)
t—0+ t—0+ t2—2
where p is continuous, a,0, A € R with ¢ < 0 and A > 0 If & = 2, then the Cauchy
problem (1.3) is the problem (1.1).

2. MAIN RESULT

In this section, we derive first the integral equation which is equivalent to the
problem (1.3) (Lemma 2.2). Next, by using the Banach fixed point theorem, we
establish the existence and uniqueness result for solutions of the problem (1.3)
(Theorem 2.3).

Let u be a continuous function of (0,00) into R and « be a positive real number.
The ath Riemman-Liouville fractional integral of u is defined by

0 = o | (=9 uleds

The following lemma can be found in [1] and [5]. We denote by C(0, 1) the space
of all continuous functions of (0, 1) into R. Moreover we denote by L(0, 1) the space
of all integrable functions of (0,1) into R.

Lemma 2.1. Leta > 0. Letu € C(0,1)NL(0,1) satisfying D§, u € C(0,1)NL(0, 1).
Then

I8, D§ u(t) = u(t) + Crt* ! + Cot* 2 - Cpt™"
for some C1,C5,...,C, € R and an integer n withn —1 < a < n.

Next we derive the integral equation which is equivalent to the problem (1.3).

Lemma 2.2. Let 1 < a < 2. Let p be a continuous function of [0,1] into R. Let
a € R and o < 0. Let A > 0. If u is a solution of the Cauchy problem (1.3), then
u 1$ a solution of the equation

(2.1) u(t) = x>t 4 1“(104)/0 (t — s)* Ip(s)su(s)’ds.

Moreover if p satisfies

(2‘2) thI(])ath“Jr a— 1)0+1/ |p tS a+ a—1)o (1 _ S)a72d8 =0,
_>



NOTE ON KNEZEVIC-MILJANOVIC’S THEOREM 2237
then u is a solution of the Cauchy problem (1.3) if and only if u is a solution of the
equation (2.1) under the assumption that 51 < u(t) for all t € (0,1].

Proof. Let u be a solution of (1.3). Since Df u(t) = p(t)t®u(t)?, we obtain the
integral equation

u(t) =I5, p(t)t u(t)” + C1t* ' + Cot* 2

for some Cy and (5 by Lemma 2.1. By the definition of the Riemman-Liouville
fractional integral If, , we have

1 t
u(t) = — / (t — )21 p(s)s%u(s)7ds + C1t* 1 + Cot*™2.
I'(a) Jo
The condition lim;_ou(t) = 0 implies Co = 0. Thus
1 t
u(t) = (o) /0 (t — 5)* 1p(s)s™u(s)ds + C1t* L.
Since o
u' (T
i oy = (0= D0,

we have C1 = A. Therefore we obtain that u is a solution of the equation (2.1).

Let u be a solution of the equation (2.1) under the assumption that 5t~ < u(t)
for all ¢ € (0, 1]. Suppose that p satisfies (2.2). We will show that w is a solution of
the Cauchy problem (1.3). Since u satisfies (2.1), we have Dg u(t) = p(t)t®u(t)’.
Since

a— 1 ! a— a g
)] <3+ s [ (= 9 e
a—1 1 i 7t _ 8 (s SaJr(afl)U S
<w i s () [ e- 9 d

o 1
— ol + F(l ) <;\> taJr(al)aJroz/ ’p(ts)‘sa+(afl)a(1 _ S)ailds
@ 0

IO !
<\t + (> taJr(al)aJrl/ ts Sa+(a71)a 1 — )*24s

and (2.2), we obtain that lim; ,o4 u(t) = 0. Since

a—1

u'(t) = (a0 — DAM2 4 Ta) /0 (t — 5)22p(s)s u(s)ds,

we obtain that

- <5 | (1= 3)"7 s lstuts) s
<t (3) [ 097 wonerenma
=0t (5) e [itasst e v — s
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By (2.2), we have lim;_,o4 Z;—(_tg = (a— 1)A. Therefore u is a solution of the Cauchy
problem (1.3). O

If a continuous function p satisfies the condition (1.2)

1
/ Ip(s)|s“T7ds < oo,
0

where a,0, A € R with 0 < 0 and A > 0, then p satisfies (2.2). Indeed, by (1.2), we
have

t
li “7ds = 0.
Jim /0 p(s)|s*"7ds =0

Since . )
/ Ip(s)[s+ds = o+o+1 / ip(ts) 5™+ ds,
0 0

we have

1
lim ¢etott ts)|s*T%ds = 0.
i ; Ip(ts)ls s

Therefore p in [6] satisfies the condition (2.2).
Using Lemma 2.2, we can show our main result.

Theorem 2.3. Let 1 < o < 2. Let p be a continuous function of [0,1] into R
satisfying (2.2) for a € R and 0 < 0. Let A\ > 0. Then there erists a unique
solution u : (0,h] — R of the Cauchy problem (1.3) satisfying 3t*~1 < u(t) for all
t € (0,h].
Proof. By Lemma 2.2, we consider the integral equation
1 t
u(t) = ML+ / (t — 5)* Ip(s)su(s)’ds.

I'(a) Jo

Let K € (0,1). Choose 0 < h < 1 satisfying

1 e
gt / [p(ts)[s*+ (@17 (1 - 5)*~2ds < I(a) @)
0

and . -
ta+(a—1)a+1/ ’p(ts)|sa+(a—1)o(1 _ S)a—ZdS < F|(a) <;‘> K
0 g
for all t € (0, h]. We denote by C[0, h| the space of all continuous functions of [0, h]
into R with the maximum norm given by ||u| = maxo<;<p |u(t)| for u € C|0, h)].

Let X be a subset of C[0, h] defined by

. U,(t) A a—1
— — = — — < .
X {u € C[0,h] | u(0) 0,t1_1>%l+ P (a — 1)\, 2t <wu(t),Vt e (O,h]}

Since a mapping t — AM®~! belongs to X, we have X # (). Let A be an operator
of X into C]0, h| defined by

Au(t) = M7t 4 I‘(la)/o (t — 5)* Ip(s)s u(s)?ds.
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Then A(X) C X. Indeed, let v € X. Then we can show similarly as in the proof

of Lemma 2.2 that Au(0) = 0 and lim;_,o (éfj),;(t) = (o — 1)A. Moreover we obtain
that

Au(t) > ot — 1/0 (t — s)* Hp(s)|s u(s)’ds

()
VL S () ’ /t(t — ) !p(s)[s"H D7 ds
- (@) \2/ Jo
— el 1 ()\)Uta-i—(a—l)a-i-oz /1 |p(t8)|sa+(a—1)a(1 - S)a—lds
(a) \ 2 0
o 1
> )\toc—l . 1 </\> ta+(a—1)o+a/ |p(t8)|sa+(a—1)a(1 _ S)a—QdS
(a) \ 2 0
o 1
_ )\ta—l . 1 </\> <ta+(a—1)a+1/ |p(ts)|8a+(a—1)a(1 _ S)a—2d5> ta—l
I'(a) \ 2 0
A
> a—1 _ a—1
At 2t
A a1
= —ta
2

Therefore we have Au € X.
We will find a fixed point of A. Let ¢ be an operator of X into C|0, k] defined by

t — ta—1 )
Plul(t) {A’ o

Then we have

o[X] = {z € C[0,h] | 2(0) = A, 2 < 2(t),Vt € [0, h]}

and ¢[X] is a closed subset of C0, h]. Hence it is a complete metric space. Let ® 4
be an operator of p[X] into ¢[X] defined by

P aplu] = p[Au].
By the mean value theorem for all uj,us € X there exists a mapping £ such that

uf (t) — ug(t) o-1
OO =o€(t)7,
where
min{uq (t), u2(t)} < &(t) < max{uq(t),ua(t)}
for almost every t € [0, h]. For t € (0, h], we have

| ®ap[ur](t) — Paplug] ()] = [w[Au](t) — p[Aug](?)]

1 t o u Y .
Ty ¢ 9 P ) wals) s

< vy | (= T RIS (97 = uas)° s
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Since

ur()7 — un(5)°] = o6 un(s) — ua(s)]
<o (A o ) fua(s) — ua(s)

for all s € (0, h], we have
\@Aw[ul]( ‘I’ASO[W]( )|

: ‘

IN

urls)  uals)

s&—

_ ae—1 a+(a—1)o
e (3)7 [t

TS (;)( [t sl @D ) folur] - plusl

e 1<t“+°‘ Do+ /1|p<ts>rsa+<a1>°<1—s>a1ds) Jipkr] = ol |

0
L - a+(a—1)o+1 ! at(a—o/q _ a—2 B
T(a )< > <t+ + /O Ip(ts)|s** (1—1s) ds) llo[u1] — @lus]||
< Kllp[u] — plug]|

for all ¢ € [0, h] Therefore we obtain that

[Paplur] — Paplusll| < Kllplur] — plua]l

Hence @ 4 is contractive. By the Banach fixed point theorem, there exists a unique
mapping u] € p[X] of ®4. Since P p[u] = ¢[u], we have Au = u. By Lemma

2.2,

(1]
2]

B3l

(4]

(5]

(6]
(7]
(8]
(9]

u is a unique solution of the Cauchy problem (1.3). d
REFERENCES
7. Bai and H. Lii, Positive solutions for boundary value problem on nonlinear fractional dif-

ferential equation, J. Math. Anal. Appl. 311 (2005), 495-505.

T. Kawasaki and M. Toyoda, Existence of positive solution for the Cauchy problem for an
ordinary differential equation, Nonlinear Mathematics for Uncertainly and its Applications,
Advances in Intelligent and Soft Computing, vol. 100, Springer-Verlag, Berlin and New York,
2011, pp. 435-441.

T. Kawasaki and M. Toyoda, Positive solutions of initial value problems of negative exponent
Emden-Fowler equations, Memoris of the Faculty of Engineering, Tamagawa University 48
(2013), 25-30 (in Japanese).

T. Kawasaki and M. Toyoda, FExistence of positive solutions of the Cauchy problem for a
second-order differential equation, J. Ineq. Appl. 2013, 2013:465.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier, Amsterdam,
2006.

J. Knezevié-Miljanovié¢, On the Cauchy problem for an Emden-Fowler equation, Differential
Equations 45 (2009), 267-270.

C. Kou, H. Zhou and Y. Yan, Ezistence of solutions of initial value problems for nonlinear
fractional differential equations on the half-axis, Nonlinear Analysis 74 (2011), 5975-5986.

C. F. Li, X. N. Luo and Y. Zhou, Ezistence of positive solutions of the boundary value problem
for nonlinear fractional differential equations, Comp. Math. Appl. 59 (2010), 1363-1375.

X. Yang and Y. Liu, Picard iterative processes for initial value problems of singular fractional
differential equations, Advances in Difference Equations 2014, 2014:102.



NOTE ON KNEZEVIC-MILJANOVIC’S THEOREM 2241

[10] S. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville
fractional derivatives, Nonlinear Analysis 71 (2009), 2087-2093.

Manuscript received May 30, 2014
revised November 20, 2015

T. KAWASAKI
College of Engineering, Nihon University, Fukushima 963-8642, Japan
E-mail address: toshiharu.kawasaki@nifty.ne. jp

M. Toyoba
College of Engineering, Tamagawa University, Tokyo 194-8610, Japan
E-mail address: mss-toyoda@eng.tamagawa.ac.jp



