ON THE JAMES CONSTANTS OF TWO-DIMENSIONAL LORENTZ SEQUENCE SPACES AND ITS DUAL

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND RYOTARO TANAKA

This paper is dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday.

Abstract

Let $J(X)$ denote the James constant of a Banach space X. Then, for a Banach space X and its dual X^{*}, it is known that $J(X) \neq J\left(X^{*}\right)$ in general. In this paper, we show that $J\left(d^{(2)}(\omega, q)\right)=J\left(d^{(2)}(\omega, q)^{*}\right)$ for all $1<q<\infty$ and $0<\omega<1$, where $d^{(2)}(\omega, q)$ is a two-dimensional Lorentz sequence space. We also give some remarks on the James constant of $J\left(d^{(2)}(\omega, q)\right)$.

1. Introduction and preliminaries

Let S_{X} be the unit sphere of a Banach space X. The James constant $J(X)$ of a Banach space X is defined by

$$
J(X)=\sup \left\{\min \{\|x+y\|,\|x-y\|\}: x, y \in S_{X}\right\}
$$

(Gao and Lau [2]). It is well-known that $\sqrt{2} \leq J(X) \leq 2$ for any Banach space X, and $J(X)<2$ if and only if X is uniformly non-square ($[2,4]$).
A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(z, w)\|=\|(|z|,|w|)\|$ for all $(z, w) \in$ \mathbb{R}^{2}, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. The ℓ_{p}-norms $\|\cdot\|_{p}$ are such examples;

$$
\|(z, w)\|_{p}= \begin{cases}\left(|z|^{p}+|w|^{p}\right)^{1 / p} & \text { if } 1 \leq p<\infty, \\ \max \{|z|,|w|\} & \text { if } p=\infty .\end{cases}
$$

Let $A N_{2}$ be the set of all absolute normalized norms on \mathbb{R}^{2}, and Ψ_{2} the set of all convex functions ψ on $[0,1]$ satisfying $\max \{1-t, t\} \leq \psi(t) \leq 1(0 \leq t \leq 1)$. As in Bonsall and Duncan [1] (cf. [10]), $A N_{2}$ and Ψ_{2} are in 1-1 correspondence under the equation

$$
\begin{equation*}
\psi(t)=\|(1-t, t)\|(0 \leq t \leq 1) . \tag{1.1}
\end{equation*}
$$

Indeed, for all $\psi \in \Psi_{2}$ let

$$
\|(z, w)\|_{\psi}= \begin{cases}(|z|+|w|) \psi\left(\frac{|w|}{|z|+|w|}\right) & \text { if }(z, w) \neq(0,0), \\ 0 & \text { if }(z, w)=(0,0) .\end{cases}
$$

Then $\|\cdot\|_{\psi} \in A N_{2}$, and $\|\cdot\|_{\psi}$ satisfies (1.1). From this result, we can consider many non ℓ_{p}-type norms easily. Now let $\psi_{p}(t)=\left\{(1-t)^{p}+t^{p}\right\}^{1 / p} \in \Psi_{2}$. As is easily seen, the ℓ_{p}-norm $\|\cdot\|_{p}$ is associated with ψ_{p}.

[^0]An important example of absolute normed spaces is the following 2-dimensional Lorentz sequence space $d^{(2)}(\omega, q)$. Let $0<\omega<1$ and $1 \leq q<\infty$. The space $d^{(2)}(\omega, q)$ is \mathbb{R}^{2} with the norm

$$
\|(x, y)\|_{\omega, q}=\left(x^{* q}+\omega y^{* q}\right)^{1 / q}
$$

where $\left(x^{*}, y^{*}\right)$ is the non-increasing rearrangement of $(|x|,|y|)$, that is, $x^{*} \geq y^{*}$ (cf. [3]).

In [3], Kato and Maligranda considered the James constant of $d^{(2)}(\omega, q)$ and calculated it in the case where $q \geq 2$. For $1 \leq q<2$ it was completely determined by Mitani, Saito and Suzuki [8]. Furthermore, we completely computed the James constant of the dual space $d^{(2)}(\omega, q)^{*}$ of $d^{(2)}(\omega, q)$ as in Mitani and Saito [6]; see also [11, 12].

As an important remark on James constants, it is known that $J(X) \neq J\left(X^{*}\right)$ in general (cf. [4]). However, the equality holds if $X=\ell_{p}$, that is, $J\left(\ell^{p}\right)=J\left(\ell^{q}\right)$ for each $1<p, q<\infty$ satisfying $1 / p+1 / q=1$. Motivated by these observation, we consider the following problem in this paper.
Problem. Does the equality $J\left(d^{(2)}(\omega, q)\right)=J\left(d^{(2)}(\omega, q)^{*}\right)$ hold for all $1<q<\infty$ and $0<\omega<1$?

In fact, this problem is partially solved by some results in $[3,7,8]$, that is, we have the following theorem.
Theorem 1.1. Let $1<q<\infty$. Then

$$
J\left(d^{(2)}(\omega, q)\right)=2\left(\frac{1}{1+\omega}\right)^{1 / q}=J\left(d^{(2)}(\omega, q)^{*}\right)
$$

if either $q \geq 2$ or $1<q<2$ and $0<\omega \leq(\sqrt{2}-1)^{2-q}$.
Thus, throughout this paper, we consider the case of $1<q<2$ and $(\sqrt{2}-1)^{2-q}<$ $\omega<1$ unless otherwise stated.

2. James constant of absolute norms on \mathbb{R}^{2}

Let X be a Banach space and $x, y \in X$. We say that x is isosceles orthogonal to y, denoted by $x \perp_{I} y$, if $\|x+y\|=\|x-y\|$. We define the function $\beta(x)$ on X by

$$
\beta(x)=\sup \left\{\min \{\|x+y\|,\|x-y\|\}: y \in S_{X}\right\} .
$$

To calculate the constant $J\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)\right.$), we need the following lemma given in Gao and Lau [2].
Lemma 2.1 ([2]). Let $\psi \in \Psi_{2}$ and $x \in S_{\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)}$. Then there exists a unique (up to the sign) vector $y_{0} \in S_{\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)}$ with $x \perp_{I} y_{0}$. Moreover, $\beta(x)=\left\|x+y_{0}\right\|_{\psi}$.
From Lemma 2.1 we can write

$$
J\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)\right)=\sup \left\{\|x+y\|_{\psi}: x, y \in S_{\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)} \text { with } x \perp_{I} y\right\} .
$$

We recall that an absolute normalized norm $\|\cdot\|$ on \mathbb{R}^{2} is symmetric in the sense that $\|(x, y)\|=\|(y, x)\|$ for all $(x, y) \in \mathbb{R}^{2}$ if and only if the corresponding function ψ is symmetric with respect to $t=1 / 2$, that is, $\psi(1-t)=\psi(t)$ for every $t \in[0,1]$.

Using Lemma 2.1 we gave the following formula for the case where ψ is symmetric with respect to $t=1 / 2$.

Theorem 2.2 ([6]). Let $\psi \in \Psi_{2}$. If ψ is symmetric with respect to $t=1 / 2$, then

$$
J\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)\right)=\max _{0 \leq t \leq 1 / 2} \frac{2-2 t}{\psi(t)} \psi\left(\frac{1}{2-2 t}\right) .
$$

We consider a function in the theorem above:

$$
f(t)=\frac{2-2 t}{\psi(t)} \psi\left(\frac{1}{2-2 t}\right) \text { for all } t \in[0,1 / 2] .
$$

Since $f(0)=2 \psi(1 / 2)$ and $f(1 / 2)=1 / \psi(1 / 2)$, we always have the inequality

$$
J\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)\right) \geq \max \{2 \psi(1 / 2), 1 / \psi(1 / 2)\}
$$

As a direct consequence of Theorem 2.2, we have
Proposition 2.3 ([6]). Let $\psi \in \Psi_{2}$. Assume that ψ is symmetric with respect to $t=1 / 2$.
(i) If $\psi \geq \psi_{2}$ and $M_{1}=\max _{0 \leq t \leq 1} \psi(t) / \psi_{2}(t)$ is taken at $t=1 / 2$, then

$$
J\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)\right)=2 \psi\left(\frac{1}{2}\right) .
$$

(ii) If $\psi \leq \psi_{2}$ and $M_{2}=\max _{0 \leq t \leq 1} \psi_{2}(t) / \psi(t)$ is taken at $t=1 / 2$, then

$$
J\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)\right)=\frac{1}{\psi(1 / 2)}
$$

Example 2.4. Let $1 \leq p \leq \infty$ and $1 / p+1 / p^{\prime}=1$.
(i) If $1 \leq p \leq 2$, then $J\left(\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)\right)=2 \psi_{p}(1 / 2)=2^{1 / p}$.
(ii) If $2 \leq p \leq \infty$, then $J\left(\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)\right)=1 / \psi_{p}(1 / 2)=2^{1 / p^{\prime}}$.

Example 2.5. Let $1 / 2 \leq \beta \leq 1$, and let $\psi_{\beta}(t)=\max \{1-t, t, \beta\}$. Then

$$
J\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)\right)= \begin{cases}1 / \beta=1 / \psi_{\beta}(1 / 2) & \text { if } 1 / 2 \leq \beta \leq 1 / \sqrt{2} \\ 2 \beta=2 \psi_{\beta}(1 / 2) & \text { if } 1 / \sqrt{2} \leq \beta \leq 1\end{cases}
$$

Here, we propose the following problem: Does there exist a function $\psi \in \Psi_{2}$ satisfying

$$
J\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)\right)>\max \{2 \psi(1 / 2), 1 / \psi(1 / 2)\} ?
$$

In Section 4, we discuss the case of two dimensional Lorentz sequence spaces.

3. James constant of $d^{(2)}(w, q)$

Let X be a normed space. As in [2], the Schäffer constant $g(X)$ of X is defined by

$$
g(X)=\inf \left\{\max \{\|x+y\|,\|x-y\|\}: x, y \in S_{X}\right\} .
$$

By [2, Theorem 2.5], we have
Proposition 3.1. Let X be a normed space. Then $1 \leq g(X) \leq \sqrt{2} \leq J(X) \leq 2$ and $g(X) J(X)=2$.

Note here that the norm $\|\cdot\|_{\omega, q}$ of $d^{(2)}(\omega, q)$ is a symmetric absolute normalized norm on \mathbb{R}^{2}, and the corresponding convex function is given by

$$
\psi_{\omega, q}(t)= \begin{cases}\left((1-t)^{q}+\omega t^{q}\right)^{1 / q} & \text { if } 0 \leq t \leq 1 / 2 \\ \left(t^{q}+\omega(1-t)^{q}\right)^{1 / q} & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

Theorem 3.2 ([8]). Let $1<q<2$ and $1 / p+1 / q=1$. If $(\sqrt{2}-1)^{2-q}<\omega<1$, then there exists a unique pair of real numbers s_{0}, s_{1} such that

$$
\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}<s_{0}<\omega^{1 /(2-q)}<s_{1}<1
$$

and $\left(1+s_{i}\right)^{q-1}\left(1-\omega s_{i}^{q-1}\right)=\omega\left(1-s_{i}\right)^{q-1}\left(1+\omega s_{i}^{q-1}\right)$ for $i=0,1$.
(i) If $(\sqrt{2}-1)^{2-q}<\omega \leq \sqrt{2}^{q}-1$, then

$$
J\left(d^{(2)}(\omega, q)\right)=\max \left\{\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}, 2\left(\frac{1}{1+\omega}\right)^{1 / q}\right\}
$$

and

$$
g\left(d^{(2)}(\omega, q)\right)=\min \left\{\left(\frac{2\left(1+s_{1}\right)^{q-1}}{1+\omega s_{1}^{q-1}}\right)^{1 / q},(1+\omega)^{1 / q}\right\}
$$

(ii) If $\sqrt{2}^{q}-1<\omega<1$, then

$$
J\left(d^{(2)}(\omega, q)\right)=\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}
$$

and

$$
g\left(d^{(2)}(\omega, q)\right)=\left(\frac{2\left(1+s_{1}\right)^{q-1}}{1+\omega s_{1}^{q-1}}\right)^{1 / q}
$$

Proof. Let f be a real-valued function on $[0,1 / 2]$ given by

$$
f(t)=\frac{2-2 t}{\psi_{\omega, q}(t)} \psi_{\omega, q}\left(\frac{1}{2-2 t}\right)=\left(\frac{\omega(1-2 t)^{q}+1}{(1-t)^{q}+\omega t^{q}}\right)^{1 / q}
$$

for all $t \in[0,1 / 2]$. We also put

$$
g(s)=f\left(\frac{s}{1+s}\right)=\left(\frac{(1+s)^{q}+\omega(1-s)^{q}}{1+\omega s^{q}}\right)^{1 / q}
$$

for all $s \in[0,1]$. Then the derivative of g is

$$
\begin{aligned}
g^{\prime}(s)= & \frac{\left((1+s)^{q}+\omega(1-s)^{q}\right)^{1 / q-1}}{\left(1+\omega s^{q}\right)^{1 / q+1}} \\
& \quad \times\left\{(1+s)^{q-1}\left(1-\omega s^{q-1}\right)-\omega(1-s)^{q-1}\left(1+\omega s^{q-1}\right)\right\}
\end{aligned}
$$

We put $\alpha=q-1$ and define a function g_{1} from $[0,1]$ into \mathbb{R} by

$$
g_{1}(s)=(1+s)^{\alpha}\left(1-\omega s^{\alpha}\right)-\omega(1-s)^{\alpha}\left(1+\omega s^{\alpha}\right)
$$

for s with $0 \leq s \leq 1$. If $(\sqrt{2}-1)^{2-q}<\omega<1$, then $\omega^{1 /(2-q)}>\sqrt{2}-1$. Thus we have

$$
\omega^{1 /(2-q)}>\frac{1-\omega^{1 /(2-q)}}{1+\omega^{1 /(2-q)}}>\frac{1-\omega}{1+\omega} .
$$

We consider a function $h(s)=\omega^{1-p} s^{p-1}$ on $[0,1]$. Since h is an increasing function on $[0,1]$,

$$
\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}=h\left(\frac{1-\omega}{1+\omega}\right)<h\left(\omega^{1 /(2-q)}\right)=\omega^{1 /(2-q)} .
$$

Thus we have

$$
\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}<\omega^{1 /(2-q)}
$$

Now, since $(p-1)(q-1)=1$, one has that

$$
\begin{aligned}
& g_{1}\left(\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}\right) \\
& =\frac{2 \omega}{1+\omega}\left[\left\{1+\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}\right\}^{q-1}-\left\{1-\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}\right\}^{q-1}\right] \\
& >0
\end{aligned}
$$

These observation and [8, Table 1] together show that there uniquely exists a pair of real numbers s_{0}, s_{1} such that

$$
\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}<s_{0}<\omega^{1 /(2-q)}<s_{1}<1
$$

and $g_{1}\left(s_{0}\right)=g_{1}\left(s_{1}\right)=0$. For $i=0,1$, we have

$$
f\left(\frac{s_{i}}{1+s_{i}}\right)=g\left(s_{i}\right)=\left(\frac{2\left(1+s_{i}\right)^{q-1}}{1+\omega s_{i}^{q-1}}\right)^{1 / q}
$$

We now remark that

$$
f\left(\frac{s}{1+s}\right) f\left(\frac{1-s}{2}\right)=2
$$

for any $s \in[0,1]$. Then, as was shown in $[8]$, the function $g(s)=f(s /(1+s))$ has a maximal at s_{0} and a minimal at s_{1}, and so, the function $f((1-s) / 2)=2 / f(s /(1+s))$ has a minimal at s_{0} and a maximal at s_{1}.

s	0		s_{0}		s_{1}		1
$f\left(\frac{s}{1+s}\right)$		\nearrow		\searrow		\nearrow	
$f\left(\frac{1-s}{2}\right)$		\searrow		\nearrow		\searrow	

This implies that $f\left(\left(1-s_{0}\right) / 2\right)=f\left(s_{1} /\left(1+s_{1}\right)\right)$ and $f\left(\left(1-s_{1}\right) / 2\right)=f\left(s_{0} /\left(1+s_{0}\right)\right)$. Hence it must be $s_{1} /\left(1+s_{1}\right)=\left(1-s_{0}\right) / 2$, which implies that

$$
f\left(\frac{s_{0}}{1+s_{0}}\right) f\left(\frac{s_{1}}{1+s_{1}}\right)=2
$$

Thus we finally have this theorem by Proposition 3.1. This completes the proof.

4. James constant of $d^{(2)}(w, q)^{*}$

For $\psi \in \Psi_{2}$ let $\|\cdot\|_{\psi}^{*}$ be the dual of the norm $\|\cdot\|_{\psi}$. Namely,

$$
\|x\|_{\psi}^{*}=\sup \left\{|\langle x, y\rangle|: y \in S_{\left(\mathbb{R}^{2},\|\cdot\| \psi\right)}\right\}
$$

for any $x \in \mathbb{R}^{2}$. From [5] we have $\|\cdot\|_{\psi}^{*} \in A N_{2}$ and the corresponding convex function ψ^{*} in Ψ_{2} is

$$
\psi^{*}(t)=\sup _{0 \leq s \leq 1} \frac{(1-s)(1-t)+s t}{\psi(s)}
$$

for t with $0 \leq t \leq 1$.
To obtain the dual norm of $\|\cdot\|_{\omega, q}$ we first determine the function $\psi_{\omega, q}^{*}$.
Theorem 4.1 ([6]). Let $0<\omega<1$. If $1<q<\infty$, then

$$
\psi_{\omega, q}^{*}(t)= \begin{cases}\left((1-t)^{p}+\omega^{1-p} t^{p}\right)^{1 / p} & \text { if } 0 \leq t<\omega /(1+\omega) \\ (1+\omega)^{1 / p-1} & \text { if } \omega /(1+\omega) \leq t<1 /(1+\omega) \\ \left(t^{p}+\omega^{1-p}(1-t)^{p}\right)^{1 / p} & \text { if } 1 /(1+\omega) \leq t \leq 1,\end{cases}
$$

where $1 / p+1 / q=1$.
Hence $d^{(2)}(\omega, q)^{*}$ is isometrically isomorphic to the space \mathbb{R}^{2} endowed with the norm $\|\cdot\|_{\omega, q}^{*}$ defined by

$$
\|(x, y)\|_{\omega, q}^{*}= \begin{cases}\left(|x|^{p}+\omega^{1-p}|y|^{p}\right)^{1 / p} & \text { if }|y| \leq \omega|x|, \\ (1+\omega)^{1 / p-1}(|x|+|y|) & \text { if } \omega|x| \leq|y| \leq \omega^{-1}|x|, \\ \left(\omega^{1-p}|x|^{p}+|y|^{p}\right)^{1 / p} & \text { if } \omega^{-1}|x| \leq|y|,\end{cases}
$$

where $1 / p+1 / q=1$.
We now suppose that $1<q<2$ and $(\sqrt{2}-1)^{2-q}<\omega<1$. Since $\psi_{\omega, q}^{*}$ is symmetric with respect to $t=1 / 2$, we define a function f^{*} from $[0,1 / 2]$ into \mathbb{R} by

$$
f^{*}(t)=\frac{2-2 t}{\psi_{\omega, q}^{*}(t)} \psi_{\omega, q}^{*}\left(\frac{1}{2-2 t}\right)=\frac{\left((1+s)^{p}+w^{1-p}(1-s)^{p}\right)^{1 / p}}{\left(1+w^{1-p} s^{p}\right)^{1 / p}} .
$$

As in the proof of [6, Theorem 13], we only calculate the maximum of f^{*} on [($1-$ $\omega) / 2, \omega /(1+\omega)]$ to calculate the maximum of f^{*} on $[0,1]$. To do this, we define a function g from $[(1-\omega) /(1+\omega), \omega]$ into \mathbb{R} by

$$
g^{*}(s)=f^{*}\left(\frac{s}{1+s}\right)=\frac{\left((1+s)^{p}+w^{1-p}(1-s)^{p}\right)^{1 / p}}{\left(1+w^{1-p} s^{p}\right)^{1 / p}}
$$

Since

$$
\max \left\{g^{*}(s): \frac{1-\omega}{1+\omega} \leq s \leq \omega\right\}=\max \left\{f^{*}(t): \frac{1-\omega}{2} \leq t \leq \frac{\omega}{1+\omega}\right\}
$$

it is enough to calculate the maximum of g^{*} on $[(1-\omega) /(1+\omega), \omega]$. The derivative
of g^{*} is

$$
\begin{aligned}
& \left(g^{*}\right)^{\prime}(s) \\
& =\frac{\left((1+s)^{p}+\omega^{1-p}(1-s)^{p}\right)^{1 / p-1}}{\left(1+\omega^{1-p} s^{p}\right)^{1 / p+1}} \\
& \quad \times\left\{(1+s)^{p-1}\left(1-\omega^{1-p} s^{p-1}\right)-\omega^{1-p}(1-s)^{p-1}\left(1+\omega^{1-p} s^{p-1}\right)\right\}
\end{aligned}
$$

We define

$$
g_{1}^{*}(s)=(1+s)^{p-1}\left(1-\omega^{1-p} s^{p-1}\right)-\omega^{1-p}(1-s)^{p-1}\left(1+\omega^{1-p} s^{p-1}\right)
$$

Since $\omega>(\sqrt{2}-1)^{2-q}$, it follows that

$$
\omega^{1 /(2-q)}>\frac{1-\omega^{1 /(2-q)}}{1+\omega^{1 /(2-q)}}>\frac{1-\omega}{1+\omega}
$$

and so $(1-\omega) /(1+\omega)<\omega^{1 /(2-q)}<\omega$. As in the Table 3 of [6], there uniquely exists a pair of real numbers s_{0}^{*}, s_{1}^{*} such that

$$
\frac{1-\omega}{1+\omega}<s_{0}^{*}<\omega^{1 /(2-q)}<s_{1}^{*}<\omega
$$

and $g_{1}^{*}\left(s_{0}^{*}\right)=g_{1}^{*}\left(s_{1}^{*}\right)=0$. By Theorem 3.2, s_{0} and s_{1} satisfy the equation

$$
\left(1+s_{i}\right)^{q-1}\left(1-\omega s_{i}^{q-1}\right)=\omega\left(1-s_{i}\right)^{q-1}\left(1+\omega s_{i}^{q-1}\right)(i=0,1)
$$

We put $s_{i}^{\prime}=\omega s_{i}^{q-1}(i=0,1)$. Then we obtain

$$
\frac{1-\omega}{1+\omega}<s_{0}^{\prime}<\omega^{1 /(2-q)}<s_{1}^{\prime}<\omega
$$

Furthermore, we have for $i=0,1$,

$$
\begin{aligned}
g_{1}^{*}\left(s_{i}^{\prime}\right) & =\left(1+\omega s_{i}^{q-1}\right)^{p-1}\left(1-s_{i}\right)-\omega^{1-p}\left(1-\omega s_{i}^{q-1}\right)^{p-1}\left(1+s_{i}\right) \\
& =\left\{\left(1-s_{i}\right)^{q-1}\left(1+\omega s_{i}^{q-1}\right)\right\}^{p-1}-\left\{\omega^{-1}\left(1+s_{i}\right)^{q-1}\left(1-\omega s_{i}^{q-1}\right)\right\}^{p-1} \\
& =0
\end{aligned}
$$

since $(p-1)(q-1)=1$. By the uniqueness of $\left\{s_{0}^{*}, s_{1}^{*}\right\}$, one has $s_{i}^{*}=s_{i}^{\prime}=w s_{i}^{q-1}$ for $i=0,1$. Since $s_{2}^{*}=\omega s_{2}^{q-1}$, we have

$$
\left(\frac{2\left(1+s_{1}\right)^{q-1}}{1+\omega s_{1}^{q-1}}\right)^{1 / q}\left(\frac{2\left(1+s_{1}^{*}\right)^{p-1}}{1+\omega^{1-p} s_{1}^{* p-1}}\right)^{1 / p}=2
$$

On the other hand, as in the proof of Theorem 3.2,

$$
\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}\left(\frac{2\left(1+s_{1}\right)^{q-1}}{1+\omega s_{1}^{q-1}}\right)^{1 / q}=2
$$

Therefore, it follows that

$$
\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}=\left(\frac{2\left(1+s_{1}^{*}\right)^{p-1}}{1+\omega^{1-p} s_{1}^{* p-1}}\right)^{1 / p}
$$

By the argument in above and [6, Theorem 13], we have the following result on the James and Schäffer constants of $d^{(2)}(\omega, q)^{*}$.

Theorem 4.2. Let $1<q<2$ and $1 / p+1 / q=1$. If $(\sqrt{2}-1)^{2-q}<\omega<1$, then there exists a unique pair of real numbers s_{0}, s_{1} such that

$$
\left(\frac{1-\omega}{\omega(1+\omega)}\right)^{p-1}<s_{0}<\omega^{1 /(2-q)}<s_{1}<1
$$

and $\left(1+s_{i}\right)^{q-1}\left(1-\omega s_{i}^{q-1}\right)=\omega\left(1-s_{i}\right)^{q-1}\left(1+\omega s_{i}^{q-1}\right)$ for $i=0,1$.
(a) If $(\sqrt{2}-1)^{2-q}<\omega \leq \sqrt{2}^{q}-1$, then

$$
J\left(d^{(2)}(\omega, q)^{*}\right)=\max \left\{\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}, 2\left(\frac{1}{1+\omega}\right)^{1 / q}\right\}
$$

and

$$
g\left(d^{(2)}(\omega, q)^{*}\right)=\min \left\{\left(\frac{2\left(1+s_{1}\right)^{q-1}}{1+\omega s_{1}^{q-1}}\right)^{1 / q},(1+\omega)^{1 / q}\right\}
$$

(b) If $\sqrt{2}^{q}-1<\omega<1$, then

$$
J\left(d^{(2)}(\omega, q)^{*}\right)=\left(\frac{2\left(1+s_{0}\right)^{q-1}}{1+\omega s_{0}^{q-1}}\right)^{1 / q}
$$

and

$$
g\left(d^{(2)}(\omega, q)^{*}\right)=\left(\frac{2\left(1+s_{1}\right)^{q-1}}{1+\omega s_{1}^{q-1}}\right)^{1 / q}
$$

As an immediate consequence of Theorems 3.2 and 4.2 , one has

$$
J\left(d^{(2)}(\omega, q)^{*}\right)=J\left(d^{(2)}(\omega, q)\right)
$$

and

$$
g\left(d^{(2)}(\omega, q)^{*}\right)=g\left(d^{(2)}(\omega, q)\right)
$$

for all $1<q<2$ and $(\sqrt{2}-1)^{2-q}<\omega<1$. Thus we finally have the following result.

Theorem 4.3. Let $1<q<2$ and $0<\omega<1$. Then

$$
J\left(d^{(2)}(\omega, q)^{*}\right)=J\left(d^{(2)}(\omega, q)\right) \quad \text { and } \quad g\left(d^{(2)}(\omega, q)^{*}\right)=g\left(d^{(2)}(\omega, q)\right)
$$

References

[1] F. F. Bonsall and J. Duncan, Numerical ranges II, Cambridge University Press, Cambridge, 1973.
[2] J. Gao and K. S. Lau, On the geometry of spheres in normed linear spaces, J. Aust. Math. Soc. A 48 (1990), 101-112.
[3] M. Kato and L. Maligranda, On James and Jordan-von Neumann constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258 (2001), 457-465.
[4] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275-295.
[5] K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ-direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147-157.
[6] K.-I. Mitani and K.-S. Saito, The James constant of absolute norms on \mathbb{R}^{2}, J. Nonlinear Convex Anal. 4 (2003), 399-410.
[7] K.-I. Mitani and K.-S. Saito, Dual of two dimensional Lorentz sequence spaces, Nonlinear Anal., 71 (2009), 5238-5247.
[8] K.-I. Mitani, K.-S. Saito and T. Suzuki, On the calculation of the James constant of Lorentz sequence spaces, J. Math. Anal. Appl. 343 (2008), 310-314.
[9] S. Saejung, On James and von Neumann-Jordan constants and sufficient conditions for the fixed point property, J. Math. Anal. Appl. 323 (2006), 1018-1024.
[10] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000), 515-532.
[11] K.-S. Saito, N. Komuro and K.-I. Mitani, How to calculate James constants of Banach spaces, in: Proceedings of the Fourth International Symposium on Banach and Function Spaces 2012, Yokohama Publishers, Yokohama, 2014, pp. 211-224.
[12] T. Suzuki, A. Yamano and M. Kato, The James constant of 2-dimensional Lorentz sequence spaces, Bull. Kyushu Inst. Technol. Pure Appl. Math. 53 (2006), 15-24.

Manuscript received January 20, 2014
revised November 21, 2015

K.-I. Mitani

Department of Systems Engineering, Okayama Prefectural University, Soja, 719-1197, Japan E-mail address: mitani@cse.oka-pu.ac.jp
K.-S. Saito

Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan E-mail address: saito@math.sc.niigata-u.ac.jp

R. TAnaka

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail address: ryotarotanaka@m.sc.niigata-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 46B20, 46B25.
 Key words and phrases. James constant, Lorentz sequence space, absolute normalized norm.
 The second was supported in part by Grants-in-Aid for Scientific Research (No. 15K04920), Japan Society for the Promotion of Science.

