Journal of Nonlinear and Convex Analysis Volume 16, Number 11, 2015, 2269–2277

ON THE JAMES CONSTANTS OF TWO-DIMENSIONAL LORENTZ SEQUENCE SPACES AND ITS DUAL

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND RYOTARO TANAKA

This paper is dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday.

ABSTRACT. Let J(X) denote the James constant of a Banach space X. Then, for a Banach space X and its dual X^* , it is known that $J(X) \neq J(X^*)$ in general. In this paper, we show that $J(d^{(2)}(\omega, q)) = J(d^{(2)}(\omega, q)^*)$ for all $1 < q < \infty$ and $0 < \omega < 1$, where $d^{(2)}(\omega, q)$ is a two-dimensional Lorentz sequence space. We also give some remarks on the James constant of $J(d^{(2)}(\omega, q))$.

1. INTRODUCTION AND PRELIMINARIES

Let S_X be the unit sphere of a Banach space X. The James constant J(X) of a Banach space X is defined by

$$J(X) = \sup\{\min\{\|x+y\|, \|x-y\|\} : x, y \in S_X\}$$

(Gao and Lau [2]). It is well-known that $\sqrt{2} \leq J(X) \leq 2$ for any Banach space X, and J(X) < 2 if and only if X is uniformly non-square ([2, 4]).

A norm $\|\cdot\|$ on \mathbb{R}^2 is said to be absolute if $\|(z, w)\| = \|(|z|, |w|)\|$ for all $(z, w) \in \mathbb{R}^2$, and normalized if $\|(1, 0)\| = \|(0, 1)\| = 1$. The ℓ_p -norms $\|\cdot\|_p$ are such examples;

$$||(z,w)||_p = \begin{cases} (|z|^p + |w|^p)^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{|z|, |w|\} & \text{if } p = \infty. \end{cases}$$

Let AN_2 be the set of all absolute normalized norms on \mathbb{R}^2 , and Ψ_2 the set of all convex functions ψ on [0, 1] satisfying max $\{1 - t, t\} \leq \psi(t) \leq 1 \ (0 \leq t \leq 1)$. As in Bonsall and Duncan [1] (cf. [10]), AN_2 and Ψ_2 are in 1-1 correspondence under the equation

(1.1)
$$\psi(t) = \|(1-t, t)\| \ (0 \le t \le 1)$$

Indeed, for all $\psi \in \Psi_2$ let

$$\|(z,w)\|_{\psi} = \begin{cases} (|z|+|w|)\psi\left(\frac{|w|}{|z|+|w|}\right) & \text{if } (z,w) \neq (0,0), \\ 0 & \text{if } (z,w) = (0,0). \end{cases}$$

Then $\|\cdot\|_{\psi} \in AN_2$, and $\|\cdot\|_{\psi}$ satisfies (1.1). From this result, we can consider many non ℓ_p -type norms easily. Now let $\psi_p(t) = \{(1-t)^p + t^p\}^{1/p} \in \Psi_2$. As is easily seen, the ℓ_p -norm $\|\cdot\|_p$ is associated with ψ_p .

²⁰¹⁰ Mathematics Subject Classification. 46B20, 46B25.

Key words and phrases. James constant, Lorentz sequence space, absolute normalized norm.

The second was supported in part by Grants-in-Aid for Scientific Research (No. 15K04920), Japan Society for the Promotion of Science.

An important example of absolute normed spaces is the following 2-dimensional Lorentz sequence space $d^{(2)}(\omega, q)$. Let $0 < \omega < 1$ and $1 \leq q < \infty$. The space $d^{(2)}(\omega, q)$ is \mathbb{R}^2 with the norm

$$||(x,y)||_{\omega,q} = (x^{*q} + \omega y^{*q})^{1/q},$$

where (x^*, y^*) is the non-increasing rearrangement of (|x|, |y|), that is, $x^* \ge y^*$ (cf. [3]).

In [3], Kato and Maligranda considered the James constant of $d^{(2)}(\omega, q)$ and calculated it in the case where $q \ge 2$. For $1 \le q < 2$ it was completely determined by Mitani, Saito and Suzuki [8]. Furthermore, we completely computed the James constant of the dual space $d^{(2)}(\omega, q)^*$ of $d^{(2)}(\omega, q)$ as in Mitani and Saito [6]; see also [11, 12].

As an important remark on James constants, it is known that $J(X) \neq J(X^*)$ in general (cf. [4]). However, the equality holds if $X = \ell_p$, that is, $J(\ell^p) = J(\ell^q)$ for each $1 < p, q < \infty$ satisfying 1/p + 1/q = 1. Motivated by these observation, we consider the following problem in this paper.

Problem. Does the equality $J(d^{(2)}(\omega,q)) = J(d^{(2)}(\omega,q)^*)$ hold for all $1 < q < \infty$ and $0 < \omega < 1$?

In fact, this problem is partially solved by some results in [3, 7, 8], that is, we have the following theorem.

Theorem 1.1. Let $1 < q < \infty$. Then

$$J(d^{(2)}(\omega,q)) = 2\left(\frac{1}{1+\omega}\right)^{1/q} = J(d^{(2)}(\omega,q)^*)$$

if either $q \ge 2$ or 1 < q < 2 and $0 < \omega \le (\sqrt{2} - 1)^{2-q}$.

Thus, throughout this paper, we consider the case of 1 < q < 2 and $(\sqrt{2}-1)^{2-q} < \omega < 1$ unless otherwise stated.

2. James constant of absolute norms on \mathbb{R}^2

Let X be a Banach space and $x, y \in X$. We say that x is isosceles orthogonal to y, denoted by $x \perp_I y$, if ||x + y|| = ||x - y||. We define the function $\beta(x)$ on X by

$$\beta(x) = \sup\{\min\{\|x+y\|, \|x-y\|\} : y \in S_X\}.$$

To calculate the constant $J((\mathbb{R}^2, \|\cdot\|_{\psi}))$, we need the following lemma given in Gao and Lau [2].

Lemma 2.1 ([2]). Let $\psi \in \Psi_2$ and $x \in S_{(\mathbb{R}^2, \|\cdot\|_{\psi})}$. Then there exists a unique (up to the sign) vector $y_0 \in S_{(\mathbb{R}^2, \|\cdot\|_{\psi})}$ with $x \perp_I y_0$. Moreover, $\beta(x) = \|x + y_0\|_{\psi}$.

From Lemma 2.1 we can write

 $J((\mathbb{R}^2, \|\cdot\|_{\psi})) = \sup \{ \|x+y\|_{\psi} : x, y \in S_{(\mathbb{R}^2, \|\cdot\|_{\psi})} \text{ with } x \perp_I y \}.$

We recall that an absolute normalized norm $\|\cdot\|$ on \mathbb{R}^2 is symmetric in the sense that $\|(x,y)\| = \|(y,x)\|$ for all $(x,y) \in \mathbb{R}^2$ if and only if the corresponding function ψ is symmetric with respect to t = 1/2, that is, $\psi(1-t) = \psi(t)$ for every $t \in [0, 1]$.

Using Lemma 2.1 we gave the following formula for the case where ψ is symmetric with respect to t = 1/2.

Theorem 2.2 ([6]). Let $\psi \in \Psi_2$. If ψ is symmetric with respect to t = 1/2, then

$$J((\mathbb{R}^2, \|\cdot\|_{\psi})) = \max_{0 \le t \le 1/2} \frac{2 - 2t}{\psi(t)} \psi\left(\frac{1}{2 - 2t}\right).$$

We consider a function in the theorem above:

$$f(t) = \frac{2-2t}{\psi(t)}\psi\left(\frac{1}{2-2t}\right) \text{ for all } t \in [0, 1/2].$$

Since $f(0) = 2\psi(1/2)$ and $f(1/2) = 1/\psi(1/2)$, we always have the inequality $J((\mathbb{R}^2, \|\cdot\|_{\psi})) \ge \max\{2\psi(1/2), 1/\psi(1/2)\}.$

As a direct consequence of Theorem 2.2, we have

Proposition 2.3 ([6]). Let $\psi \in \Psi_2$. Assume that ψ is symmetric with respect to t = 1/2.

(i) If
$$\psi \ge \psi_2$$
 and $M_1 = \max_{0 \le t \le 1} \psi(t)/\psi_2(t)$ is taken at $t = 1/2$, then

$$J((\mathbb{R}^2, \|\cdot\|_{\psi})) = 2\psi\left(\frac{1}{2}\right).$$
(ii) If $\psi \le \psi_2$ and $M_2 = \max_{0 \le t \le 1} \psi_2(t)/\psi(t)$ is taken at $t = 1/2$, then

$$J((\mathbb{R}^2, \|\cdot\|_{\psi})) = \frac{1}{\psi(1/2)}.$$

Example 2.4. Let $1 \le p \le \infty$ and 1/p + 1/p' = 1.

- (i) If $1 \le p \le 2$, then $J((\mathbb{R}^2, \|\cdot\|_p)) = 2\psi_p(1/2) = 2^{1/p}$. (ii) If $2 \le p \le \infty$, then $J((\mathbb{R}^2, \|\cdot\|_p)) = 1/\psi_p(1/2) = 2^{1/p'}$.

Example 2.5. Let $1/2 \le \beta \le 1$, and let $\psi_{\beta}(t) = \max\{1-t, t, \beta\}$. Then

$$J((\mathbb{R}^2, \|\cdot\|_{\psi_{\beta}})) = \begin{cases} 1/\beta = 1/\psi_{\beta}(1/2) & \text{if } 1/2 \le \beta \le 1/\sqrt{2}, \\ 2\beta = 2\psi_{\beta}(1/2) & \text{if } 1/\sqrt{2} \le \beta \le 1. \end{cases}$$

Here, we propose the following problem: Does there exist a function $\psi \in \Psi_2$ satisfying

$$J((\mathbb{R}^2, \|\cdot\|_{\psi})) > \max\{2\psi(1/2), 1/\psi(1/2)\}?$$

In Section 4, we discuss the case of two dimensional Lorentz sequence spaces.

3. James constant of $d^{(2)}(w,q)$

Let X be a normed space. As in [2], the Schäffer constant g(X) of X is defined by

$$g(X) = \inf\{\max\{\|x+y\|, \|x-y\|\} : x, y \in S_X\}.$$

By [2, Theorem 2.5], we have

Proposition 3.1. Let X be a normed space. Then $1 \leq g(X) \leq \sqrt{2} \leq J(X) \leq 2$ and q(X)J(X) = 2.

Note here that the norm $\|\cdot\|_{\omega,q}$ of $d^{(2)}(\omega,q)$ is a symmetric absolute normalized norm on \mathbb{R}^2 , and the corresponding convex function is given by

$$\psi_{\omega,q}(t) = \begin{cases} ((1-t)^q + \omega t^q)^{1/q} & \text{if } 0 \le t \le 1/2, \\ (t^q + \omega (1-t)^q)^{1/q} & \text{if } 1/2 \le t \le 1. \end{cases}$$

Theorem 3.2 ([8]). Let 1 < q < 2 and 1/p + 1/q = 1. If $(\sqrt{2} - 1)^{2-q} < \omega < 1$, then there exists a unique pair of real numbers s_0, s_1 such that

$$\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1} < s_0 < \omega^{1/(2-q)} < s_1 < 1$$

and $(1+s_i)^{q-1}(1-\omega s_i^{q-1}) = \omega(1-s_i)^{q-1}(1+\omega s_i^{q-1})$ for i = 0, 1. (i) If $(\sqrt{2}-1)^{2-q} < \omega \le \sqrt{2}^q - 1$, then

$$J(d^{(2)}(\omega,q)) = \max\left\{ \left(\frac{2(1+s_0)^{q-1}}{1+\omega s_0^{q-1}}\right)^{1/q}, 2\left(\frac{1}{1+\omega}\right)^{1/q} \right\}$$

and

$$g(d^{(2)}(\omega,q)) = \min\left\{\left(\frac{2(1+s_1)^{q-1}}{1+\omega s_1^{q-1}}\right)^{1/q}, (1+\omega)^{1/q}\right\}.$$

(ii) If $\sqrt{2}^q - 1 < \omega < 1$, then

$$J(d^{(2)}(\omega,q)) = \left(\frac{2(1+s_0)^{q-1}}{1+\omega s_0^{q-1}}\right)^{1/q}$$

and

$$g(d^{(2)}(\omega,q)) = \left(\frac{2(1+s_1)^{q-1}}{1+\omega s_1^{q-1}}\right)^{1/q}$$

Proof. Let f be a real-valued function on [0, 1/2] given by

$$f(t) = \frac{2 - 2t}{\psi_{\omega,q}(t)} \psi_{\omega,q}\left(\frac{1}{2 - 2t}\right) = \left(\frac{\omega(1 - 2t)^q + 1}{(1 - t)^q + \omega t^q}\right)^{1/q}$$

for all $t \in [0, 1/2]$. We also put

$$g(s) = f\left(\frac{s}{1+s}\right) = \left(\frac{(1+s)^q + \omega(1-s)^q}{1+\omega s^q}\right)^{1/q}$$

for all $s \in [0, 1]$. Then the derivative of g is

$$g'(s) = \frac{((1+s)^q + \omega(1-s)^q)^{1/q-1}}{(1+\omega s^q)^{1/q+1}} \times \{(1+s)^{q-1}(1-\omega s^{q-1}) - \omega(1-s)^{q-1}(1+\omega s^{q-1})\}.$$

We put $\alpha = q - 1$ and define a function g_1 from [0, 1] into \mathbb{R} by

$$g_1(s) = (1+s)^{\alpha}(1-\omega s^{\alpha}) - \omega(1-s)^{\alpha}(1+\omega s^{\alpha})$$

2272

for s with $0 \le s \le 1$. If $(\sqrt{2}-1)^{2-q} < \omega < 1$, then $\omega^{1/(2-q)} > \sqrt{2}-1$. Thus we have

$$\omega^{1/(2-q)} > \frac{1 - \omega^{1/(2-q)}}{1 + \omega^{1/(2-q)}} > \frac{1 - \omega}{1 + \omega}$$

We consider a function $h(s) = \omega^{1-p} s^{p-1}$ on [0, 1]. Since h is an increasing function on [0, 1],

$$\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1} = h\left(\frac{1-\omega}{1+\omega}\right) < h(\omega^{1/(2-q)}) = \omega^{1/(2-q)}.$$

Thus we have

$$\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1} < \omega^{1/(2-q)}.$$

Now, since (p-1)(q-1) = 1, one has that

$$g_1\left(\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}\right)$$
$$=\frac{2\omega}{1+\omega}\left[\left\{1+\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}\right\}^{q-1}-\left\{1-\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}\right\}^{q-1}\right]$$
$$>0.$$

These observation and [8, Table 1] together show that there uniquely exists a pair of real numbers s_0, s_1 such that

$$\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1} < s_0 < \omega^{1/(2-q)} < s_1 < 1$$

and $g_1(s_0) = g_1(s_1) = 0$. For i = 0, 1, we have

$$f\left(\frac{s_i}{1+s_i}\right) = g(s_i) = \left(\frac{2(1+s_i)^{q-1}}{1+\omega s_i^{q-1}}\right)^{1/q}.$$

We now remark that

$$f\left(\frac{s}{1+s}\right)f\left(\frac{1-s}{2}\right) = 2$$

for any $s \in [0, 1]$. Then, as was shown in [8], the function g(s) = f(s/(1+s)) has a maximal at s_0 and a minimal at s_1 , and so, the function f((1-s)/2) = 2/f(s/(1+s)) has a minimal at s_0 and a maximal at s_1 .

s	0		s_0		s_1		1
$f\left(\frac{s}{1+s}\right)$		\checkmark		\searrow		٢	
$f\left(\frac{1-s}{2}\right)$		\searrow		\nearrow		\searrow	

This implies that $f((1-s_0)/2) = f(s_1/(1+s_1))$ and $f((1-s_1)/2) = f(s_0/(1+s_0))$. Hence it must be $s_1/(1+s_1) = (1-s_0)/2$, which implies that

$$f\left(\frac{s_0}{1+s_0}\right)f\left(\frac{s_1}{1+s_1}\right) = 2.$$

Thus we finally have this theorem by Proposition 3.1. This completes the proof. \Box

4. James constant of $d^{(2)}(w,q)^*$

For $\psi \in \Psi_2$ let $\|\cdot\|_{\psi}^*$ be the dual of the norm $\|\cdot\|_{\psi}$. Namely,

$$\|x\|_{\psi}^* = \sup\left\{|\langle x, y\rangle| : y \in S_{(\mathbb{R}^2, \|\cdot\|_{\psi})}\right\}$$

for any $x \in \mathbb{R}^2$. From [5] we have $\|\cdot\|_{\psi}^* \in AN_2$ and the corresponding convex function ψ^* in Ψ_2 is

$$\psi^*(t) = \sup_{0 \le s \le 1} \frac{(1-s)(1-t) + st}{\psi(s)}$$

for t with $0 \le t \le 1$.

To obtain the dual norm of $\|\cdot\|_{\omega,q}$ we first determine the function $\psi^*_{\omega,q}$.

Theorem 4.1 ([6]). Let $0 < \omega < 1$. If $1 < q < \infty$, then

$$\psi_{\omega,q}^*(t) = \begin{cases} ((1-t)^p + \omega^{1-p}t^p)^{1/p} & \text{if } 0 \le t < \omega/(1+\omega), \\ (1+\omega)^{1/p-1} & \text{if } \omega/(1+\omega) \le t < 1/(1+\omega), \\ (t^p + \omega^{1-p}(1-t)^p)^{1/p} & \text{if } 1/(1+\omega) \le t \le 1, \end{cases}$$

where 1/p + 1/q = 1.

Hence $d^{(2)}(\omega, q)^*$ is isometrically isomorphic to the space \mathbb{R}^2 endowed with the norm $\|\cdot\|_{\omega,q}^*$ defined by

$$\begin{split} \|(x,y)\|_{\omega,q}^* = \left\{ \begin{array}{ll} (|x|^p + \omega^{1-p}|y|^p)^{1/p} & \text{if } |y| \leq \omega |x|, \\ (1+\omega)^{1/p-1}(|x|+|y|) & \text{if } \omega |x| \leq |y| \leq \omega^{-1} |x|, \\ (\omega^{1-p}|x|^p + |y|^p)^{1/p} & \text{if } \omega^{-1}|x| \leq |y|, \end{array} \right. \end{split}$$

where 1/p + 1/q = 1.

We now suppose that 1 < q < 2 and $(\sqrt{2}-1)^{2-q} < \omega < 1$. Since $\psi_{\omega,q}^*$ is symmetric with respect to t = 1/2, we define a function f^* from [0, 1/2] into \mathbb{R} by

$$f^*(t) = \frac{2-2t}{\psi^*_{\omega,q}(t)}\psi^*_{\omega,q}\left(\frac{1}{2-2t}\right) = \frac{\left((1+s)^p + w^{1-p}(1-s)^p\right)^{1/p}}{(1+w^{1-p}s^p)^{1/p}}.$$

As in the proof of [6, Theorem 13], we only calculate the maximum of f^* on $[(1 - \omega)/2, \omega/(1 + \omega)]$ to calculate the maximum of f^* on [0, 1]. To do this, we define a function g from $[(1 - \omega)/(1 + \omega), \omega]$ into \mathbb{R} by

$$g^*(s) = f^*\left(\frac{s}{1+s}\right) = \frac{\left((1+s)^p + w^{1-p}(1-s)^p\right)^{1/p}}{(1+w^{1-p}s^p)^{1/p}}.$$

Since

$$\max\left\{g^*(s): \frac{1-\omega}{1+\omega} \le s \le \omega\right\} = \max\left\{f^*(t): \frac{1-\omega}{2} \le t \le \frac{\omega}{1+\omega}\right\},\$$

it is enough to calculate the maximum of g^* on $[(1-\omega)/(1+\omega), \omega]$. The derivative

of g^* is

$$(g^*)'(s) = \frac{((1+s)^p + \omega^{1-p}(1-s)^p)^{1/p-1}}{(1+\omega^{1-p}s^p)^{1/p+1}} \times \{(1+s)^{p-1}(1-\omega^{1-p}s^{p-1}) - \omega^{1-p}(1-s)^{p-1}(1+\omega^{1-p}s^{p-1})\}$$

We define

$$g_1^*(s) = (1+s)^{p-1}(1-\omega^{1-p}s^{p-1}) - \omega^{1-p}(1-s)^{p-1}(1+\omega^{1-p}s^{p-1}).$$

Since $\omega > (\sqrt{2} - 1)^{2-q}$, it follows that

$$\omega^{1/(2-q)} > \frac{1 - \omega^{1/(2-q)}}{1 + \omega^{1/(2-q)}} > \frac{1 - \omega}{1 + \omega}$$

and so $(1-\omega)/(1+\omega) < \omega^{1/(2-q)} < \omega$. As in the Table 3 of [6], there uniquely exists a pair of real numbers s_0^*, s_1^* such that

$$\frac{1-\omega}{1+\omega} < s_0^* < \omega^{1/(2-q)} < s_1^* < \omega$$

and $g_1^*(s_0^*) = g_1^*(s_1^*) = 0$. By Theorem 3.2, s_0 and s_1 satisfy the equation

$$(1+s_i)^{q-1}(1-\omega s_i^{q-1}) = \omega(1-s_i)^{q-1}(1+\omega s_i^{q-1}) \quad (i=0,1).$$

We put $s_i' = \omega s_i^{q-1}$ (i = 0, 1). Then we obtain

$$\frac{1-\omega}{1+\omega} < s'_0 < \omega^{1/(2-q)} < s'_1 < \omega.$$

Furthermore, we have for i = 0, 1,

$$g_1^*(s_i') = (1 + \omega s_i^{q-1})^{p-1} (1 - s_i) - \omega^{1-p} (1 - \omega s_i^{q-1})^{p-1} (1 + s_i)$$

= {(1 - s_i)^{q-1} (1 + \omega s_i^{q-1})}^{p-1} - {\omega^{-1} (1 + s_i)^{q-1} (1 - \omega s_i^{q-1})}^{p-1}
= 0

since (p-1)(q-1) = 1. By the uniqueness of $\{s_0^*, s_1^*\}$, one has $s_i^* = s_i' = w s_i^{q-1}$ for i = 0, 1. Since $s_2^* = \omega s_2^{q-1}$, we have

$$\left(\frac{2(1+s_1)^{q-1}}{1+\omega s_1^{q-1}}\right)^{1/q} \left(\frac{2(1+s_1^*)^{p-1}}{1+\omega^{1-p}s_1^{*p-1}}\right)^{1/p} = 2.$$

On the other hand, as in the proof of Theorem 3.2,

$$\left(\frac{2(1+s_0)^{q-1}}{1+\omega s_0^{q-1}}\right)^{1/q} \left(\frac{2(1+s_1)^{q-1}}{1+\omega s_1^{q-1}}\right)^{1/q} = 2$$

Therefore, it follows that

$$\left(\frac{2(1+s_0)^{q-1}}{1+\omega s_0^{q-1}}\right)^{1/q} = \left(\frac{2(1+s_1^*)^{p-1}}{1+\omega^{1-p}s_1^{*p-1}}\right)^{1/p}$$

By the argument in above and [6, Theorem 13], we have the following result on the James and Schäffer constants of $d^{(2)}(\omega, q)^*$.

Theorem 4.2. Let 1 < q < 2 and 1/p + 1/q = 1. If $(\sqrt{2} - 1)^{2-q} < \omega < 1$, then there exists a unique pair of real numbers s_0, s_1 such that

$$\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1} < s_0 < \omega^{1/(2-q)} < s_1 < 1$$

and $(1+s_i)^{q-1}(1-\omega s_i^{q-1}) = \omega(1-s_i)^{q-1}(1+\omega s_i^{q-1})$ for i = 0, 1. (a) If $(\sqrt{2}-1)^{2-q} < \omega \le \sqrt{2}^q - 1$, then

$$J(d^{(2)}(\omega,q)^*) = \max\left\{ \left(\frac{2(1+s_0)^{q-1}}{1+\omega s_0^{q-1}}\right)^{1/q}, 2\left(\frac{1}{1+\omega}\right)^{1/q} \right\}$$

and

$$g(d^{(2)}(\omega,q)^*) = \min\left\{ \left(\frac{2(1+s_1)^{q-1}}{1+\omega s_1^{q-1}}\right)^{1/q}, (1+\omega)^{1/q} \right\}.$$

(b) If
$$\sqrt{2^{q}} - 1 < \omega < 1$$
, then

$$J(d^{(2)}(\omega,q)^*) = \left(\frac{2(1+s_0)^{q-1}}{1+\omega s_0^{q-1}}\right)^{1/q}$$

and

$$g(d^{(2)}(\omega,q)^*) = \left(\frac{2(1+s_1)^{q-1}}{1+\omega s_1^{q-1}}\right)^{1/q}$$

As an immediate consequence of Theorems 3.2 and 4.2, one has

$$J(d^{(2)}(\omega, q)^*) = J(d^{(2)}(\omega, q))$$

and

$$g(d^{(2)}(\omega,q)^*) = g(d^{(2)}(\omega,q))$$

for all 1 < q < 2 and $(\sqrt{2} - 1)^{2-q} < \omega < 1$. Thus we finally have the following result.

Theorem 4.3. Let 1 < q < 2 and $0 < \omega < 1$. Then

$$J(d^{(2)}(\omega,q)^*) = J(d^{(2)}(\omega,q)) \text{ and } g(d^{(2)}(\omega,q)^*) = g(d^{(2)}(\omega,q)).$$

References

- F. F. Bonsall and J. Duncan, Numerical ranges II, Cambridge University Press, Cambridge, 1973.
- [2] J. Gao and K. S. Lau, On the geometry of spheres in normed linear spaces, J. Aust. Math. Soc. A 48 (1990), 101–112.
- [3] M. Kato and L. Maligranda, On James and Jordan-von Neumann constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258 (2001), 457–465.
- [4] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275–295.
- [5] K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ-direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147–157.
- [6] K.-I. Mitani and K.-S. Saito, The James constant of absolute norms on R², J. Nonlinear Convex Anal. 4 (2003), 399–410.

- [7] K.-I. Mitani and K.-S. Saito, Dual of two dimensional Lorentz sequence spaces, Nonlinear Anal., 71 (2009), 5238–5247.
- [8] K.-I. Mitani, K.-S. Saito and T. Suzuki, On the calculation of the James constant of Lorentz sequence spaces, J. Math. Anal. Appl. 343 (2008), 310–314.
- [9] S. Saejung, On James and von Neumann-Jordan constants and sufficient conditions for the fixed point property, J. Math. Anal. Appl. 323 (2006), 1018–1024.
- [10] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on C², J. Math. Anal. Appl. 244 (2000), 515–532.
- [11] K.-S. Saito, N. Komuro and K.-I. Mitani, *How to calculate James constants of Banach spaces*, in: Proceedings of the Fourth International Symposium on Banach and Function Spaces 2012, Yokohama Publishers, Yokohama, 2014, pp. 211–224.
- [12] T. Suzuki, A. Yamano and M. Kato, The James constant of 2-dimensional Lorentz sequence spaces, Bull. Kyushu Inst. Technol. Pure Appl. Math. 53 (2006), 15–24.

Manuscript received January 20, 2014 revised November 21, 2015

K.-I. MITANI

Department of Systems Engineering, Okayama Prefectural University, Soja, 719-1197, Japan *E-mail address:* mitani@cse.oka-pu.ac.jp

K.-S. Saito

R. TANAKA

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail address: ryotarotanaka@m.sc.niigata-u.ac.jp

Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan *E-mail address:* saito@math.sc.niigata-u.ac.jp