Journal of Nonlinear and Convex Analysis Volume 16, Number 11, 2015, 2263–2268

ON THE CONVEXITY OF VON NEUMANN-JORDAN CONSTANT

NAOTO KOMURO, KEN-ICHI MITANI, KICHI-SUKE SAITO, AND RYOTARO TANAKA

This paper is dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday.

ABSTRACT. For a vector space X, we denote the set of all norms on X by N_X and define a function on N_X by $f(\|\cdot\|) = C_{NJ}((X, \|\cdot\|))$ where $C_{NJ}((X, \|\cdot\|))$ is the von Neumann-Jordan constant of normed linear space $(X, \|\cdot\|)$. We examine the convexity of f on N_X and on some subsets of N_X .

The notion of the von Neumann-Jordan constant of normed linear spaces was introduced by Clarkson in [1] and recently it has been studied by several authors (cf. [2, 3, 4, 5]). The von Neumann-Jordan constant $C_{NJ}((X, \|\cdot\|))$ of normed linear space $(X, \|\cdot\|)$ is defined by

$$C_{\rm NJ}((X, \|\cdot\|)) = \sup\left\{\frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} : (x,y) \neq (0,0)\right\}$$

It is well-known that $1 \leq C_{\rm NJ}((X, \|\cdot\|)) \leq 2$ for any normed linear space $(X, \|\cdot\|)$, and $(X, \|\cdot\|)$ is an inner product space if and only if $C_{\rm NJ}((X, \|\cdot\|)) = 1$. If $1 \leq p \leq \infty$, dim $L_p \geq 2$, then $C_{\rm NJ}(L_p) = 2^{2/\min\{p,p'\}-1}$, where 1/p + 1/p' = 1. We can describe several geometrical and topological properties of normed linear spaces by means of the von Neumann-Jordan constant (see [3, 4]).

A norm $\|\cdot\|$ on \mathbb{R}^2 is said to be absolute if $\|(x, y)\| = \|(|x|, |y|)\|$ for all $(x, y) \in \mathbb{R}^2$, and normalized if $\|(1, 0)\| = \|(0, 1)\| = 1$. The set of all absolute normalized norms on \mathbb{R}^2 is denoted by AN_2 . Let Ψ_2 be the set of all convex functions ψ on [0, 1]satisfying max $\{1 - t, t\} \leq \psi(t) \leq 1$ for $t \in [0, 1]$. Ψ_2 and AN_2 can be identified by a one to one correspondence $\psi \to \|\cdot\|_{\psi}$ with the relation $\psi(t) = \|(1 - t, t)\|_{\psi}$ for $t \in [0, 1]$ (see [5]). For $1 \leq p \leq \infty$, we denote

$$\psi_p(t) = \begin{cases} \{(1-t)^p + t^p\}^{\frac{1}{p}} & (1 \le p < \infty) \\ \max\{1-t,t\} & (p = \infty). \end{cases}$$

Then $\psi_p \in \Psi_2$, and ψ_p corresponds to the l_p -norms $\|\cdot\|_p$ on \mathbb{R}^2 defined by

$$\|(x,y)\|_{p} = \begin{cases} (|x|^{p} + |y|^{p})^{\frac{1}{p}} & (1 \le p < \infty) \\ \max\{|x|, |y|\} & (p = \infty). \end{cases}$$

Key words and phrases. Absolute normalized norm, von Neumann-Jordan constant.

²⁰¹⁰ Mathematics Subject Classification. 46B20.

The third author was supported in part by Grants-in-Aid for Scientific Research (No. 15K04920), Japan Society for the Promotion of Science.

The set Ψ_2 has a convex structure, that is,

$$\psi, \ \psi' \in \Psi_2 \Longrightarrow (1 - \lambda)\psi + \lambda\psi' \in \Psi_2$$

for $\lambda \in [0, 1]$. The correspondence $\psi \to \| \cdot \|_{\psi}$ preserves the operation to take a convex combination, that is,

$$(1-\lambda)\|\cdot\|_{\psi} + \lambda\|\cdot\|_{\psi'} = \|\cdot\|_{(1-\lambda)\psi+\lambda\psi'}$$

for ψ , $\psi' \in \Psi_2$ and $\lambda \in [0, 1]$. Hence, Ψ_2 and AN_2 are isomorphic with respect to this convex structure.

In [4], we considered the convex property of von Neumann-Jordan constant on AN_2 . More generally, let X be a real (or complex) vector space and let N_X be the set of all norms on X. We define a function on N_X by $f(\|\cdot\|) = C_{NJ}((X, \|\cdot\|))$. We showed that f is a convex function on N_X (Theorem 3.1 in [4]). However, this result is not correct.

Our aim in this note is to present a partial result that f is convex on certain subsets of AN_2 and also present counterexamples of Theorem 3.1 and Corollary 3.1 in [4].

In this paper, we only consider a *real* vector space. For a *complex* vector space, we can similarly prove the same statements and so omit them.

We denote

$$\Psi_2^+ = \{ \psi \in \Psi_2 : \psi(t) \ge \psi_2(t) \ (t \in [0, 1]) \}$$

and

$$\Psi_2^- = \{ \psi \in \Psi_2 : \psi(t) \le \psi_2(t) \ (t \in [0,1]) \}.$$

Then Ψ_2^+ and Ψ_2^- are obviously convex subsets of Ψ_2 .

Theorem 1. Keep the notations as above. Then the function $\psi \to C_{NJ}((\mathbb{R}^2, \|\cdot\|_{\psi}))$ is convex on each of Ψ_2^+ and Ψ_2^- . That is, if $\psi, \psi' \in \Psi_2^+$ or $\psi, \psi' \in \Psi_2^-$, then for any λ with $0 \leq \lambda \leq 1$,

$$C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_{(1-\lambda)\psi+\lambda\psi'})) \le (1-\lambda)C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_{\psi})) + \lambda C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_{\psi'})).$$

Proof. For each $t \in [0,1]$ we define a function $g_t: \Psi_2^+ \to [1,2]$ by

$$g_t(\psi) = \frac{\psi(t)^2}{\psi_2(t)^2}$$

By the convexity of the function $f_1(x) = x^2$, we have $((1-\lambda)x + \lambda y)^2 \le (1-\lambda)x^2 + \lambda y^2$ for $x, y \in \mathbb{R}, \lambda \in [0, 1]$. Hence

$$g_t((1-\lambda)\psi + \lambda\psi') = ((1-\lambda)\psi(t) + \lambda\psi'(t))^2/\psi_2(t)^2$$

$$\leq (1-\lambda)\psi(t)^2/\psi_2(t)^2 + \lambda\psi'(t)^2/\psi_2(t)^2$$

$$= (1-\lambda)g_t(\psi) + \lambda g_t(\psi')$$

holds for $\psi, \psi' \in \Psi_2^+, \lambda \in [0, 1]$, and this means that each g_t is convex on Ψ_2^+ . By [5, Theorem 1], we have

$$C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_{\psi})) = \sup_{t \in [0,1]} g_t(\psi)$$

for $\psi \in \Psi_2^+$. Since the convexity preserves under taking supremum, we can conclude that $\psi \to C_{NJ}((\mathbb{R}^2, \|\cdot\|_{\psi}))$ is a convex function on Ψ_2^+ .

Since the function $f_2(x) = \frac{1}{x^2}$ is also convex on $(0, \infty)$, we can conclude similarly that for each $t \in [0, 1]$ the function $h_t(\psi) = \psi_2(t)^2/\psi(t)^2$ is convex on Ψ_2^- . Thus the convexity of $\psi \to C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_{\psi}))$ on Ψ_2^- can be shown. This completes the proof.

We showed that f is a convex function on N_X (Theorem 3.1 in [4]). However, this result is not correct. We first present a counterexample of Theorem 3.1 in [4].

Theorem 2. Let X be a vector space with dim $X \ge 2$. Then f is not convex on N_X .

Proof. We first consider that $X = \mathbb{R}^2$. Let $\|\cdot\|_2$ be the ℓ_2 -norm on \mathbb{R}^2 . Since $(\mathbb{R}^2, \|\cdot\|_2)$ is an inner product space, we have $C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_2)) = 1$. We define the norm $\|\cdot\|$ on \mathbb{R}^2 by $\|(x, y)\| = \|(2x, y)\|_2$. Since $\|\cdot\|$ is induced from the inner product

$$\langle (x_1, y_1), (x_2, y_2) \rangle' = 4x_1x_2 + y_1y_2,$$

we have $C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|)) = 1$. We now define a norm $\|\cdot\|_0$ on \mathbb{R}^2 by

$$\|\cdot\|_0 = \frac{\|\cdot\| + \|\cdot\|_2}{2}$$

We take $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Then we have

$$\begin{aligned} \|e_1 + e_2\|_0^2 + \|e_1 - e_2\|_0^2 &= \frac{7 + 2\sqrt{10}}{2} \\ &\neq \frac{13}{2} = 2(\|e_1\|_0^2 + \|e_2\|_0^2) \end{aligned}$$

This implies that $(\mathbb{R}^2, \|\cdot\|_0)$ is not an inner product space. Hence,

$$f(\|\cdot\|_0) > 1 = \frac{f(\|\cdot\|) + f(\|\cdot\|_2)}{2}.$$

Therefore f is not convex on $N_{\mathbb{R}^2}$.

We next consider that X is a real vector space with dim $X \ge 2$. Let $\{e_i\}_{i \in I}$ be a Hamel basis of X. For any $x \in X$, we can write $x = \sum_{i \in I} a_i e_i$ $(a_i \in \mathbb{R})$, where $\{i \in I : a_i \neq 0\}$ is at most finite. For any $x = \sum_{i \in I} a_i e_i$, $y = \sum_{i \in I} b_i e_i \in X$, we define an inner product on X by

$$\langle x, y \rangle = \sum_{i \in I} a_i b_i$$

Then the induced norm $\|\cdot\|_2$ is defined by $\|x\|_2 = (\sum_{i \in I} |a_i|^2)^{1/2}$. We choose an $i_0 \in I$ and define another norm $\|\cdot\|$ by

$$||x|| = \left(|2a_{i_0}|^2 + \sum_{i \neq i_0} |a_i|^2\right)^{1/2}$$

for any $x = \sum_{i \in I} a_i e_i \in X$. Then $(X, \|\cdot\|)$ is also an inner product space, because $\|\cdot\|$ is induced from the inner product

$$\langle x, y \rangle' = 4a_{i_0}b_{i_0} + \sum_{i \neq i_0} a_i b_i$$

We now put $\|\cdot\|_0 = \frac{\|\cdot\|+\|\cdot\|_2}{2}$. As in the case of \mathbb{R}^2 , $(X, \|\cdot\|_0)$ does not satisfy the parallelogram law and so $(X, \|\cdot\|_0)$ is not an inner product space. Hence we have

$$f(\|\cdot\|_0) > 1 = \frac{f(\|\cdot\|) + f(\|\cdot\|_2)}{2}$$

Therefore, f is not convex on N_X . This completes the proof.

Next we consider the convexity of f on AN_2 . To do this, we only consider the function g on Ψ_2 defined by $g(\psi) = C_{\text{NJ}}((\mathbb{R}^2, \|\cdot\|_{\psi}))$ for $\psi \in \Psi_2$. Let $\Psi_2^s = \{\psi \in \Psi_2 : \psi(1-t) = \psi(t) \text{ for any } t \in [0,1]\}$. Then Ψ_2^s is a convex subset of Ψ_2 . First we have the following theorem.

Theorem 3. Keep the notations as above. Then the function g is not convex on Ψ_2^s .

Proof. We define a convex function $\varphi_1 \in \Psi_2^s$ by

$$\varphi_1(t) = \max\left\{\frac{3}{\sqrt{10}}\psi_2(t), \psi_\infty(t), \frac{1}{\sqrt{2}}\right\},\,$$

that is,

$$\varphi_1(t) = \begin{cases} 1-t & (0 \le t \le 1/4), \\ \frac{3}{\sqrt{10}}\psi_2(t) & (1/4 \le t \le 1/3), \\ \frac{1}{\sqrt{2}} & (1/3 \le t \le 2/3), \\ \frac{3}{\sqrt{10}}\psi_2(t) & (2/3 \le t \le 3/4), \\ t & (3/4 \le t \le 1). \end{cases}$$

Since $\varphi_1 \leq \psi_2$ and $\frac{\psi_2}{\varphi_1}$ has the maximum at t = 1/4, by [5, Theorem 1], we have

$$g(\varphi_1) = C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_{\varphi_1})) = \frac{\psi_2(1/4)^2}{\varphi_1(1/4)^2} = \frac{10}{9}$$

We next define a convex function $\varphi_2 \in \Psi_2^s$ by $\varphi_2(t) = \max\{\psi_2(t), \frac{3}{4}\}$. Since $\varphi_2 \ge \psi_2$ and $\frac{\varphi_2}{\psi_2}$ has the maximum at t = 1/2, by [5, Theorem 1], we have

$$g(\varphi_2) = C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_{\varphi_2})) = \frac{\varphi_2(1/2)^2}{\psi_2(1/2)^2} = \frac{9}{8}.$$

2266

We now put the convex function $\varphi = \frac{\varphi_1 + \varphi_2}{2}$. Then $\varphi \in \Psi_2^s$ and

$$\varphi(t) = \begin{cases} \frac{1-t+\psi_2(t)}{2} & (0 \le t \le 1/4), \\ \frac{3\sqrt{10}+10}{20}\psi_2(t) & (1/4 \le t \le \frac{4-\sqrt{2}}{8}), \\ \frac{3}{8} + \frac{3}{2\sqrt{10}}\psi_2(t) & (\frac{4-\sqrt{2}}{8} \le t \le 1/3), \\ \frac{3+2\sqrt{2}}{8} & (1/3 \le t \le 2/3), \\ \frac{3}{8} + \frac{3}{2\sqrt{10}}\psi_2(t) & (2/3 \le t \le \frac{4+\sqrt{2}}{8}), \\ \frac{3\sqrt{10}+10}{20}\psi_2(t) & (2/3 \le t \le 3/4), \\ \frac{t+\psi_2(t)}{2} & (3/4 \le t \le 1). \end{cases}$$

Since $\frac{\varphi}{\psi_2}$ has the maximum at t = 1/2, we have

$$M_1 = \max_{0 \le t \le 1} \frac{\varphi(t)}{\psi_2(t)} = \frac{\varphi(1/2)}{\psi_2(1/2)} = \frac{4 + 3\sqrt{2}}{8}.$$

Since $\frac{\psi_2}{\varphi}$ has the maximum at t = 1/4, we have

$$M_2 = \max_{0 \le t \le 1} \frac{\psi_2(t)}{\varphi(t)} = \frac{\psi_2(1/4)}{\varphi(1/4)} = 2\sqrt{10}(\sqrt{10} - 3).$$

By [5, Theorem 1], we have

$$g(\varphi) = C_{\rm NJ}((\mathbb{R}^2, \|\cdot\|_{\varphi})) = M_1^2 M_2^2$$

= $\frac{5}{4}(17 + 12\sqrt{2})(19 - 6\sqrt{10}) = 1.1182276549\cdots$

On the other hand,

$$\frac{g(\varphi_1) + g(\varphi_2)}{2} = \frac{\frac{10}{9} + \frac{9}{8}}{2} = \frac{161}{144} = 1.1180555555 \cdots$$

Therefore we have

$$g(\varphi) > \frac{g(\varphi_1) + g(\varphi_2)}{2}$$

This completes the proof.

Corollary 3.1 in [4] asserts the function g is convex on Ψ_2 . However, this is not correct. Since Ψ_2^s is a convex subset of Ψ_2 , we immediately have the following by Theorem 3.

Corollary 4. Keep the notations as above. Then the function g is not convex on Ψ_2 .

References

- J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114–115.
- [2] M. Kato and L. Maligranda, On the James and Jordan-von Neumann constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258 (2001), 457–465.
- [3] M. Kato, L. Maligranda and Y. Takahashi, On the James and Jordan-von Neumann constants and normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275–295.
- [4] N. Komuro, K.-S. Saito and K.-I. Mitani, Extremal structure of the set of absolute norms on ℝ² and the von Neumann-Jordan constant, J. Math. Anal. Appl. **370** (2010), 101–106.
- [5] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on C², J. Math. Anal. Appl. 244 (2000), 515–532.

Manuscript received September 2, 2014 revised March 18, 2015

NAOTO KOMURO

Department of Mathematics, Hokkaido University of Education Asahikawa Campus, Asahikawa 070-8621, Japan

E-mail address: komuro@asa.hokkyodai.ac.jp

Ken-Ichi Mitani

Department of Systems Engineering, Okayama Prefectural University, Soja, 719-1197, Japan *E-mail address*: mitani@cse.oka-pu.ac.jp

KICHI-SUKE SAITO

Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan *E-mail address:* saito@math.sc.niigata-u.ac.jp

Ryotaro Tanaka

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail address: ryotarotanaka@m.sc.niigata-u.ac.jp