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ABSTRACT. For a vector space X, we denote the set of all norms on X by Nx
and define a function on Nx by f(||-||) = Cns((X, ]| - ||)) where Cny((X, || - ]])) is
the von Neumann-Jordan constant of normed linear space (X, | -||). We examine
the convexity of f on Nx and on some subsets of Nx.

The notion of the von Neumann-Jordan constant of normed linear spaces was
introduced by Clarkson in [1] and recently it has been studied by several authors
(cf. [2, 3,4, 5]). The von Neumann-Jordan constant Cx;((X, ||-]])) of normed linear
space (X, || -|) is defined by

T 2 T — 2
oxa 6,1 ) = sup { P I ) 2 000}

It is well-known that 1 < Cny((X, |- |])) < 2 for any normed linear space (X, || - [|),
and (X, | -]|) is an inner product space if and only if Cny((X,]| - |])) = 1. If
1 <p< oo, dimL, > 2, then Cxy(Ly) = 92/ min{p.p'} =1 yhere 1/p+1/p =1. We
can describe several geometrical and topological properties of normed linear spaces
by means of the von Neumann-Jordan constant (see [3, 4]).

A norm ||-|| on R? is said to be absolute if || (z, y)|| = ||(|z|, |y|)|| for all (z,y) € R?,
and normalized if ||(1,0)| = [|(0,1)|| = 1. The set of all absolute normalized norms
on R? is denoted by AN,. Let Wy be the set of all convex functions ¢ on [0, 1]
satisfying max{1 — t,t} < ¢(t) <1 for ¢t € [0,1]. Uy and AN3 can be identified by
a one to one correspondence 1) — || - || with the relation ¢ (t) = ||(1 —¢,t)||, for
t € [0,1] (see [5]). For 1 < p < oo, we denote

_J{a-ore ey 1<p<oo)
V() {max{l —t,t} (p = 0).

Then 1), € ¥s, and ), corresponds to the l,-norms || - ||, on R? defined by

= J P+ 1P)P (1< <o)
o)l {mw&mw} (b= o).
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The set ¥y has a convex structure, that is,
W, P €Wy = (1 =N+ X\ € Uy

for X € [0,1]. The correspondence 1 — || - || preserves the operation to take a
convex combination, that is,
(=20 Ml + Al Ml = 1 Ta—apwawr

for ¢, ¢ € Uy and X € [0,1]. Hence, ¥5 and ANy are isomorphic with respect to
this convex structure.

In [4], we considered the convex property of von Neumann-Jordan constant on
ANs. More generally, let X be a real (or complex) vector space and let Nx be the
set of all norms on X. We define a function on Nx by f(|| - ||) = Cns((X, || - [))-
We showed that f is a convex function on Nx(Theorem 3.1 in [4]). However, this
result is not correct.

Our aim in this note is to present a partial result that f is convex on certain
subsets of ANs and also present counterexamples of Theorem 3.1 and Corollary 3.1
in [4].

In this paper, we only consider a real vector space. For a complex vector space,
we can similarly prove the same statements and so omit them.

We denote

U = Y e Wa i t) = alt) (t € [0,1]))
and
Wy = {1 € Wy i (1) < va(t) (£ € 0,1])}.

Then W5 and ¥, are obviously convex subsets of Ws.

Theorem 1. Keep the notations as above. Then the function 1) — Cny((R?, || ||4))
is convex on each of V5 and W, . That is, if ¥, € W5 or ¢ € U, then for
any X\ with 0 < A <1,

Cna(R%, - la—nypeae)) < (1= NOns (R [+ [ly)) + AN (RZ, || - [ly))-

Proof. For each t € [0,1] we define a function g; : ¥5 — [1,2] by

_ W)?
a(¥) = Pa(t)?
By the convexity of the function f;(x) = 22, we have ((1-\)z+Ay)? < (1-N)z?+\y?
for z,y € R, X € [0,1]. Hence

ge((1 = X)) + M)

(1= N(t) + M (8))% /9o (t)?
< (L= X)) /b2 () + A (£)? [1ba(t)?
= (1 - N)ge(¥) + Age ()

holds for 9,9’ € W], A € [0,1], and this means that each g; is convex on V3. By
[5, Theorem 1], we have

Cng (B2 - [ly)) = sup ge(v)
tel0,1]

for ¢ € \112+ . Since the convexity preserves under taking supremum, we can conclude
that 1 — Cxy((R2, ] - ||¢)) is a convex function on ¥y .
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Since the function fo(z) = ?12 is also convex on (0, 00), we can conclude similarly
that for each t € [0, 1] the function h: (1)) = 1a(t)?/1(¢)? is convex on W, . Thus
the convexity of ¥ — Cny((R?, || - ||ly)) on W5 can be shown. This completes the

proof. O

We showed that f is a convex function on Nx(Theorem 3.1 in [4]). However, this
result is not correct. We first present a counterexample of Theorem 3.1 in [4].

Theorem 2. Let X be a vector space with dim X > 2. Then f is not convex on
Nx.

Proof. We first consider that X = R2 Let | - |2 be the f3-norm on R2  Since
(R2,|| - ||2) is an inner product space, we have Cnj((R?,| - |l2)) = 1. We define

the norm | - || on R? by ||(z,v)|| = ||(2z,y)]||2- Since || - || is induced from the inner
product
((@1,31), (22,92))" = 4122 + Y192,
we have Cny((R%, || -]])) = 1. We now define a norm || - ||o on R? by
0 9 .
We take e; = (1,0) and ez = (0,1). Then we have
7+ 2v10
lex + eallg + fler = eall§g = ———

13
# = = 2llexll§ + lleall5).

This implies that (R2, || - ||o) is not an inner product space. Hence,
. + . 2
-y > 1 = LD 2f(H B)

Therefore f is not convex on Np2.
We next consider that X is a real vector space with dim X > 2. Let {e;}ier be
a Hamel basis of X. For any € X, we can write x = ), ;a;e; (a; € R), where
{i € I:a; # 0} is at most finite. For any x = >, ;ae;, y = > ;crbie; € X, we
define an inner product on X by
(x,y) = aibi.

i€l
Then the induced norm || - [|2 is defined by |lz|l2 = (D ;¢ la;i|?)1/2. We choose an
ig € I and define another norm || - || by

2 2\1/2
2]l = (12ai0* + ) lal?)
i
for any x =3, ;ase; € X. Then (X, || -||) is also an inner product space, because
|| - || is induced from the inner product

<$, y}' = 4aiobio + Z a;b;.
ii0
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We now put || - [jo = LIz - A in the case of R2, (X, ]| - |lo) does not satisfy the
parallelogram law and so (X, | - |lo) is not an inner product space. Hence we have

FA-1D + £ l2)

£l lo) > 1= ;

Therefore, f is not convex on Nx. This completes the proof. O

Next we consider the convexity of f on ANs. To do this, we only consider the
function g on Wy defined by g(¢)) = Cny((R?%, || - ||4)) for ¢ € Uy, Let ¥§ = {4 €
Uyt (1 —1t) =(t) for any t € [0,1]}. Then ¥$ is a convex subset of Wy. First we
have the following theorem.

Theorem 3. Keep the notations as above. Then the function g is not conver on
vs.

Proof. We define a convex function ¢1 € ¥3 by

3

m%(t), Poo(t)

= max s = ()
7L V2
that is,

(

—_

—1 (0<t<1/4),
Jtet) (1/4<t<1/3),
(1/3 <t <2/3),

ba(t)  (2/3 <t <3/4),

~
S o
o

(3/4<t<1).

\

Since 1 < 19 and % has the maximum at ¢ = 1/4, by [5, Theorem 1], we have

9(pr) = Cna((R% |- llo)) = 5777 = 5

We next define a convex function ¢s € W§ by ¢o(t) = max{ts(t), 2}. Since pa > 15
and % has the maximum at ¢t = 1/2, by [5, Theorem 1], we have

QWﬂ:Cmmwﬂwm»:————:%
2
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We now put the convex function ¢ = #1322, Then ¢ € ¥ and

1otiya(t) (0<t<1/4),

A0 ) (1) (1/4 <t < 4232,

S+ 53sun(t) (SRR <t<13),
p(t) = { 222 (1/3 <t <2/3),
S+ 53oun(t) (2/3<t< AR,

WIL10y,) (1) (2/3 <t < 3/4),

[ ee(t) (3/4<t<1).

Since % has the maximum at ¢t = 1/2, we have

o) _ pll/2) _4+3V0

M= 000 Ua0) = da(1/2) — 8

Since % has the maximum at ¢ = 1/4, we have

bolt)  a(1/4)
Mo = e oy = piya) = VOO0,

By [5, Theorem 1], we have
9(p) = Cna((R?, || - [lg)) = M7 M3
5
=017+ 12v/2)(19 — 6V/10) = 1.1182276549 - - - .

On the other hand,

gler) +glpa)  $+§ 161
5 5 kY 1.1180555555 .

Therefore we have

This completes the proof.
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Corollary 3.1 in [4] asserts the function g is convex on Wy. However, this is not
correct. Since W3 is a convex subset of Wy, we immediately have the following by

Theorem 3.

Corollary 4. Keep the notations as above. Then the function g is not convexr on

Usy.
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