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An important example of absolute normed spaces is the following 2-dimensional
Lorentz sequence space d(2)(ω, q). Let 0 < ω < 1 and 1 ≤ q < ∞. The space

d(2)(ω, q) is R2 with the norm

∥(x, y)∥ω,q = (x∗q + ωy∗q)1/q,

where (x∗, y∗) is the non-increasing rearrangement of (|x|, |y|), that is, x∗ ≥ y∗ (cf.
[3]).

In [3], Kato and Maligranda considered the James constant of d(2)(ω, q) and
calculated it in the case where q ≥ 2. For 1 ≤ q < 2 it was completely determined
by Mitani, Saito and Suzuki [8]. Furthermore, we completely computed the James

constant of the dual space d(2)(ω, q)∗ of d(2)(ω, q) as in Mitani and Saito [6]; see
also [11, 12].

As an important remark on James constants, it is known that J(X) ̸= J(X∗) in
general (cf. [4]). However, the equality holds if X = ℓp, that is, J(ℓp) = J(ℓq) for
each 1 < p, q < ∞ satisfying 1/p + 1/q = 1. Motivated by these observation, we
consider the following problem in this paper.

Problem. Does the equality J(d(2)(ω, q)) = J(d(2)(ω, q)∗) hold for all 1 < q < ∞
and 0 < ω < 1?

In fact, this problem is partially solved by some results in [3, 7, 8], that is, we
have the following theorem.

Theorem 1.1. Let 1 < q <∞. Then

J(d(2)(ω, q)) = 2

(
1

1 + ω

)1/q

= J(d(2)(ω, q)∗)

if either q ≥ 2 or 1 < q < 2 and 0 < ω ≤ (
√
2− 1)2−q.

Thus, throughout this paper, we consider the case of 1 < q < 2 and (
√
2−1)2−q <

ω < 1 unless otherwise stated.

2. James constant of absolute norms on R2

Let X be a Banach space and x, y ∈ X. We say that x is isosceles orthogonal to
y, denoted by x ⊥I y, if ∥x+ y∥ = ∥x− y∥. We define the function β(x) on X by

β(x) = sup{min{∥x+ y∥, ∥x− y∥} : y ∈ SX}.
To calculate the constant J((R2, ∥ · ∥ψ)), we need the following lemma given in Gao
and Lau [2].

Lemma 2.1 ([2]). Let ψ ∈ Ψ2 and x ∈ S(R2,∥·∥ψ). Then there exists a unique (up

to the sign) vector y0 ∈ S(R2,∥·∥ψ) with x ⊥I y0. Moreover, β(x) = ∥x+ y0∥ψ.

From Lemma 2.1 we can write

J((R2, ∥ · ∥ψ)) = sup
{
∥x+ y∥ψ : x, y ∈ S(R2,∥·∥ψ) with x ⊥I y

}
.

We recall that an absolute normalized norm ∥ · ∥ on R2 is symmetric in the sense
that ∥(x, y)∥ = ∥(y, x)∥ for all (x, y) ∈ R2 if and only if the corresponding function
ψ is symmetric with respect to t = 1/2, that is, ψ(1− t) = ψ(t) for every t ∈ [0, 1].
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Using Lemma 2.1 we gave the following formula for the case where ψ is symmetric
with respect to t = 1/2.

Theorem 2.2 ([6]). Let ψ ∈ Ψ2. If ψ is symmetric with respect to t = 1/2, then

J((R2, ∥ · ∥ψ)) = max
0≤t≤1/2

2− 2t

ψ(t)
ψ

(
1

2− 2t

)
.

We consider a function in the theorem above:

f(t) =
2− 2t

ψ(t)
ψ

(
1

2− 2t

)
for all t ∈ [0, 1/2].

Since f(0) = 2ψ(1/2) and f(1/2) = 1/ψ(1/2), we always have the inequality

J((R2, ∥ · ∥ψ)) ≥ max{2ψ(1/2), 1/ψ(1/2)}.
As a direct consequence of Theorem 2.2, we have

Proposition 2.3 ([6]). Let ψ ∈ Ψ2. Assume that ψ is symmetric with respect to
t = 1/2.

(i) If ψ ≥ ψ2 and M1 = max0≤t≤1 ψ(t)/ψ2(t) is taken at t = 1/2, then

J((R2, ∥ · ∥ψ)) = 2ψ

(
1

2

)
.

(ii) If ψ ≤ ψ2 and M2 = max0≤t≤1 ψ2(t)/ψ(t) is taken at t = 1/2, then

J((R2, ∥ · ∥ψ)) =
1

ψ(1/2)
.

Example 2.4. Let 1 ≤ p ≤ ∞ and 1/p+ 1/p′ = 1.

(i) If 1 ≤ p ≤ 2, then J((R2, ∥ · ∥p)) = 2ψp(1/2) = 21/p.

(ii) If 2 ≤ p ≤ ∞, then J((R2, ∥ · ∥p)) = 1/ψp(1/2) = 21/p
′
.

Example 2.5. Let 1/2 ≤ β ≤ 1, and let ψβ(t) = max{1− t, t, β}. Then

J((R2, ∥ · ∥ψβ )) =
{

1/β = 1/ψβ(1/2) if 1/2 ≤ β ≤ 1/
√
2,

2β = 2ψβ(1/2) if 1/
√
2 ≤ β ≤ 1.

Here, we propose the following problem: Does there exist a function ψ ∈ Ψ2

satisfying

J((R2, ∥ · ∥ψ)) > max{2ψ(1/2), 1/ψ(1/2)}?
In Section 4, we discuss the case of two dimensional Lorentz sequence spaces.

3. James constant of d(2)(w, q)

Let X be a normed space. As in [2], the Schäffer constant g(X) of X is defined
by

g(X) = inf{max{∥x+ y∥, ∥x− y∥} : x, y ∈ SX}.
By [2, Theorem 2.5], we have

Proposition 3.1. Let X be a normed space. Then 1 ≤ g(X) ≤
√
2 ≤ J(X) ≤ 2

and g(X)J(X) = 2.
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Note here that the norm ∥ · ∥ω,q of d(2)(ω, q) is a symmetric absolute normalized
norm on R2, and the corresponding convex function is given by

ψω,q(t) =

{
((1− t)q + ωtq)1/q if 0 ≤ t ≤ 1/2,

(tq + ω(1− t)q)1/q if 1/2 ≤ t ≤ 1.

Theorem 3.2 ([8]). Let 1 < q < 2 and 1/p + 1/q = 1. If (
√
2 − 1)2−q < ω < 1,

then there exists a unique pair of real numbers s0, s1 such that(
1− ω

ω(1 + ω)

)p−1

< s0 < ω1/(2−q) < s1 < 1

and (1 + si)
q−1(1− ωsq−1

i ) = ω(1− si)
q−1(1 + ωsq−1

i ) for i = 0, 1.

(i) If (
√
2− 1)2−q < ω ≤

√
2
q − 1, then

J(d(2)(ω, q)) = max


(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

, 2

(
1

1 + ω

)1/q


and

g(d(2)(ω, q)) = min


(
2(1 + s1)

q−1

1 + ωsq−1
1

)1/q

, (1 + ω)1/q

 .

(ii) If
√
2
q − 1 < ω < 1, then

J(d(2)(ω, q)) =

(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

and

g(d(2)(ω, q)) =

(
2(1 + s1)

q−1

1 + ωsq−1
1

)1/q

.

Proof. Let f be a real-valued function on [0, 1/2] given by

f(t) =
2− 2t

ψω,q(t)
ψω,q

(
1

2− 2t

)
=

(
ω(1− 2t)q + 1

(1− t)q + ωtq

)1/q

for all t ∈ [0, 1/2]. We also put

g(s) = f

(
s

1 + s

)
=

(
(1 + s)q + ω(1− s)q

1 + ωsq

)1/q

for all s ∈ [0, 1]. Then the derivative of g is

g′(s) =
((1 + s)q + ω(1− s)q)1/q−1

(1 + ωsq)1/q+1

× {(1 + s)q−1(1− ωsq−1)− ω(1− s)q−1(1 + ωsq−1)}.

We put α = q − 1 and define a function g1 from [0, 1] into R by

g1(s) = (1 + s)α(1− ωsα)− ω(1− s)α(1 + ωsα)
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for s with 0 ≤ s ≤ 1. If (
√
2 − 1)2−q < ω < 1, then ω1/(2−q) >

√
2 − 1. Thus we

have

ω1/(2−q) >
1− ω1/(2−q)

1 + ω1/(2−q) >
1− ω

1 + ω
.

We consider a function h(s) = ω1−psp−1 on [0, 1]. Since h is an increasing function
on [0, 1], (

1− ω

ω(1 + ω)

)p−1

= h

(
1− ω

1 + ω

)
< h(ω1/(2−q)) = ω1/(2−q).

Thus we have (
1− ω

ω(1 + ω)

)p−1

< ω1/(2−q).

Now, since (p− 1)(q − 1) = 1, one has that

g1

((
1− ω

ω(1 + ω)

)p−1
)

=
2ω

1 + ω

{1 + ( 1− ω

ω(1 + ω)

)p−1
}q−1

−

{
1−

(
1− ω

ω(1 + ω)

)p−1
}q−1


> 0.

These observation and [8, Table 1] together show that there uniquely exists a pair
of real numbers s0, s1 such that(

1− ω

ω(1 + ω)

)p−1

< s0 < ω1/(2−q) < s1 < 1

and g1(s0) = g1(s1) = 0. For i = 0, 1, we have

f

(
si

1 + si

)
= g(si) =

(
2(1 + si)

q−1

1 + ωsq−1
i

)1/q

.

We now remark that

f

(
s

1 + s

)
f

(
1− s

2

)
= 2

for any s ∈ [0, 1]. Then, as was shown in [8], the function g(s) = f(s/(1 + s)) has a
maximal at s0 and a minimal at s1, and so, the function f((1−s)/2) = 2/f(s/(1+s))
has a minimal at s0 and a maximal at s1.

s 0 s0 s1 1

f

(
s

1 + s

)
↗ ↘ ↗

f

(
1− s

2

)
↘ ↗ ↘

This implies that f((1− s0)/2) = f(s1/(1+ s1)) and f((1− s1)/2) = f(s0/(1+ s0)).
Hence it must be s1/(1 + s1) = (1− s0)/2, which implies that

f

(
s0

1 + s0

)
f

(
s1

1 + s1

)
= 2.
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Thus we finally have this theorem by Proposition 3.1. This completes the proof. □

4. James constant of d(2)(w, q)∗

For ψ ∈ Ψ2 let ∥ · ∥∗ψ be the dual of the norm ∥ · ∥ψ. Namely,

∥x∥∗ψ = sup
{
|⟨x, y⟩| : y ∈ S(R2,∥·∥ψ)

}
for any x ∈ R2. From [5] we have ∥ · ∥∗ψ ∈ AN2 and the corresponding convex
function ψ∗ in Ψ2 is

ψ∗(t) = sup
0≤s≤1

(1− s)(1− t) + st

ψ(s)

for t with 0 ≤ t ≤ 1.
To obtain the dual norm of ∥ · ∥ω,q we first determine the function ψ∗

ω,q.

Theorem 4.1 ([6]). Let 0 < ω < 1. If 1 < q <∞, then

ψ∗
ω,q(t) =


((1− t)p + ω1−ptp)1/p if 0 ≤ t < ω/(1 + ω),

(1 + ω)1/p−1 if ω/(1 + ω) ≤ t < 1/(1 + ω),

(tp + ω1−p(1− t)p)1/p if 1/(1 + ω) ≤ t ≤ 1,

where 1/p+ 1/q = 1.

Hence d(2)(ω, q)∗ is isometrically isomorphic to the space R2 endowed with the
norm ∥ · ∥∗ω,q defined by

∥(x, y)∥∗ω,q =


(|x|p + ω1−p|y|p)1/p if |y| ≤ ω|x|,
(1 + ω)1/p−1(|x|+ |y|) if ω|x| ≤ |y| ≤ ω−1|x|,
(ω1−p|x|p + |y|p)1/p if ω−1|x| ≤ |y|,

where 1/p+ 1/q = 1.
We now suppose that 1 < q < 2 and (

√
2−1)2−q < ω < 1. Since ψ∗

ω,q is symmetric
with respect to t = 1/2, we define a function f∗ from [0, 1/2] into R by

f∗(t) =
2− 2t

ψ∗
ω,q(t)

ψ∗
ω,q

(
1

2− 2t

)
=

(
(1 + s)p + w1−p(1− s)p

)1/p
(1 + w1−psp)1/p

.

As in the proof of [6, Theorem 13], we only calculate the maximum of f∗ on [(1−
ω)/2, ω/(1 + ω)] to calculate the maximum of f∗ on [0, 1]. To do this, we define a
function g from [(1− ω)/(1 + ω), ω] into R by

g∗(s) = f∗
(

s

1 + s

)
=

(
(1 + s)p + w1−p(1− s)p

)1/p
(1 + w1−psp)1/p

.

Since

max

{
g∗(s) :

1− ω

1 + ω
≤ s ≤ ω

}
= max

{
f∗(t) :

1− ω

2
≤ t ≤ ω

1 + ω

}
,

it is enough to calculate the maximum of g∗ on [(1−ω)/(1+ω), ω]. The derivative
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of g∗ is

(g∗)′(s)

=
((1 + s)p + ω1−p(1− s)p)1/p−1

(1 + ω1−psp)1/p+1

× {(1 + s)p−1(1− ω1−psp−1)− ω1−p(1− s)p−1(1 + ω1−psp−1)}.
We define

g∗1(s) = (1 + s)p−1(1− ω1−psp−1)− ω1−p(1− s)p−1(1 + ω1−psp−1).

Since ω > (
√
2− 1)2−q, it follows that

ω1/(2−q) >
1− ω1/(2−q)

1 + ω1/(2−q) >
1− ω

1 + ω

and so (1 − ω)/(1 + ω) < ω1/(2−q) < ω. As in the Table 3 of [6], there uniquely
exists a pair of real numbers s∗0, s

∗
1 such that

1− ω

1 + ω
< s∗0 < ω1/(2−q) < s∗1 < ω

and g∗1(s
∗
0) = g∗1(s

∗
1) = 0. By Theorem 3.2, s0 and s1 satisfy the equation

(1 + si)
q−1(1− ωsq−1

i ) = ω(1− si)
q−1(1 + ωsq−1

i ) (i = 0, 1).

We put s′i = ωsq−1
i (i = 0, 1). Then we obtain

1− ω

1 + ω
< s′0 < ω1/(2−q) < s′1 < ω.

Furthermore, we have for i = 0, 1,

g∗1(s
′
i) = (1 + ωsq−1

i )p−1(1− si)− ω1−p(1− ωsq−1
i )p−1(1 + si)

= {(1− si)
q−1(1 + ωsq−1

i )}p−1 − {ω−1(1 + si)
q−1(1− ωsq−1

i )}p−1

= 0

since (p− 1)(q− 1) = 1. By the uniqueness of {s∗0, s∗1}, one has s∗i = s′i = wsq−1
i for

i = 0, 1. Since s∗2 = ωsq−1
2 , we have(

2(1 + s1)
q−1

1 + ωsq−1
1

)1/q (
2(1 + s∗1)

p−1

1 + ω1−ps∗1
p−1

)1/p

= 2.

On the other hand, as in the proof of Theorem 3.2,(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q (
2(1 + s1)

q−1

1 + ωsq−1
1

)1/q

= 2.

Therefore, it follows that(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

=

(
2(1 + s∗1)

p−1

1 + ω1−ps∗1
p−1

)1/p

.

By the argument in above and [6, Theorem 13], we have the following result on

the James and Schäffer constants of d(2)(ω, q)∗.
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Theorem 4.2. Let 1 < q < 2 and 1/p + 1/q = 1. If (
√
2 − 1)2−q < ω < 1, then

there exists a unique pair of real numbers s0, s1 such that(
1− ω

ω(1 + ω)

)p−1

< s0 < ω1/(2−q) < s1 < 1

and (1 + si)
q−1(1− ωsq−1

i ) = ω(1− si)
q−1(1 + ωsq−1

i ) for i = 0, 1.

(a) If (
√
2− 1)2−q < ω ≤

√
2
q − 1, then

J(d(2)(ω, q)∗) = max


(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

, 2

(
1

1 + ω

)1/q


and

g(d(2)(ω, q)∗) = min


(
2(1 + s1)

q−1

1 + ωsq−1
1

)1/q

, (1 + ω)1/q

 .

(b) If
√
2
q − 1 < ω < 1, then

J(d(2)(ω, q)∗) =

(
2(1 + s0)

q−1

1 + ωsq−1
0

)1/q

and

g(d(2)(ω, q)∗) =

(
2(1 + s1)

q−1

1 + ωsq−1
1

)1/q

.

As an immediate consequence of Theorems 3.2 and 4.2, one has

J(d(2)(ω, q)∗) = J(d(2)(ω, q))

and
g(d(2)(ω, q)∗) = g(d(2)(ω, q))

for all 1 < q < 2 and (
√
2 − 1)2−q < ω < 1. Thus we finally have the following

result.

Theorem 4.3. Let 1 < q < 2 and 0 < ω < 1. Then

J(d(2)(ω, q)∗) = J(d(2)(ω, q)) and g(d(2)(ω, q)∗) = g(d(2)(ω, q)).
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