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with one dimensional array and two dimensional inputs is a particular case of the
result in this paper, which is applied to this problem.

We consider to characterize a model (I, V,X, {mk(·)}∞k=0) with four elements
which consist of the nodes, the values of nodes, inputs and model functions with
some learning processes, in this paper. There are several types of models with
various spaces of nodes, spaces of their values and ways of learning for nodes. We
suppose the following.

(i) We suppose an array of nodes. Let I denote the set of all nodes, which
is called the node set. We assume that I is a countable set metrized by
a metric d. Usually, the following are used in many applications, a finite
subset of the set N of all natural numbers, or a finite subset of N2.

(ii) We suppose that each node has its value. V is the space of values of nodes.
We assume that V is a real linear normed space with a norm ∥ · ∥. A
mapping m : I → V transforming each node i to its value m(i) is called a
model function. Let M be the set of all model functions.

(iii) X is the input set. Let X be a subset of V . x ∈ X is called an input.
(iv) The learning process is defined by the following. If an input is given, then

the value of each node is renewed to a new value by the input. If an in-
put x is given, node i learns from x and its value m(i) changes to a new
value m′(i) determined by m′(i) = (1 − αm,x(i))m(i) + αm,x(i)x accord-
ing to the rate αm,x(i) ∈ [0, 1]. If an initial model function m0 and a
sequence x0, x1, x2, . . . ∈ X of inputs are given, then the model functions
m1,m2,m3, . . . are generated sequentially according to

mk+1(i) = (1− αmk,xk
(i))mk(i) + αmk,xk

(i)xk, k = 0, 1, 2, . . . .

There are several types of models with various spaces of nodes, spaces of their
values and ways of learning for nodes.

2. A fundamental self-organizing map and an absorbing class

In this paper, we restrict our considerations to a basic self-organizing map with
real-valued nodes and a one-dimensional array of nodes. We suppose that a set V
of values of nodes is identified with R which is the set of all real numbers.

We consider a model

(I = {1, 2, . . . , n}, V = R, X ⊂ R, {mk(·)}∞k=0).

(i) Let I = {1, 2, . . . , n} be the node set with metric d(i, j) = |i − j|. (ii) Assume
V = R, that is, each node is R-valued. (iii) x0, x1, x2, . . . ∈ X ⊂ R is an input
sequence. (iv) We assume a learning process defined by the following procedures.

Learning process LA with a learning radius ε = 1 is as follows.
(a) Areas of learning:

(2.1) I(mk, xk) = {i∗ ∈ I | |mk(i
∗)− xk| = inf

i∈I
|mk(i)− xk|}

and N1(i) = {j ∈ I | |j− i| ≤ 1}. (b) Learning-rate factor: 0 ≤ α ≤ 1. (c) Learning:
let N1(I(mk, xk)) = ∪i∗∈I(mk,xk)N1(i

∗) and {mk} is defined by the following, for
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each k = 0, 1, 2, . . ., if i ∈ N1(I(mk, xk)) then

(2.2) mk+1(i) = (1− α)mk(i) + αxk,

otherwise mk+1(i) = mk(i).

If an input x0 ∈ X is given, then we choose node i∗ which has the most similar
value to x0 within m0(1),m0(2), . . . ,m0(n). Node i∗ and the nodes which are in
the neighborhood of i∗ learn x0 and their values change to new values m1(i) =
(1 − α)m0(i) + αx0. The nodes which are not in the neighborhood of i∗ do not
learn and their values do not change. Repeating these updating for the inputs
x1, x2, x3, . . ., the value of each node is renewed sequentially. Simultaneously, model
functions m1,m2,m3, . . . are also generated sequentially. By repeating learning,
some model functions have properties such as monotonicity and a certain regularity
which may appear in the relation between the array of nodes and the values of nodes.
Self-organizing maps apply to many practical problems by using these properties.

The following is a well-known property [7].

Theorem 2.1. We consider a self-organizing map model

({1, 2, . . . , n},R, X ⊂ R, {mk(·)}∞k=0)

with Learning process LA(ε = 1). For model functions m1, m2, . . ., the following
statements hold:

(i) if mk is increasing on I, that is mk(i) ≤ mk(i + 1) for all i, then mk+1 is
increasing on I;

(ii) if mk is decreasing on I, that is mk(i) ≥ mk(i + 1) for all i, then mk+1 is
decreasing on I;

(iii) if mk is strictly increasing on I, that is mk(i) < mk(i + 1) for all i, then
mk+1 is strictly increasing on I;

(iv) if mk is strictly decreasing on I, that is mk(i) > mk(i + 1) for all i, then
mk+1 is strictly decreasing on I.

The class of states with monotone in this self-organizing map is a closed class
in the sense that once model function leads to increasing state, it never leads to
other states for the learning by any input. Such properties as monotone are called
absorbing states of self-organizing map models.

3. An extended learning process and an absorbing class

We give a results for preserving monotone of model functions.

Theorem 3.1. We consider a self-organizing map model

({1, 2, . . . , n},R, X ⊂ R, {mk(·)}∞k=0).

Assume Learning process LA (ε = 1, 2, . . .) with learning rates αi depending on node
i. For learning, let Nε(I(mk, xk)) = ∪i∗∈I(mk,xk){i ∈ I | |i − i∗| ≤ ε} and suppose
that

mk+1(i) =

{
(1− αi)mk(i) + αix, if i ∈ Nε(I(mk, xk)),

mk(i), otherwise,
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where we assume that {αi} ⊂ [0, 1) satisfies, for each i∗ ∈ I(mk, xk),

αi ≤ αi+1, i = i∗ − ε, i∗ − ε+ 1, . . . , i∗ − 1

and

αi ≥ αi+1, i = i∗, i∗ + 1, . . . , i∗ + ε− 1.

Then, for model functions m1, m2, . . ., if mk is increasing on I, then mk+1 is
increasing on I.

Note that similar statements hold for strictly increasing state, decreasing state
and strictly decreasing state.

Proof. We show the statement for a singleton I(mk, xk) = {i∗}. If it is not a
singleton, the theorem can also be shown by using the same argument. Suppose
that model function mk is increasing.

(a) For i ≤ i∗ − ε − 2, i ≥ i∗ + ε + 1, we have mk+1(i + 1) = mk(i + 1) and
mk+1(i) = mk(i). So mk+1(i) ≤ mk+1(i+ 1).

(b) For i = i∗ − ε− 1, we have

mk+1(i+ 1)−mk+1(i) = (1− αi+1)mk(i+ 1) + αi+1x−mk(i)

= mk(i+ 1)−mk(i) + αi+1(x−mk(i+ 1)).

Suppose mk(i + 1) ≥ x. Since mk is increasing, x ≤ mk(i + 1) ≤ mk(i
∗). This

contradicts i + 1 ̸∈ I(m,x) and |x −mk(i
∗)| < |x −mk(i + 1)|. So mk(i + 1) < x.

Thus, we have mk+1(i+ 1)−mk+1(i) ≥ 0.
(c) For i = i∗ − ε, i∗ − ε+ 1, . . . , i∗ − 1, we have

mk+1(i+ 1)−mk+1(i)

= (1− αi+1)mk(i+ 1) + αi+1x− (1− αi)mk(i)− αix

= (1− αi+1)(mk(i+ 1)−mk(i)) + (αi+1 − αi)(x−mk(i)) ≥ 0

(d) For i = i∗, i∗+1, . . . , i∗+ε−1, we obtain mk+1(i+1)−mk+1(i) ≥ 0 by using
the similar argument to (c).

(e) For i = i∗ + ε, we have

mk+1(i+ 1)−mk+1(i) = mk(i+ 1)− (1− αi)mk(i) + αix

= mk(i+ 1)−mk(i) + αi(mk(i)− x) ≥ 0.

Thus, the renewed model function mk+1 is also increasing. □

Theorem 3.2. We consider a self-organizing map model

({1, 2, . . . , n},R, X ⊂ R, {mk(·)}∞k=0).

Assume Learning process LA for any ε (ε = 1, 2, . . .) with a constant learning-rate
factor 0 ≤ α < 1. Then, for model functions m1, m2, . . ., the following statements
hold:

(i) mk is increasing on I, then mk+1 is increasing on I;
(ii) mk is decreasing on I, then mk+1 is decreasing on I;
(iii) mk is strictly increasing on I, then mk+1 is strictly increasing on I;
(iv) mk is strictly decreasing on I, then mk+1 is strictly decreasing on I.
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Proof. For any constant learning-rate factor α ∈ [0, 1), {αi} given by αi = α for
all i satisfies the condition in Theorem 3.1. The statement follows from Theorem
3.1. □

4. A condition for the learning to be a non-expansive mapping

In this section, we consider a self-organizing map with a one dimensional array
and a general input space,

({1, 2, . . . , n}, V,X, {mk(·)}∞k=0).

(i) The node set. Let I = {1, 2, . . . , n} with metric dI(i, j) = |i− j|, i, j ∈ I.
(ii) The values of nodes. Let m : I → V , where V is a normed linear space with

an inner product ⟨·, ·⟩.
(iii) x0, x1, x2, . . . ∈ X ⊂ V is an input sequence.
(iv) Assume Learning process Lm with 1-dimensional array and ε = 1.

(a) Areas of learning:

J(m,x) = min{i∗ ∈ I | ∥m(i∗)− x∥ = inf
i∈I

∥m(i)− x∥}, m ∈ M,x ∈ X

and N1(i) = {j ∈ I | dI(i, j) ≤ 1}.
(b) Learning-rate factor: 0 ≤ α ≤ 1.
(c) Learning: if i ∈ N1(J(m,x)) then m′(i) = (1− α)m(i) + αx, otherwise

m′(i) = m(i).

For self-organizing maps with inputs in an inner product space, we provide a
condition that the learning mapping m(i) 7→ m′(i), transforming value m(i) of
node i to its renewed value m′(i), is non-expansive on neighboring nodes, in the
sense of the following theorem.

Theorem 4.1. We consider a self-organizing map

({1, 2, . . . , n}, V,X, {mk(·)}∞k=0).

Assume Learning process Lm(ε = 1) with variable learning rates α defined by the
following. Let m be an arbitrary model function and x an arbitrary input. Let m′

be the renewed model function of m by x. Let i∗ = J(m,x),

α1=


2⟨m(i∗ − 2)−m(i∗ − 1) , x−m(i∗ − 1)⟩

∥x−m(i∗ − 1)∥2
, if i∗ ≥ 3 and x ̸= m(i∗ − 1),

1, if i∗ = 1, 2 or x = m(i∗ − 1),

and

α2=


2⟨m(i∗ + 2)−m(i∗ + 1) , x−m(i∗ + 1)⟩

∥x−m(i∗ + 1)∥2
, if i∗ ≤ n− 2 and x ̸= m(i∗ + 1),

1, if i∗ = n− 1, n or x = m(i∗ + 1).

Then, for any α satisfying that 0 ≤ α ≤ max{0,min{α1, α2, 1}},
(4.1) ∥m′(i+ 1)−m′(i)∥ ≤ ∥m(i+ 1)−m(i)∥, i = 1, 2, . . . , n− 1.

Note that if min{α1, α2} ≤ 0, then the model function is not renewed.
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Proof. (a) For i ≤ i∗−3, i ≥ i∗+2, we have m′(i+1) = m(i+1) and m′(i) = m(i).
Therefore (4.1) holds.

(b) We verify (4.1) for i = i∗ − 2. We have

∥m′(i∗ − 1)−m′(i∗ − 2)∥2

= ∥(1− α)m(i∗ − 1) + αx−m(i∗ − 2)∥2

= ∥m(i∗ − 1)−m(i∗ − 2)− α(m(i∗ − 1)− x)∥2

= ∥m(i∗ − 1)−m(i∗ − 2)∥2 − 2α⟨m(i∗ − 1)−m(i∗ − 2) , m(i∗ − 1)− x⟩
+ α2∥m(i∗ − 1)− x∥2.

Therefore

∥m′(i∗ − 1)−m′(i∗ − 2)∥2 − ∥m(i∗ − 1)−m(i∗ − 2)∥2

= α
{
∥m(i∗ − 1)− x∥2α− 2⟨m(i∗ − 1)−m(i∗ − 2) , m(i∗ − 1)− x⟩

}
.

If x = m(i∗ − 1), then ∥m′(i∗ − 1) −m′(i∗ − 2)∥ = ∥m(i∗ − 1) −m(i∗ − 2)∥ holds.
Hence, for any α satisfying that 0 ≤ α ≤ max{0,min{α1, α2, 1}},

∥m′(i∗ − 1)−m′(i∗ − 2)∥2 − ∥m(i∗ − 1)−m(i∗ − 2)∥2 ≤ 0.

So (4.1) holds for i = i∗ − 2.
(c) For i = i∗ − 1, i∗, we have

∥m′(i+ 1)−m′(i)∥ =∥(1− α)m(i+ 1) + αx− (1− α)m(i)− αx∥
=(1− α)∥m(i+ 1)−m(i)∥
≤∥m(i+ 1)−m(i)∥.

(d) We verify (4.1) for i = i∗ + 1. We have

∥m′(i∗ + 2)−m′(i∗ + 1)∥2

= ∥m(i∗ + 2)− (1− α)m(i∗ + 1)− αx∥2

= ∥m(i∗ + 2)−m(i∗ + 1)∥2 − 2α⟨m(i∗ + 2)−m(i∗ + 1) , x−m(i∗ + 1)⟩
+ α2∥x−m(i∗ + 1)∥2.

Therefore

∥m′(i∗ + 2)−m′(i∗ + 1)∥2 − ∥m(i∗ + 2)−m(i∗ + 1)∥2

= α
{
∥x−m(i∗ + 1)∥2α− 2⟨m(i∗ + 2)−m(i∗ + 1) , x−m(i∗ + 1)⟩

}
.

If x = m(i∗ + 1), then ∥m′(i∗ + 2) −m′(i∗ + 1)∥ = ∥m(i∗ + 2) −m(i∗ + 1)∥ holds.
Hence, for any α with 0 ≤ α ≤ max{0,min{α1, α2, 1}},

∥m′(i∗ + 2)−m′(i∗ + 2)∥2 − ∥m(i∗ + 2)−m(i∗ + 1)∥2 ≤ 0.

So (4.1) holds for i = i∗ + 1.
Thus (4.1) holds for any α with 0 ≤ α ≤ max{0,min{α1, α2, 1}}. □
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5. Conclusions

In this paper, we investigated closed classes of state in essential one dimensional
arrayed self-organizing maps to make a contribution of the theoretical properties of
self-organizing map algorithm. We presented a condition that the learning mapping
is non-expansive in self-organizing maps with a one dimensional array and general
inputs in an inner product space. This result can be used as an instrument for the
learning process not to expand the difference between the values of two neighbor
nodes and to converge.
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