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The set Ψ2 has a convex structure, that is,

ψ, ψ′ ∈ Ψ2 =⇒ (1− λ)ψ + λψ′ ∈ Ψ2

for λ ∈ [0, 1]. The correspondence ψ → ∥ · ∥ψ preserves the operation to take a
convex combination, that is,

(1− λ)∥ · ∥ψ + λ∥ · ∥ψ′ = ∥ · ∥(1−λ)ψ+λψ′

for ψ, ψ′ ∈ Ψ2 and λ ∈ [0, 1]. Hence, Ψ2 and AN2 are isomorphic with respect to
this convex structure.

In [4], we considered the convex property of von Neumann-Jordan constant on
AN2. More generally, let X be a real (or complex) vector space and let NX be the
set of all norms on X. We define a function on NX by f(∥ · ∥) = CNJ((X, ∥ · ∥)).
We showed that f is a convex function on NX(Theorem 3.1 in [4]). However, this
result is not correct.

Our aim in this note is to present a partial result that f is convex on certain
subsets of AN2 and also present counterexamples of Theorem 3.1 and Corollary 3.1
in [4].

In this paper, we only consider a real vector space. For a complex vector space,
we can similarly prove the same statements and so omit them.

We denote
Ψ+

2 = {ψ ∈ Ψ2 : ψ(t) ≥ ψ2(t) (t ∈ [0, 1])}
and

Ψ−
2 = {ψ ∈ Ψ2 : ψ(t) ≤ ψ2(t) (t ∈ [0, 1])}.

Then Ψ+
2 and Ψ−

2 are obviously convex subsets of Ψ2.

Theorem 1. Keep the notations as above. Then the function ψ → CNJ((R2, ∥·∥ψ))
is convex on each of Ψ+

2 and Ψ−
2 . That is, if ψ,ψ′ ∈ Ψ+

2 or ψ,ψ′ ∈ Ψ−
2 , then for

any λ with 0 ≤ λ ≤ 1,

CNJ((R2, ∥ · ∥(1−λ)ψ+λψ′)) ≤ (1− λ)CNJ((R2, ∥ · ∥ψ)) + λCNJ((R2, ∥ · ∥ψ′)).

Proof. For each t ∈ [0, 1] we define a function gt : Ψ
+
2 → [1, 2] by

gt(ψ) =
ψ(t)2

ψ2(t)2
.

By the convexity of the function f1(x) = x2, we have ((1−λ)x+λy)2 ≤ (1−λ)x2+λy2
for x, y ∈ R, λ ∈ [0, 1]. Hence

gt((1− λ)ψ + λψ′) = ((1− λ)ψ(t) + λψ′(t))2/ψ2(t)
2

≤ (1− λ)ψ(t)2/ψ2(t)
2 + λψ′(t)2/ψ2(t)

2

= (1− λ)gt(ψ) + λgt(ψ
′)

holds for ψ,ψ′ ∈ Ψ+
2 , λ ∈ [0, 1], and this means that each gt is convex on Ψ+

2 . By
[5, Theorem 1], we have

CNJ((R2, ∥ · ∥ψ)) = sup
t∈[0,1]

gt(ψ)

for ψ ∈ Ψ+
2 . Since the convexity preserves under taking supremum, we can conclude

that ψ → CNJ((R2, ∥ · ∥ψ)) is a convex function on Ψ+
2 .
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Since the function f2(x) =
1
x2

is also convex on (0,∞), we can conclude similarly

that for each t ∈ [0, 1] the function ht(ψ) = ψ2(t)
2/ψ(t)2 is convex on Ψ−

2 . Thus
the convexity of ψ → CNJ((R2, ∥ · ∥ψ)) on Ψ−

2 can be shown. This completes the
proof. □

We showed that f is a convex function on NX(Theorem 3.1 in [4]). However, this
result is not correct. We first present a counterexample of Theorem 3.1 in [4].

Theorem 2. Let X be a vector space with dimX ≥ 2. Then f is not convex on
NX .

Proof. We first consider that X = R2. Let ∥ · ∥2 be the ℓ2-norm on R2. Since
(R2, ∥ · ∥2) is an inner product space, we have CNJ((R2, ∥ · ∥2)) = 1. We define
the norm ∥ · ∥ on R2 by ∥(x, y)∥ = ∥(2x, y)∥2. Since ∥ · ∥ is induced from the inner
product

⟨(x1, y1), (x2, y2)⟩′ = 4x1x2 + y1y2,

we have CNJ((R2, ∥ · ∥)) = 1. We now define a norm ∥ · ∥0 on R2 by

∥ · ∥0 =
∥ · ∥+ ∥ · ∥2

2
.

We take e1 = (1, 0) and e2 = (0, 1). Then we have

∥e1 + e2∥20 + ∥e1 − e2∥20 =
7 + 2

√
10

2

̸= 13

2
= 2(∥e1∥20 + ∥e2∥20).

This implies that (R2, ∥ · ∥0) is not an inner product space. Hence,

f(∥ · ∥0) > 1 =
f(∥ · ∥) + f(∥ · ∥2)

2
.

Therefore f is not convex on NR2 .
We next consider that X is a real vector space with dimX ≥ 2. Let {ei}i∈I be

a Hamel basis of X. For any x ∈ X, we can write x =
∑

i∈I aiei (ai ∈ R), where
{i ∈ I : ai ̸= 0} is at most finite. For any x =

∑
i∈I aiei, y =

∑
i∈I biei ∈ X, we

define an inner product on X by

⟨x, y⟩ =
∑
i∈I

aibi.

Then the induced norm ∥ · ∥2 is defined by ∥x∥2 = (
∑

i∈I |ai|2)1/2. We choose an
i0 ∈ I and define another norm ∥ · ∥ by

∥x∥ =
(
|2ai0 |2 +

∑
i̸=i0

|ai|2
)1/2

for any x =
∑

i∈I aiei ∈ X. Then (X, ∥ · ∥) is also an inner product space, because
∥ · ∥ is induced from the inner product

⟨x, y⟩′ = 4ai0bi0 +
∑
i̸=i0

aibi.
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We now put ∥ · ∥0 = ∥·∥+∥·∥2
2 . As in the case of R2, (X, ∥ · ∥0) does not satisfy the

parallelogram law and so (X, ∥ · ∥0) is not an inner product space. Hence we have

f(∥ · ∥0) > 1 =
f(∥ · ∥) + f(∥ · ∥2)

2
.

Therefore, f is not convex on NX . This completes the proof. □

Next we consider the convexity of f on AN2. To do this, we only consider the
function g on Ψ2 defined by g(ψ) = CNJ((R2, ∥ · ∥ψ)) for ψ ∈ Ψ2. Let Ψs

2 = {ψ ∈
Ψ2 : ψ(1− t) = ψ(t) for any t ∈ [0, 1]}. Then Ψs

2 is a convex subset of Ψ2. First we
have the following theorem.

Theorem 3. Keep the notations as above. Then the function g is not convex on
Ψs

2.

Proof. We define a convex function φ1 ∈ Ψs
2 by

φ1(t) = max
{ 3√

10
ψ2(t), ψ∞(t),

1√
2

}
,

that is,

φ1(t) =



1− t (0 ≤ t ≤ 1/4),

3√
10
ψ2(t) (1/4 ≤ t ≤ 1/3),

1√
2

(1/3 ≤ t ≤ 2/3),

3√
10
ψ2(t) (2/3 ≤ t ≤ 3/4),

t (3/4 ≤ t ≤ 1).

Since φ1 ≤ ψ2 and ψ2

φ1
has the maximum at t = 1/4, by [5, Theorem 1], we have

g(φ1) = CNJ((R2, ∥ · ∥φ1)) =
ψ2(1/4)

2

φ1(1/4)2
=

10

9
.

We next define a convex function φ2 ∈ Ψs
2 by φ2(t) = max{ψ2(t),

3
4}. Since φ2 ≥ ψ2

and φ2

ψ2
has the maximum at t = 1/2, by [5, Theorem 1], we have

g(φ2) = CNJ((R2, ∥ · ∥φ2)) =
φ2(1/2)

2

ψ2(1/2)2
=

9

8
.
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We now put the convex function φ = φ1+φ2

2 . Then φ ∈ Ψs
2 and

φ(t) =



1−t+ψ2(t)
2 (0 ≤ t ≤ 1/4),

3
√
10+10
20 ψ2(t) (1/4 ≤ t ≤ 4−

√
2

8 ),

3
8 + 3

2
√
10
ψ2(t) (4−

√
2

8 ≤ t ≤ 1/3),

3+2
√
2

8 (1/3 ≤ t ≤ 2/3),

3
8 + 3

2
√
10
ψ2(t) (2/3 ≤ t ≤ 4+

√
2

8 ),

3
√
10+10
20 ψ2(t) (2/3 ≤ t ≤ 3/4),

t+ψ2(t)
2 (3/4 ≤ t ≤ 1).

Since φ
ψ2

has the maximum at t = 1/2, we have

M1 = max
0≤t≤1

φ(t)

ψ2(t)
=

φ(1/2)

ψ2(1/2)
=

4 + 3
√
2

8
.

Since ψ2

φ has the maximum at t = 1/4, we have

M2 = max
0≤t≤1

ψ2(t)

φ(t)
=
ψ2(1/4)

φ(1/4)
= 2

√
10(

√
10− 3).

By [5, Theorem 1], we have

g(φ) = CNJ((R2, ∥ · ∥φ)) =M2
1M

2
2

=
5

4
(17 + 12

√
2)(19− 6

√
10) ≒ 1.1182276549 · · · .

On the other hand,

g(φ1) + g(φ2)

2
=

10
9 + 9

8

2
=

161

144
≒ 1.1180555555 · · · .

Therefore we have

g(φ) >
g(φ1) + g(φ2)

2
.

This completes the proof. □

Corollary 3.1 in [4] asserts the function g is convex on Ψ2. However, this is not
correct. Since Ψs

2 is a convex subset of Ψ2, we immediately have the following by
Theorem 3.

Corollary 4. Keep the notations as above. Then the function g is not convex on
Ψ2.
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