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ABSTRACT. Let J(X) denote the James constant of a Banach space X. Then,
for a Banach space X and its dual X, it is known that J(X) # J(X ") in general.
In this paper, we show that J(d® (w,q)) = J(d® (w,q)*) for all 1 < ¢ < oo and
0 < w < 1, where d(Q)(w,q) is a two-dimensional Lorentz sequence space. We
also give some remarks on the James constant of J(d® (w, q)).

1. INTRODUCTION AND PRELIMINARIES

Let Sx be the unit sphere of a Banach space X. The James constant J(X) of a
Banach space X is defined by
J(X) = sup{min{f|z + y||, |z — y[|} : z,y € Sx}

(Gao and Lau [2]). It is well-known that v/2 < J(X) < 2 for any Banach space X,
and J(X) < 2 if and only if X is uniformly non-square (]2, 4]).

A norm || - || on R? is said to be absolute if ||(z,w)|| = [|(|z|, |w|)| for all (z, w) €
R?, and normalized if ||(1,0)|| = [|(0,1)|| = 1. The £,-norms |- ||, are such examples;

Gl = {

Let AN, be the set of all absolute normalized norms on R?, and ¥y the set of all
convex functions 1 on [0, 1] satisfying max{l —¢,t} <¢(t) <1 (0 <t <1). Asin
Bonsall and Duncan [1] (cf. [10]), ANz and ¥y are in 1-1 correspondence under the
equation

(1.1) () =1t B[ (0<t<1).

Indeed, for all ¢ € Wy let

(|2P + [wP)/P if 1 < p < oo,
max{|z],|w|}  if p= 0.

|w] ) :
Tl 1L ol if (va) 7& (070)7
2] + [w]

if (z,w) = (0,0).
Then |- ||y € ANg, and |- ||, satisfies (1.1). From this result, we can consider many
non £,-type norms easily. Now let 1, (t) = {(1—t)? +tP}1/P € Uy. As is easily seen,
the ¢,-norm || - ||, is associated with 1),.

(sl = ;M+“”w<
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An important example of absolute normed spaces is the following 2-dimensional
Lorentz sequence space d(2)(w,q). Let 0 < w < 1land 1 < g < oco. The space
d?(w, q) is R? with the norm

(@, 9) g = (@7 + wy™) '/,
where (z*,y*) is the non-increasing rearrangement of (|z|, |y|), that is, * > y* (cf.
3)).

In [3], Kato and Maligranda considered the James constant of d®(w,q) and
calculated it in the case where ¢ > 2. For 1 < ¢ < 2 it was completely determined
by Mitani, Saito and Suzuki [8]. Furthermore, we completely computed the James
constant of the dual space d®(w,q)* of d®(w,q) as in Mitani and Saito [6]; see
also [11, 12].

As an important remark on James constants, it is known that J(X) # J(X™) in
general (cf. [4]). However, the equality holds if X = ¢, that is, J(¥) = J(¢?) for
each 1 < p,q < oo satisfying 1/p + 1/q = 1. Motivated by these observation, we
consider the following problem in this paper.

Problem. Does the equality J(d®) (w,q)) = J(d®(w,q)*) hold for all 1 < q < oo
and 0 <w <17

In fact, this problem is partially solved by some results in [3, 7, 8], that is, we
have the following theorem.

Theorem 1.1. Let 1 < g < 0co. Then
1

1/q
(2) DN — (2) *
I w0) =2 (115 ) = I w0))
if either ¢ >2 or1 < q<2and 0 <w < (V2 —1)271.

Thus, throughout this paper, we consider the case of 1 < g < 2 and (ﬂ— 1)279 <
w < 1 unless otherwise stated.

2. JAMES CONSTANT OF ABSOLUTE NORMS ON R2

Let X be a Banach space and x,y € X. We say that x is isosceles orthogonal to
y, denoted by x Ly y, if ||z + y|| = [|x — y||. We define the function 3(z) on X by

B(x) = sup{min{||z + yl|, |z — yll} : y € Sx}.
To calculate the constant J((R?, ]| - [|)), we need the following lemma given in Gao

and Lau [2].

Lemma 2.1 ([2]). Let ¢ € V3 and x € S ||.|,)- Then there exists a unique (up

to the sign) vector yo € Sz |.|,,) with x L1 yo. Moreover, B(x) = ||z + yol|y-

From Lemma 2.1 we can write

J(R?, || - ly)) = sup {[|z + ylly : 2,y € Sz, With @ L y}.

We recall that an absolute normalized norm || - || on R? is symmetric in the sense
that ||(z, )| = ||(y,z)| for all (z,y) € R? if and only if the corresponding function
¥ is symmetric with respect to t = 1/2, that is, ¥(1 — t) = ¢(t) for every t € [0, 1].
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Using Lemma 2.1 we gave the following formula for the case where 1 is symmetric
with respect to t = 1/2.

Theorem 2.2 ([6]). Let ¢p € Wy. If ¢ is symmetric with respect to t = 1/2, then

) B 2 — 2t 1
TR o)) = mae, 22t <2 ! %) .

We consider a function in the theorem above:

2 -2t 1
ft) = o0 ¢<2—2t> for all ¢t € [0,1/2].

Since f(0) = 2¢(1/2) and f(1/2) = 1/4(1/2), we always have the inequality
J((R2, || - [ly)) = max{2¢(1/2),1/3(1/2)}.

As a direct consequence of Theorem 2.2, we have

Proposition 2.3 ([6]). Let ¢ € Wa. Assume that ¢ is symmetric with respect to
t=1/2.
(1) If ¢ > 1y and My = maxo<i<i (1) /12(t) is taken at t = 1/2, then

HE] 1) =20 (5).

(ii) If ¢ < 1o and Ma = maxo<i<1 ¥2(t)/1(t) is taken at t = 1/2, then
1
J(R%,]| - = —.
(RS- 1)) o172
Example 2.4. Let 1 <p<ocoand 1/p+1/p' =1.
(i) If 1 < p < 2, then J((RZ, || - ||,)) = 2¢,(1/2) = 21/P.
(if) If 2 < p < oo, then J((R?, || ) = 1/1(1/2) = 2"/7".
Example 2.5. Let 1/2 < § <1, and let ¢3(t) = max{1 —¢,¢, 5}. Then

2 . _ [ 1/B=1/vs(1/2) if1/2<8<1/V2,
Here, we propose the following problem: Does there exist a function ¢ € ¥y
satisfying
TR, || - [lp)) > max{2¢(1/2),1/4(1/2)}?

In Section 4, we discuss the case of two dimensional Lorentz sequence spaces.

3. JAMES CONSTANT OF d® (w,q)

Let X be a normed space. As in [2], the Schéffer constant g(X) of X is defined
by
9(X) = inf{max{[lz +y|, [z — yll} : z,y € Sx}.
By [2, Theorem 2.5], we have

Proposition 3.1. Let X be a normed space. Then 1 < g(X) < /2 < J(X) <2
and g(X)J(X) = 2.



2272 K.-I. MITANI, K.-S. SATTO, AND R. TANAKA
Note here that the norm | - ||, 4 of d®(w,q) is a symmetric absolute normalized
norm on R?, and the corresponding convex function is given by
o (t) = (1 —=t) +wt/e if 0<t<1/2,
GO 4w -tV if1/2<t<1.

Theorem 3.2 ([8]). Let 1 < g<2and 1/p+1/qg=1. If (V2 -1)"1<w< 1,
then there exists a unique pair of real numbers sy, s1 such that

1— p-1
(w) <sp<w/D <5 <1
w(l+w)

and (1 + s;)971(1 - ws?_l) =w(l—s5) 1+ wsg_l) fori=0,1.
(i) If (V2 —1)>"1 <w < V2" — 1, then
1/q
q—1 1/q
J(d? (w,q)) = max M .2 <1>
1+ ws} l+w
and

1/q
2(1 q-1
9(d? (w, ) = min (W) (1wt
1

(i) If v2' =1 <w < 1, then

1
21+ o)1) !
1+ wsl™

J(dP(w,q)) = (

and )
1/q
2(1+s1)77!
1) (. q)) = (2T T
(0 w0) ( e
Proof. Let f be a real-valued function on [0, 1/2] given by
22t 1 w(l —2t)7 + 1\
ft) = -— g =
Vi q(t) 2 —2t (1 —1)7 + wte
for all ¢ € [0,1/2]. We also put

o5 (252

for all s € [0,1]. Then the derivative of g is
(14 5)7 + w(l — s)7)/971
(14 wsa)t/a+1
x {14 5)71 1 —ws?™) —w(l — )1 +wsi™H)).
We put a = ¢ — 1 and define a function g; from [0, 1] into R by
g1(s) = (1 +5)%(1 —ws®) —w(l — s)*(1 +ws®)

g'(s) =
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for swith0 <s<1. If (\/§ —1)>79 < w < 1, then w29 >~ /2 — 1. Thus we

have
1-wl/C9 1w

1+ w!/(2—a) ~ 1 +w
We consider a function h(s) = w!™PsP~! on [0, 1]. Since h is an increasing function

on [0,1],
1—w \P7! 1—w 1
% — i /@2=a)y — ,1/(2-q)
(w(1+w)> h<1+w><h(w ) =w '

1—w 7! 1
- /(2—q)
(w(l +w)> e

Now, since (p — 1)(¢ — 1) = 1, one has that

o ()"
p— q-1 —w p— q-1
-2 Gns) ) -G

> 0.

Wl/2=0) <

Thus we have

These observation and [8, Table 1] together show that there uniquely exists a pair
of real numbers sg, s1 such that

1-w \*!
<w> < 50 < w29 < s1 <1
w(l+w)
and ¢1(so) = g1(s1) = 0. For ¢ =0, 1, we have
1
54 2(1 + 5;)771 i
f ) =9(s) = | —— 1 -
14 s; 14+ ws’

)

() (7%7) =2

for any s € [0, 1]. Then, as was shown in [8], the function g(s) = f(s/(1+ s)) has a
maximal at sp and a minimal at s1, and so, the function f((1—s)/2) =2/f(s/(1+$))
has a minimal at sy and a maximal at s;.

‘We now remark that

S 0 S0 S1 1
f< : ) N
f<1‘5> NI N

This implies that f((1—s0)/2) = f(s1/(1+s1)) and f((1—s51)/2) = f(s0/(1+s0)).
Hence it must be s1/(1+ s1) = (1 — so)/2, which implies that

S0 S1
f<1+80>f<1+81> =2
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Thus we finally have this theorem by Proposition 3.1. This completes the proof. [J

4. JAMES CONSTANT OF d® (w, ¢)*

For i € W5 let [ - ||, be the dual of the norm || - ||,. Namely,

lally, = sup { (2, 1))+ v € Seae )

for any € R%. From [5] we have || - I, € AN> and the corresponding convex
function ¥* in Wy is
(1—5)(1—1t)+st

Y*(t) = sup
0 0<s<1 ¥(s)
for t with 0 <¢ <1.
To obtain the dual norm of || - [|, 4 we first determine the function 1 .

Theorem 4.1 ([6]). Let 0 <w < 1. If 1 < ¢ < oo, then

(1=t PP if 0 <t <w/(1+w),
Vo) =4 (L+w)/rt if w/(1+w) <t<1/(1+w),
(P + w1 —t)P)/P if 1/(14+w) <t <1,

where 1/p+1/q = 1.

Hence d (w,q)* is isometrically isomorphic to the space R? endowed with the
norm || - [|7, , defined by

(Jf? + W' PlyP)VPif Jy| < wlal,
Izl =9 @ +w)/P7 (2] +ly) if wla| < |y <w™al,
(WPl + [yP)P i o e < Jyl,

where 1/p+1/¢=1.

We now suppose that 1 < ¢ < 2 and (v/2—1)27% < w < 1. Since g, 4 18 symmetric
with respect to t = 1/2, we define a function f* from [0,1/2] into R by

2-2t 1 (A +s)P+wtr1 —s)P)l/”

As in the proof of [6, Theorem 13], we only calculate the maximum of f* on [(1 —
w)/2,w/(1 4+ w)] to calculate the maximum of f* on [0,1]. To do this, we define a
function g from [(1 — w)/(1 + w),w] into R by

[ (@)

. s _ ((1+s)p+w1*p(1 —s)p)l/p
9(s) =1 (1—1—8) (1 + wl-Psp)l/p

Since

ma {*() 1—w< < } ma; {f*(t) 1_w<t< d }
X< g (s): —— < s <w,p =max <t < —7,
w 1+w

it is enough to calculate the maximum of ¢* on [(1 —w)/(1 4+ w),w]. The derivative
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of g* is
(g")'(s)
(st - s
(1 +w17p5p)1/p+1
X {(1+ )P 11 — W PsPh) — WITP(1 — 5)PH(1 + Wl TPsPT]
We define

gi(s) = (14 s)P7H1 —w!™PsP7l) —w!™P(1 — )P 11 + w!™PsP7Y).
Since w > (v/2 — 1)279, it follows that
11—/ 1w
10/ 0 ~ Ttw

and so (1 —w)/(1 +w) < w/?=9 < w. As in the Table 3 of [6], there uniquely
exists a pair of real numbers s, s7 such that

IR

l-w * — *
m<30<w1/(2 )<t <w
and g7 (s5) = ¢7(s7) = 0. By Theorem 3.2, 59 and s; satisfy the equation
(1+8) 1 —ws! ™) =w(l —s) (1 +ws?™h) (i =0,1).
We put s, = wsgfl (¢ =10,1). Then we obtain
1—w

—E sy <w/CD <6 <.
1+w

Furthermore, we have for : =0, 1,
gi(s) = (L+wsf ™ (1= s) —w! 71— wsl (L s)
= {1 =) (14 ws! P —{o (1 +5) " (1 —wsl !
=0

q—1

since (p —1)(¢ — 1) = 1. By the uniqueness of {s{, s}, one has s} = s, = ws] ~ for

i =0,1. Since s = ws? ', we have
1
2(1+ s1)77 " fa 2(1+s7)P L\ 5
1+ ws‘f*l 1+ wl-psypl -
On the other hand, as in the proof of Theorem 3.2,
1 1
o1+ s0) ) T 201+ syt )
1+wsd™ 1+wsi™ '
Therefore, it follows that
1
2(1 4 so)r-1) 20+ st NP
1+ wsg_l 1+ wlfps{p_l '
By the argument in above and [6, Theorem 13], we have the following result on
the James and Schiffer constants of d® (w, ¢)*.
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Theorem 4.2. Let 1 < g<2and 1/p+1/q=1. If (v/2—-1)>"9 < w < 1, then
there exists a unique pair of real numbers sg, s1 such that

1-w !
<w> < 50 < W/ g <1
w(l+w)

and (1 + s;)971(1 — wsgfl) =w(l —s) Y1+ ws?il) fori=0,1.
(a) If (V2 —1)>1 <w < V2" — 1, then

1/q

g—1 1/q

J(d?(w,q)*) = max 2L+ s 80)_1 2 ( : >
1+ wst 1+w

and

1/q
2(1 a—1
9(d (w,0)") = min (W) ()i
1

(b) If V2" =1 < w < 1, then

1
21+ o)1) !
1+wsd™

J(dP(w,q)") = (

and

— 1/q
g(d(2)(w,q)*):<2(1+81)11> .

1+ ws!™
As an immediate consequence of Theorems 3.2 and 4.2, one has
J(d® (w,q)") = T(d®) (w, q))
and
9(d?(w,9)*) = g(d?(w, q))
forall 1 < ¢ < 2 and (v2 —1)277 < w < 1. Thus we finally have the following
result.

Theorem 4.3. Let 1 <g<2 and 0 <w < 1. Then
J([dP(w,q)*) = J(dP(w,q) and g(d?(w,q)*) = g(dP(w, q)).
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