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ABSTRACT. We deal with self-organizing map models referred to as Kohonen
type algorithm. By repeating learning in self-organizing map models, some model
functions have important properties such as ordering which appears in the rela-
tion between the array of nodes and the values of nodes. We investigate closed
classes of states in self-organizing maps with a one dimensional array of nodes
and variable learning sets. We give a condition that the learning mapping is
non-expansive in general input self-organizing maps. The learning adopted in
this result can be used as a measure for the learning process to converge.

1. FORMULATION OF SELF-ORGANIZING MAP MODELS

We consider self-organizing map models referred to as Kohonen [7] type algo-
rithm. A self-organizing map algorithm is very practical and has many useful
applications, such as a semantic map, a diagnosis of speech voicing, the traveling-
salesman problem, and so on. There are some interesting phenomena between the
array of nodes and the values of nodes in these models. Indeed practical properties
in self-organizing map models are easy to observe, but they still remain without
mathematical proofs in general cases. Firstly, a proof of the convergence of the
learning process in the one-dimensional case was given by Cottrell and Fort [1].
Subsequently, convergence properties are more generally studied, e.g., in Erwin,
Obermayer, and Schulten [2, 3, 4].

The purpose of this paper is to make a study of closed classes of states and their
characterization in the model.

In this paper, we investigate closed classes of states in one dimensional arrayed
self-organizing maps with a one dimensional input space. These properties can be
used as a measure of estimation of the extent of ordering and the degree of converg-
ing for the learning process in order to tune a practical self-organizing map algo-
rithm. Moreover, we give a condition that the learning mapping is non-expansive
in self-organizing maps with inputs in an inner product space. In applications, it
is needed to make learning processes in self-organizing map converge or stop in an
appropriate state of nodes and a suitable step of process. This result can be used
as a useful instrument for the learning process not to expand the difference between
the values of two neighbor nodes and to converge in a practical problem such as a
type of problem similar to the shortest path problem. And a self-organizing map
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with one dimensional array and two dimensional inputs is a particular case of the
result in this paper, which is applied to this problem.

We consider to characterize a model (I,V, X, {my(-)}32,) with four elements
which consist of the nodes, the values of nodes, inputs and model functions with
some learning processes, in this paper. There are several types of models with
various spaces of nodes, spaces of their values and ways of learning for nodes. We
suppose the following.

(i) We suppose an array of nodes. Let I denote the set of all nodes, which
is called the node set. We assume that [ is a countable set metrized by
a metric d. Usually, the following are used in many applications, a finite
subset of the set N of all natural numbers, or a finite subset of N2.

(ii) We suppose that each node has its value. V is the space of values of nodes.
We assume that V' is a real linear normed space with a norm || - [|. A
mapping m : I — V transforming each node ¢ to its value m(i) is called a
model function. Let M be the set of all model functions.

(iii) X is the input set. Let X be a subset of V. z € X is called an input.

(iv) The learning process is defined by the following. If an input is given, then
the value of each node is renewed to a new value by the input. If an in-
put z is given, node i learns from z and its value m(i) changes to a new
value m/(7) determined by m/(i) = (1 — aumz(2))m(i) + o (i)z accord-
ing to the rate (i) € [0,1]. If an initial model function mg and a
sequence xg,T1,T2,... € X of inputs are given, then the model functions
miy, ma, M3, ... are generated sequentially according to

Mp41(1) = (1 = 2 (4))Mk () + oy 2 (D), £ =0,1,2,....

There are several types of models with various spaces of nodes, spaces of their
values and ways of learning for nodes.

2. A FUNDAMENTAL SELF-ORGANIZING MAP AND AN ABSORBING CLASS

In this paper, we restrict our considerations to a basic self-organizing map with
real-valued nodes and a one-dimensional array of nodes. We suppose that a set V'
of values of nodes is identified with R which is the set of all real numbers.

We consider a model

(I=1{1,2,....n},V=RX CR {mp()})

(i) Let I = {1,2,...,n} be the node set with metric d(i,j) = |i — j|. (ii) Assume
V = R, that is, each node is R-valued. (iii) zg,z1,22,... € X C R is an input
sequence. (iv) We assume a learning process defined by the following procedures.

Learning process L with a learning radius € = 1 is as follows.
(a) Areas of learning:

(2.1) I(mg,xg) ={i* € I||mp(i*) — x| = 11& |y (i) — x|}

and N1(i) = {j € I'| |[j—i| <1}. (b) Learning-rate factor: 0 < a < 1. (c¢) Learning:
let Ni(L(my, k) = Uirer(my,ep) NV1(7%) and {my} is defined by the following, for
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each k =0,1,2,...,if i € Ny(I(myg,xx)) then
(2.2) mi+1(2) = (1 — a)mg (i) + axyg,

otherwise my41(7) = mg(4).

If an input ¢ € X is given, then we choose node ¢* which has the most similar
value to xo within mg(1),mg(2),...,mo(n). Node i* and the nodes which are in
the neighborhood of i* learn xy and their values change to new values mq(i) =
(1 — a)mg(i) + axg. The nodes which are not in the neighborhood of i* do not
learn and their values do not change. Repeating these updating for the inputs
xr1,T9, T3, ..., the value of each node is renewed sequentially. Simultaneously, model
functions mq,mo, ms,... are also generated sequentially. By repeating learning,
some model functions have properties such as monotonicity and a certain regularity
which may appear in the relation between the array of nodes and the values of nodes.
Self-organizing maps apply to many practical problems by using these properties.

The following is a well-known property [7].

Theorem 2.1. We consider a self-organizing map model
({17 27 v 7”}7 Ra X C R? {mk()}l?;o:())

with Learning process La(e = 1). For model functions my, me, ..., the following
statements hold:
(i) if my is increasing on I, that is my(i) < myg(i + 1) for all i, then myyq is
mcreasing on I;
(ii) of my is decreasing on I, that is my(i) > mg(i + 1) for all i, then myyq is
decreasing on I;
(iil) if my 1is strictly increasing on I, that is my(i) < myg(i + 1) for all i, then
myy1 1S strictly increasing on I;
(iv) if my is strictly decreasing on I, that is my(i) > my(i + 1) for all i, then
myy1 @S strictly decreasing on I.

The class of states with monotone in this self-organizing map is a closed class
in the sense that once model function leads to increasing state, it never leads to
other states for the learning by any input. Such properties as monotone are called
absorbing states of self-organizing map models.

3. AN EXTENDED LEARNING PROCESS AND AN ABSORBING CLASS

We give a results for preserving monotone of model functions.

Theorem 3.1. We consider a self-organizing map model
({1,2,...,n},R, X C R, {mr(-)}rzo)-

Assume Learning process Ly (e = 1,2,...) with learning rates cv; depending on node
i. For learning, let Ne(I(mpg, k) = Uprermy,z)il € I | |1 — %] < e} and suppose
that
o) (L= ag)my(i) + i, if i € Ne(I(mp, xy)),
My41(i) = . .
mg (), otherwise,
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where we assume that {a;} C [0,1) satisfies, for each i* € I(my,xy),

a; <aigq, 1=1"—¢gi"—e+1,...,0" =1
and
Q; > Oy, =10+ 1,...,7" +e—1.
Then, for model functions my, ma, ..., if my is increasing on I, then mpy1 is

increasing on I.

Note that similar statements hold for strictly increasing state, decreasing state
and strictly decreasing state.

Proof. We show the statement for a singleton I(mg,zx) = {i*}. If it is not a
singleton, the theorem can also be shown by using the same argument. Suppose
that model function my, is increasing.

(a) For i < i*—e—2,4>i"4+e+ 1, we have myy1(i + 1) = mg(i + 1) and
mk+1(i) = mk(z) So mg11 (’L) < Mgy (’L + 1).

(b) For i =* —e — 1, we have

M1 (i + 1) = mpga (i) = (1 — agpr)mp(i + 1) + aipra — my (i)
=mg(i+ 1) —mi(i) + aipr(z — my(i + 1)).

Suppose my(i + 1) > x. Since my is increasing, © < my(i + 1) < my(3*). This
contradicts i + 1 ¢ I(m,x) and |z — mg(i*)| < |z — mg(i +1)]. So m(i +1) < z.
Thus, we have my41(i + 1) — mgy41(i) > 0.

(c) Fori=1i*—¢,i*—e+1,...,i* — 1, we have

M1 (i + 1) — myy1(7)
=1 —-air1)mp(i + 1) + i1z — (1 — i) my (i) — oy
= (1 = ais1) (mi(i + 1) — my (@) + (i1 — ) (@ — my (i) =2 0
(d) For i =i*,i*+1,...,i"+e—1, we obtain mg41(i+1) — mgy1(i) > 0 by using
the similar argument to (c).
(e) For i = i* + ¢, we have
M1 (i + 1) = mpg (i) = my(i + 1) — (1 — a)mi(i) + ai
=my(i + 1) — my(2) + ai(my (i) — ) = 0.
Thus, the renewed model function my; is also increasing. O

Theorem 3.2. We consider a self-organizing map model
({1,2,...,n},R, X C R, {mi(-)}izp)-

Assume Learning process L for any € (¢ = 1,2,...) with a constant learning-rate
factor 0 < a < 1. Then, for model functions my, ma, ..., the following statements

hold:

(i) my is increasing on I, then myyq is increasing on I;

(ii) my is decreasing on I, then myy1 is decreasing on I;

iii)

iv) my is strictly decreasing on I, then myyq is strictly decreasing on I.

iii) my is strictly increasing on I, then my1 s strictly increasing on I;

(
(
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Proof. For any constant learning-rate factor ao € [0,1), {a;} given by a; = « for
all ¢ satisfies the condition in Theorem 3.1. The statement follows from Theorem
3.1. U

4. A CONDITION FOR THE LEARNING TO BE A NON-EXPANSIVE MAPPING

In this section, we consider a self-organizing map with a one dimensional array
and a general input space,

({17 2? ceey TL}, V7 Xa {mk()}zozo)

(i) The node set. Let I ={1,2,...,n} with metric d;(i,5) = |i — j|, i,7 € I.
(ii) The values of nodes. Let m : I — V', where V is a normed linear space with
an inner product (-, -).
(iii) zo,z1,22,... € X C V is an input sequence.
(iv) Assume Learning process Ly, with 1-dimensional array and € = 1.
(a) Areas of learning:

J(m,z) = min{i* € I'| |m(i") — 2|l = inf lm(7) — 2]}, meMzeX

and Ny (i) = {j € I | d;(i,7) < 1}.

(b) Learning-rate factor: 0 < a < 1.

(c) Learning: if i € Ni(J(m,z)) then m/(i) = (1 — a)m(i) + aux, otherwise
m/ (1) = m(i).

For self-organizing maps with inputs in an inner product space, we provide a
condition that the learning mapping m(i) — m/(i), transforming value m(i) of
node ¢ to its renewed value m’(7), is non-expansive on neighboring nodes, in the
sense of the following theorem.

Theorem 4.1. We consider a self-organizing map

({17 2? ceey n}7 V7 Xv {mk()}iozo)

Assume Learning process Ly, (¢ = 1) with variable learning rates o defined by the
following. Let m be an arbitrary model function and x an arbitrary input. Let m’
be the renewed model function of m by x. Let i* = J(m,z),

2(m(i* —2) —m(i* — 1), x — m(i* — 1))
ar= lz = m(i* — 1|2 ’
, if i*=1,2 orx =m(i* — 1),

if i* > 3 and © # m(i* — 1),

and

2(m(i* +2) —m(i* + 1), z — m(i* + 1))
- o= m( + P

1, ifi*=n—1,n orz=m(i* +1).

yifi* <m—2andx #m(*+1),

Then, for any « satisfying that 0 < a < max{0, min{ay, ag,1}},
(@) G+ D) -G < i+ 1) —m@), i=1,2...n-1.

Note that if min{a;, as} <0, then the model function is not renewed.
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Proof. (a) Fori <i*—3,i>i*+2, we have m/(i+1) = m(i+1) and m/(i) = m(3).
Therefore (4.1) holds.
(b)  We verify (4.1) for i = ¢* — 2. We have

lm/ (@ — 1) —m/ (" — 2)||?

= |(1 — )ym(i* = 1) + az — m(i* — 2)|?

= [m(i* — 1) = m(i* - 2) — a(m(i* - 1) - 2)|?

= |m(@i* — 1) = m(i* = 2)|? = 2a(m(i* — 1) = m(i* — 2), m(i* — 1) — x)
+ QQHm(i* —-1)— :UH2

Therefore

lm/ (@ = 1) = m/(@* = 2)|* — [Im(i* = 1) —m(i* - 2)|

=a{[m(* — 1) — 2|?a — 2(m(i* — 1) — m(* — 2), m(i* — 1) —z)}.

If x = m(i* — 1), then ||m/(i* — 1) — m/(¢* — 2)|| = [[m(i* — 1) — m(i* — 2)]|| holds.
Hence, for any « satisfying that 0 < o < max{0, min{ay, oo, 1}},

I’ (" = 1) = m/ (@ = 2)|* = [Jm (i = 1) = m(i* = 2)||* < 0.

So (4.1) holds for i = i* — 2.
(¢) Fori=1i*—1,i*, we have

|m/(i + 1) — /()| =||(1 — a)m(i + 1) + az — (1 — a)m(i) — az||
=1 =a)[m(i +1) —m(@)]|
<[lm(i +1) = m(@)].
(d) We verify (4.1) for i =i* + 1. We have
|m/(i* 4 2) — m/ (5% + 1))
= |m(* +2) — (1 — a)m(i* + 1) — az|?
= |m(i* +2) — m(i* + 1)||? = 2a(m(i* +2) —m(i* + 1), z —m(i* +1))
+ o2z — m(i* +1)|)°.
Therefore
[m (i + 2) — m/ (i + 1|12 = |m(i* + 2) — m(i* + 1)|?
=« {H:L’ —m(i* + 1)||2a —2(m(i*4+2) —m@*+1), x —m(@* + 1)>} .

If z = m(i* 4+ 1), then [|m/(i* +2) — m/(¢* + 1)|| = [|m(i* + 2) — m(¢* + 1)|| holds.
Hence, for any o with 0 < o < max{0, min{ay, oz, 1}},

I’ (" + 2) = m/ (¢ + 2)|* = [Jm (" + 2) = m(i* + 1)|* < 0.

So (4.1) holds for i = i* + 1.
Thus (4.1) holds for any a with 0 < o < max{0, min{a;, as, 1}}. O
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5. CONCLUSIONS

In this paper, we investigated closed classes of state in essential one dimensional
arrayed self-organizing maps to make a contribution of the theoretical properties of
self-organizing map algorithm. We presented a condition that the learning mapping
is non-expansive in self-organizing maps with a one dimensional array and general
inputs in an inner product space. This result can be used as an instrument for the
learning process not to expand the difference between the values of two neighbor
nodes and to converge.
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