ON THE UNIFORM NON- ℓ_{1}^{n}-NESS AND NEW CLASSES OF CONVEX FUNCTIONS

MIKIO KATO AND TAKAYUKI TAMURA
Dedicated to Professor Wataru Takahashi on the ocasion of his 70th birthday

Abstract

Let X_{1}, \ldots, X_{N} be uniformly non-square Banach spaces. We shall characterize the uniform non- ℓ_{1}^{n}-ness of the ψ-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ with a strictly monotone norm by means of the convex function ψ, which extends some recent results on the uniform non-squareness. In the course of doing this we shall introduce subclasses $\Psi_{N}^{(1, n)}$ of the class $\Psi_{N}^{(1)}$ of convex functions which yields partiall ℓ_{1}-norms; this enables us to have precise observations on the structure of the class of $\Psi_{N}^{(1)}$. Our results hold true for A-direct sums, more general direct sums with the norm induced from an arbitrary norm on \mathbb{R}^{N}, a fortiori, for the Z-direct sums. As a corollary the uniform non- ℓ_{1}^{n}-ness will be characterized for \mathbb{C}^{N}, as well.

1. Introduction

Recently the uniform non-squareness and non- ℓ_{1}^{n}-ness have been discussed for direct sums of Banach spaces ($[3-7,9,11-13,15,16]$, etc.) in connection with the fixed point property for nonexpansive mappings, super-reflexivity, and various estimates of geometric constants, etc. Our concern in this paper is originated from the following result ([9]): A ψ-direct sum $X \oplus_{\psi} Y$ is uniformly non-square if and only if X and Y are uniformly non-square and the convex function ψ is neither ψ_{1} nor ψ_{∞}, where ψ_{1} and ψ_{∞} are the corresponding convex functions to the ℓ_{1} - and ℓ_{∞}-norms on \mathbb{C}^{2}, respectively.

In the same paper [9] it was asked to extend this result to the finitely many Banach spaces case. Dowling-Saejung [7] presented a partial answer in terms of properties T_{1}^{N} and T_{∞}^{N} under the condition that the ψ-norm $\|\cdot\|_{\psi}$ is strictly monotone. In the recent paper [5] of Dompongsa, Kato and Tamura an equivalent result was presented by means of a class of convex functions $\Psi_{N}^{(1)}$ which yield ℓ_{1}-like norms: Let X_{1}, \ldots, X_{N} be uniformly non-square Banach spaces and $\|\cdot\|_{\psi}$ is strictly monotone. Then, the ψ-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non-square if and only if $\psi \notin \Psi_{N}^{(1)}$.

In this paper we shall extend this result to characterize the uniform non- ℓ_{1}^{n}-ness of the ψ-direct sum of uniformly non-square Banach spaces X_{1}, \ldots, X_{N} by means of the convex function ψ (Section 4, Theorem 4.8). In the course of doing this we

[^0]shall introduce and investigate subclasses $\Psi_{N}^{(1, n)}$ of the class $\Psi_{N}^{(1)}$, which enables us to make precise observations on the structure of the class $\Psi_{N}^{(1)}$ (Section 3). In particular a norm on \mathbb{C}^{N} which is uniformly non- ℓ_{1}^{n+1} but not uniformly non- ℓ_{1}^{n} will be easily constructed (Section 4, Example 4.10). As a corollary the uniform non- ℓ_{1}^{n}-ness of \mathbb{C}^{N} will be characterized (Corollary 4.9).

Finally, in Section 5 we shall observe that some of our main results hold true for more general A-direct sums, those with the norm induced from an arbitrary norm on $\mathbb{R}^{N}([5])$, a fortiori, for the Z-direct sums.

2. Preliminaries

A norm $\|\cdot\|$ on \mathbb{C}^{N} is called absolute if $\left\|\left(z_{1}, \ldots, z_{N}\right)\right\|=\left\|\left(\left|z_{1}\right|, \ldots,\left|z_{N}\right|\right)\right\|$ for all $\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N}$, and normalized if $\|(1,0, \ldots, 0)\|=\cdots=\|(0, \ldots, 0,1)\|=1$. The collection of all absolute normalized norms on \mathbb{C}^{N} is denoted by $A N_{N}$. A norm $\|\cdot\|$ on \mathbb{C}^{N} is called monotone provided that

$$
\begin{equation*}
\left\|\left(z_{1}, \ldots, z_{N}\right)\right\| \leq\left\|\left(w_{1}, \ldots, w_{N}\right)\right\| \text { if }\left|z_{j}\right| \leq\left|w_{j}\right|(1 \leq j \leq N) \tag{2.1}
\end{equation*}
$$

and is called strictly monotone if it is monotone and the inequality (2.1) is strict if $\left|z_{j}\right|<\left|w_{j}\right|$ for some j. The following fact is known.

Proposition $2.1([1])$. A norm $\|\cdot\|$ on \mathbb{C}^{N} is absolute if and only if it is monotone.
For strict monotonicity we have the following.
Proposition $2.2([14])$. Let $\|\cdot\|$ be an absolute norm on \mathbb{C}^{N}. Let $\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N}$ and let $0<\left|z_{j}\right|<\left|w_{j}\right|$ with $w_{j} \in \mathbb{C}$ for some $1 \leq j \leq N$. Then the following are equivalent.
(i) $\|(z_{1}, \ldots, \underbrace{j}_{z_{j}}, \ldots, z_{N})\|<\left\|\left(z_{1}, \ldots,{\stackrel{\smile}{w_{j}}}_{j}^{j} \ldots, z_{N}\right)\right\|$
(ii) $\|(z_{1}, \ldots, \underbrace{j}_{0}, \ldots, z_{N})\|<\left\|\left(z_{1}, \ldots, \stackrel{j}{w}_{j}^{j}, \ldots, z_{N}\right)\right\|$.

For every absolute normalized norm on \mathbb{C}^{N} there corresponds a unique convex function ψ on the standard N-simplex $\Delta_{N} \subset \mathbb{R}^{N-1}$ and vice versa ([17]; cf. [2] for the case $N=2$): Let $\|\cdot\| \in A N_{N}$ and let

$$
\begin{equation*}
\psi(s)=\left\|\left(1-\sum_{i=1}^{N-1} s_{i}, s_{1}, \ldots, s_{N-1}\right)\right\| \text { for } s=\left(s_{1}, \ldots, s_{N-1}\right) \in \Delta_{N} \tag{2.2}
\end{equation*}
$$

where

$$
\Delta_{N}=\left\{s=\left(s_{1}, \ldots, s_{N-1}\right) \in \mathbb{R}^{N-1}: \sum_{i=1}^{N-1} s_{i} \leq 1, s_{i} \geq 0\right\}
$$

Then, ψ is convex (continuous) on the convex set Δ_{N} and satisfies the following.

$$
\begin{aligned}
& \left(A_{0}\right) \psi(0, \ldots, 0)=\psi(1,0, \ldots, 0)=\cdots=\psi(0, \ldots, 0,1)=1 \\
& \left(A_{1}\right) \psi\left(s_{1}, \ldots, s_{N-1}\right) \geq\left(\sum_{i=1}^{N-1} s_{i}\right) \psi\left(\frac{s_{1}}{\sum_{i=1}^{N-1} s_{i}}, \ldots, \frac{s_{N-1}}{\sum_{i=1}^{N-1} s_{i}}\right) \text { if } 0<\sum_{i=1}^{N-1} s_{i} \leq 1
\end{aligned}
$$

$$
\begin{aligned}
\left(A_{2}\right) & \psi\left(s_{1}, \ldots, s_{N-1}\right) \geq\left(1-s_{1}\right) \psi\left(0, \frac{s_{2}}{1-s_{1}}, \ldots, \frac{s_{N-1}}{1-s_{1}}\right) \quad \text { if } 0 \leq s_{1}<1 \\
& \ldots \ldots \ldots \\
\left(A_{N}\right) & \psi\left(s_{1}, \ldots, s_{N-1}\right) \geq\left(1-s_{N-1}\right) \psi\left(\frac{s_{1}}{1-s_{N-1}}, \ldots, \frac{s_{N-2}}{1-s_{N-1}}, 0\right)
\end{aligned}
$$

$$
\text { if } 0 \leq s_{N-1}<1
$$

The converse holds true: Denote by Ψ_{N} the class of all convex functions ψ on Δ_{N} satisfying $\left(A_{0}\right)-\left(A_{N}\right)$. For any $\psi \in \Psi_{N}$ define

Then $\|\cdot\|_{\psi} \in A N_{N}$ and $\|\cdot\|_{\psi}$ satisfies (2.2).
For the ℓ_{p}-norm $\|\cdot\|_{p} \in A N_{N}$:

$$
\left\|\left(z_{1}, \ldots, z_{N}\right)\right\|_{p}= \begin{cases}\left\{\left|z_{1}\right|^{p}+\cdots+\left|z_{N}\right|^{p}\right\}^{1 / p} & \text { if } 1 \leq p<\infty \\ \max \left\{\left|z_{1}\right|, \ldots,\left|z_{N}\right|\right\} & \text { if } p=\infty\end{cases}
$$

the corresponding convex function ψ_{p} is given by

$$
\psi_{p}(s)= \begin{cases}\left\{\left(1-\sum_{i=1}^{N-1} s_{i}\right)^{p}+s_{1}^{p}+\cdots+s_{N-1}^{p}\right\}^{1 / p} & \text { if } 1 \leq p<\infty, \\ \max \left\{1-\sum_{i=1}^{N-1} s_{i}, s_{1}, \ldots, s_{N-1}\right\} & \text { if } p=\infty\end{cases}
$$

for $s=\left(s_{1}, \ldots, s_{N-1}\right) \in \Delta_{N}$. In particular, the convex function corresponding to the ℓ_{1}-norm is $\psi_{1}(s)=1$. For any $\psi \in \Psi_{N}$ we have $\|\cdot\|_{\infty} \leq\|\cdot\|_{\psi} \leq\|\cdot\|_{1}([17])$.

Let X_{1}, \ldots, X_{N} be Banach spaces and let $\psi \in \Psi_{N}$. The ψ-direct sum $\left(X_{1} \oplus \cdots \oplus\right.$ $\left.X_{N}\right)_{\psi}$ is their direct sum equipped with the norm

$$
\begin{equation*}
\left\|\left(x_{1}, \ldots, x_{N}\right)\right\|_{\psi}:=\left\|\left(\left\|x_{1}\right\|, \ldots,\left\|x_{N}\right\|\right)\right\|_{\psi} \text { for }\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \oplus \cdots \oplus X_{N} \tag{8,18}
\end{equation*}
$$

3. $\operatorname{Subclasses} \Psi_{N}^{(1, n)}$ of $\Psi_{N}^{(1)}$

Recently, the present authors [14] (cf. [15]) introduced a subclass $\Psi_{N}^{(1)}$ of Ψ_{N} consisting of those functions which yield ℓ_{1}-like norms (or "partial ℓ_{1}-norms") as follows:
Definition 3.1 (cf. [14-16]). Let $\psi \in \Psi_{N}$. We say $\psi \in \Psi_{N}^{(1)}$ if there exists $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ (with non-negative entries) and some nonempty proper subset T of $\{1, \ldots, N\}$

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\left\|\left(\chi_{T}(1) a_{1}, \ldots, \chi_{T}(N) a_{N}\right)\right\|_{\psi}+\left\|\left(\chi_{T^{c}}(1) a_{1}, \ldots, \chi_{T^{c}}(N) a_{N}\right)\right\|_{\psi},
$$

where $\left(\chi_{T}(1) a_{1}, \ldots, \chi_{T}(N) a_{N}\right)$ and $\left(\chi_{T^{c}}(1) a_{1}, \ldots, \chi_{T^{c}}(N) a_{N}\right)$ are nonzero.

It is obvious that the ℓ_{1}-norm satisfies this property, and in the case $N=2$, $\Psi_{2}^{(1)}=\left\{\psi_{1}\right\}$. We refer the reader to $[14,16]$ for several examples. The functions ψ in $\Psi_{N}^{(1)}$ are characterized as follows:
Theorem 3.2 ([14]). Let $\psi \in \Psi_{N}$. Then the following are equivalent.
(i) $\psi \in \Psi_{N}^{(1)}$.
(ii) There exists an element $\left(s_{1}, \ldots, s_{N-1}\right) \in \Delta_{N}$ and some nonempty subset S of $\{1, \ldots, N-1\}$ with $0<M:=\sum_{i=1}^{N-1} \chi_{S}(i) s_{i}<1$,

$$
\begin{aligned}
\psi\left(s_{1}, \ldots, s_{N-1}\right)= & M \psi\left(\frac{\chi_{S}(1) s_{1}}{M}, \ldots, \frac{\chi_{S}(N-1) s_{N-1}}{M}\right) \\
& +(1-M) \psi\left(\frac{\chi_{S^{c}}(1) s_{1}}{1-M}, \ldots, \frac{\chi_{S^{c}}(N-1) s_{N-1}}{1-M}\right)
\end{aligned}
$$

Now, we shall introduce subclasses $\Psi_{N}^{(1, n)}$ of $\Psi_{N}^{(1)}$, which will enable us to make more precise investigation on $\Psi_{N}^{(1)}$.
Definition 3.3. Let $\psi \in \Psi_{N}$ and let $2 \leq n \leq N$. We say $\psi \in \Psi_{N}^{(1, n)}$ if there exist $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ and mutually disjoint nonempty proper subsets T_{1}, \ldots, T_{n} of $\{1, \ldots, N\}$ with $\cup_{k=1}^{n} T_{k}=\{1, \ldots, N\}$ such that

$$
\begin{equation*}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\sum_{k=1}^{n}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \tag{3.1}
\end{equation*}
$$

where $\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)$ are nonzero.
The next inequalities are useful.
Lemma 3.4 (Sharp triangle inequality: [10]). Let X be a Banach space. Then, for nonzero $x_{1}, \ldots, x_{N} \in X$

$$
\begin{aligned}
&\left\|\sum_{j=1}^{N} x_{j}\right\|+\left(N-\left\|\sum_{j=1}^{N} \frac{x_{j}}{\left\|x_{j}\right\|}\right\|\right) \min _{1 \leq j \leq N}\left\|x_{j}\right\| \\
& \leq \sum_{j=1}^{N}\left\|x_{j}\right\| \leq\left\|\sum_{j=1}^{N} x_{j}\right\|+\left(N-\left\|\sum_{j=1}^{N} \frac{x_{j}}{\left\|x_{j}\right\|}\right\|\right) \max _{1 \leq j \leq N}\left\|x_{j}\right\| .
\end{aligned}
$$

Theorem 3.5 (cf. [16, Theorem 7]). Let $\psi \in \Psi_{N}$ and let $2 \leq n \leq N$. Then, the following are equivalent.
(i) $\psi \in \Psi_{N}^{(1, n)}$.
(ii) There exist $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ and mutually disjoint nonempty proper subsets T_{1}, \ldots, T_{n} of $\{1, \ldots, N\}$ with $\cup_{k=1}^{n} T_{k}=\{1, \ldots, N\}$ such that

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\sum_{k=1}^{n}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi}
$$

where $\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|=1$ for $1 \leq k \leq n$.
(iii) There exist $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ and mutually disjoint nonempty proper subsets T_{1}, \ldots, T_{n} of $\{1, \ldots, N\}$ with $\cup_{k=1}^{n} T_{k}=\{1, \ldots, N\}$ such that for every $1 \leq k \leq n$

$$
\begin{aligned}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}= & \left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& +\left\|\left(\chi_{T_{k}^{c}}(1) a_{1}, \ldots, \chi_{T_{k}^{c}}(N) a_{N}\right)\right\|_{\psi},
\end{aligned}
$$

where $\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)$ are nonzero.
(iv) There exist $\left(s_{1}, \ldots, s_{N-1}\right) \in \Delta_{N}$ and nonempty subsets S_{1}, \ldots, S_{n} of $\{1, \ldots, N-1\}$ with $0<M_{k}:=\sum_{i=1}^{N-1} \chi_{S_{k}}(i) s_{i}<1$ such that

$$
\begin{align*}
\psi\left(s_{1}, \ldots, s_{N-1}\right)= & M_{k} \psi\left(\frac{\chi_{S_{k}}(1) s_{1}}{M_{k}}, \ldots, \frac{\chi_{S_{k}}(N-1) s_{N-1}}{M_{k}}\right) \tag{3.2}\\
& +\left(1-M_{k}\right) \psi\left(\frac{\chi_{S_{k}^{c}}(1) s_{1}}{1-M_{k}}, \ldots, \frac{\chi_{S_{k}^{c}}(N-1) s_{N-1}}{1-M_{k}}\right)
\end{align*}
$$

for every $1 \leq k \leq n$, where $S_{1}^{c}, S_{2}, \ldots, S_{n}$ are mutually disjoint and $S_{1}^{c} \cup$ $\left(\cup_{k=2}^{n} S_{k}\right)=\{1, \ldots, N-1\}$ (S_{1}^{c} can be empty).
Proof. The implication (ii) \Rightarrow (i) is trivial. Conversely, assume that $\psi \in \Psi_{N}^{(1, n)}$, and let $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ and T_{1}, \ldots, T_{n} be as in Definition 3.3. Let $\boldsymbol{v}_{k}=$ $\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right), 1 \leq k \leq n$. Then, by Lemma 3.4

$$
\left\|\sum_{k=1}^{n} \boldsymbol{v}_{k}\right\|_{\psi}+\left(n-\left\|\sum_{k=1}^{n} \frac{\boldsymbol{v}_{k}}{\left\|\boldsymbol{v}_{k}\right\|_{\psi}}\right\|_{\psi}\right) \min _{1 \leq k \leq n}\left\|\boldsymbol{v}_{k}\right\|_{\psi} \leq \sum_{k=1}^{n}\left\|\boldsymbol{v}_{k}\right\|_{\psi} .
$$

Hence by (3.1) we have

$$
\left\|\sum_{k=1}^{n} \frac{\boldsymbol{v}_{k}}{\left\|\boldsymbol{v}_{k}\right\|_{\psi}}\right\|_{\psi}=n
$$

which implies (ii). The implications (ii) \Leftrightarrow (iii) is obtained in [16, Theorem 7].
(iii) \Rightarrow (iv). Let $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ and T_{1}, \ldots, T_{n} be as in (iii). Without loss of generality we may assume that $T_{1} \ni 1$. Let

$$
S_{k}=T_{k}-1 \text { for } 2 \leq k \leq n \text { and } S_{1}=T_{1}^{c}-1 .
$$

Then, $S_{1}, S_{2}, \ldots, S_{n}$ are nonempty and $S_{1}^{c}, S_{2}, \ldots, S_{n}$ are mutually disjoint. In fact, S_{2}, \ldots, S_{n} are evidently mutually disjoint. If we have $j \in S_{1}^{c} \cap S_{k}$ for some $2 \leq k \leq n$, then $j+1 \notin T_{1}^{c}$, while $j+1 \in T_{k}$, a contradiction. Also it is immediate to see that $S_{1}^{c} \cup\left(\cup_{k=2}^{n} S_{k}\right)=\{1, \ldots, N-1\}$. Let

$$
s_{i}=\frac{a_{i+1}}{\sum_{j=1}^{N} a_{j}} \text { for } 1 \leq i \leq N-1 .
$$

Let $k \geq 2$. Then, we have

$$
\begin{aligned}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}= & \left\|\left(0, \chi_{T_{k}}(2) a_{2} \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& +\left\|\left(a_{1}, \chi_{T_{k}^{c}}(2) a_{2}, \ldots, \chi_{T_{k}^{c}}(N) a_{N}\right)\right\|_{\psi},
\end{aligned}
$$

from which it follows that

$$
\psi\left(s_{1}, \ldots, s_{N-1}\right)=\left(\sum_{i=1}^{N-1} \chi_{S_{k}}(i) s_{i}\right) \psi\left(\frac{\chi_{S_{k}}(1) s_{1}}{\sum_{i=1}^{N-1} \chi_{S_{k}}(i) s_{i}}, \ldots, \frac{\chi_{S_{k}}(N-1) s_{N-1}}{\sum_{i=1}^{N-1} \chi_{S_{k}}(i) s_{i}}\right)
$$

$$
+\left(1-\sum_{i=1}^{N-1} \chi_{S_{k}}(i) s_{i}\right) \psi\left(\frac{\chi_{S_{k}^{c}}(1) s_{1}}{1-\sum_{i=1}^{N-1} \chi_{S_{k}}(i) s_{i}}, \ldots, \frac{\chi_{S_{k}^{c}}(N-1) s_{N-1}}{1-\sum_{i=1}^{N-1} \chi_{S_{k}}(i) s_{i}}\right),
$$

or (3.3) with $M_{k}=\sum_{i=1}^{N-1} \chi S_{k}(i) s_{i}$ (see $[14,16]$ for the same discussion). Let $k=1$. Then, since

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\left\|\left(\chi_{T_{1}}(1) a_{1}, \ldots, \chi_{T_{1}}(N) a_{N}\right)\right\|_{\psi}+\left\|\left(\chi_{T_{1}^{c}}(1) a_{1}, \ldots, \chi_{T_{1}^{c}}(N) a_{N}\right)\right\|_{\psi},
$$

we have

$$
\begin{aligned}
\left\|\left(1-\sum_{i=1}^{N-1} s_{i}, s_{1}, \ldots, s_{N-1}\right)\right\|_{\psi}= & \left\|\left(1-\sum_{i=1}^{N-1} s_{i}, \chi_{S_{1}^{c}}(1) s_{1}, \ldots, \chi_{S_{1}^{c}}(N-1) s_{N-1}\right)\right\|_{\psi} \\
& +\left\|\left(0, \chi_{S_{1}}(1) s_{1}, \ldots, \chi_{S_{1}}(N-1) s_{N-1}\right)\right\|_{\psi}
\end{aligned}
$$

Here the both terms of the right side term are not zero (see Remark 3.6). Therefore we have $0<M_{1}=\sum_{i=1}^{N-1} \chi_{S_{1}}(i) s_{i}<1$. From the foregoing formula it follows that

$$
\begin{aligned}
& \psi\left(s_{1}, \ldots, s_{N-1}\right) \\
& =\left(1-\sum_{i=1}^{N-1} \chi_{S_{1}}(i) s_{i}\right) \psi\left(\frac{\chi_{S_{1}^{c}}(1) s_{1}}{1-\sum_{i=1}^{N-1} \chi_{S_{1}}(i) s_{i}}, \ldots, \frac{\chi_{S_{1}^{c}}(N-1) s_{N-1}}{1-\sum_{i=1}^{N-1} \chi_{S_{1}}(i) s_{i}}\right) \\
& +\left(\sum_{i=1}^{N-1} \chi_{S_{1}}(i) s_{i}\right) \psi\left(\frac{\chi_{S_{1}}(1) s_{1}}{\sum_{i=1}^{N-1} \chi_{S_{1}}(i) s_{i}}, \ldots, \frac{\chi_{S_{1}}(N-1) s_{N-1}}{\sum_{i=1}^{N-1} \chi_{S_{1}}(i) s_{i}}\right),
\end{aligned}
$$

or (3.3) with $M_{1}=\sum_{i=1}^{N-1} \chi_{S_{1}}(i) s_{i}$. We note that in the above argument, if $T_{1}=\{1\}$, we have $S_{1}=\{1, \ldots, N-1\}$, or $S_{1}^{c}=\emptyset$.
(iv) \Rightarrow (iii). Let $\left(s_{1}, \ldots, s_{N-1}\right) \in \Delta_{N}, S_{1}, \ldots, S_{n}$ and M_{k} be as in (iv). Then we have

$$
\begin{array}{r}
\left\|\left(1-\sum_{i-1}^{N-1} s_{i}, s_{1}, \ldots, s_{N-1}\right)\right\|_{\psi}=\left\|\left(0, \chi_{S_{k}}(1) s_{1}, \ldots, \chi_{S_{k}}(N-1) s_{N-1}\right)\right\|_{\psi} \tag{3.3}\\
+\left\|\left(1-\sum_{i=1}^{N} s_{i}, \chi_{S_{k}^{c}}(1) s_{1}, \ldots, \chi_{S_{k}^{c}}(N-1) s_{N-1}\right)\right\|_{\psi}
\end{array}
$$

where $\left(0, \chi_{S_{k}}(1) s_{1}, \ldots, \chi_{S_{k}}(N-1) s_{N-1}\right),\left(1-\sum_{i=1}^{N} s_{i}, \chi_{S_{k}^{c}}(1) s_{1}, \ldots, \chi_{S_{k}^{c}}(N-1) s_{N-1}\right)$ are nonzero. Let

$$
\left(a_{1}, a_{2}, \ldots, a_{N}\right)=\left(1-\sum_{i-1}^{N-1} s_{i}, s_{1}, \ldots, s_{N-1}\right)
$$

and let

$$
T_{k}=S_{k}+1 \text { for } k \geq 2 \text { and } T_{1}=\left(S_{1}^{c}+1\right) \cup\{1\} .
$$

Then, T_{k} 's are mutually disjoint and their union is $\{1, \ldots, N\}$. From the formula (3.3) we have for $k \geq 2$

$$
\begin{aligned}
\left\|\left(a_{1}, a_{2}, \ldots, a_{N}\right)\right\|_{\psi}= & \left\|\left(0, \chi_{T_{k}}(2) a_{2}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& +\left\|\left(a_{1}, \chi_{T_{k}^{c}}(2) a_{2}, \ldots, \chi_{T_{k}^{c}}(N) a_{N}\right)\right\|_{\psi}
\end{aligned}
$$

where $\left(0, \chi_{T_{k}}(2) a_{2}, \ldots, \chi_{T_{k}}(N) a_{N}\right),\left(a_{1}, \chi_{T_{k}^{c}}(2) a_{2}, \ldots, \chi_{T_{k}^{c}}(N) a_{N}\right)$ are nonzero. If $k=1$, since $\chi_{S_{1}}(i)=\chi_{T_{1}^{c}}(i+1)$, we have by (3.3)

$$
\begin{aligned}
\left\|\left(a_{1}, a_{2}, \ldots, a_{N}\right)\right\|_{\psi}= & \left\|\left(0, \chi_{T_{1}^{c}}(2) a_{2}, \ldots, \chi_{T_{1}^{c}}(N) a_{N}\right)\right\|_{\psi} \\
& +\left\|\left(a_{1}, \chi_{T_{1}}(2) a_{2}, \ldots, \chi_{T_{1}}(N) a_{N}\right)\right\|_{\psi}
\end{aligned}
$$

This completes the proof.
Remark 3.6 ([16, Remark 2]). We note that in Theorem 3.5 (iii) we have that $\left(\chi_{T_{k}^{c}}^{c}(1) a_{1}, \ldots, \chi_{T_{k}^{c}}^{c}(N) a_{N}\right)$ are nonzero from the assumption $\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)$ are nonzero.
Proposition 3.7. $\Psi_{N}^{(1)}=\Psi_{N}^{(1,2)} \supset \Psi_{N}^{(1,3)} \supset \cdots \supset \Psi_{N}^{(1, N)}=\left\{\psi_{1}\right\}$.
Proof. Let $2 \leq n<N$. It is obvious that $\Psi_{N}^{(1)}=\Psi_{N}^{(1,2)}$. So we shall show that $\Psi_{N}^{(1, n)} \supset \Psi_{N}^{(1, n+1)}$ and $\Psi_{N}^{(1, N)}=\left\{\psi_{1}\right\}$. Assume that $\psi \in \Psi_{N}^{(1, n+1)}$. Then there exist $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ and mutually disjoint nonempty subsets T_{1}, \ldots, T_{n+1} of $\{1, \ldots, N\}$ with $\cup_{k=1}^{n+1} T_{k}=\{1, \ldots, N\}$ such that

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\sum_{k=1}^{n+1}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi},
$$

where $\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)$ are nonzero. Then we have

$$
\begin{aligned}
& \left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\left\|\sum_{k=1}^{n+1}\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& =\left\|\sum_{k=1}^{n-1}\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)+\left(\chi_{T_{n} \cup T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n} \cup T_{n+1}}(N) a_{N}\right)\right\|_{\psi} \\
& \leq \sum_{k=1}^{n-1}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi}+\left\|\left(\chi_{T_{n} \cup T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n} \cup T_{n+1}}(N) a_{N}\right)\right\|_{\psi} \\
& \leq \sum_{k=1}^{n+1}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& =\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi},
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}= & \sum_{k=1}^{n-1}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& +\left\|\left(\chi_{T_{n} \cup T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n} \cup T_{n+1}}(N) a_{N}\right)\right\|_{\psi}
\end{aligned}
$$

Since $\left(\cup_{k=1}^{n-1} T_{k}\right) \cup\left(T_{n} \cup T_{n+1}\right)=\{1, \ldots, N\}$ and $\left(\chi_{T_{n} \cup T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n} \cup T_{n+1}}(N) a_{N}\right)$ is nonzero, we have $\psi \in \Psi_{N}^{(1, n)}$.

Next, assume that $\psi \in \Psi_{N}^{(1, N)}$. Then, we can take $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ so that

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\sum_{k=1}^{N}\left\|\left(0, \ldots, 0, \stackrel{k}{a_{k}}, 0, \ldots, 0\right)\right\|_{\psi}=\sum_{k=1}^{N} a_{k},
$$

where $a_{k}>0$. Let $M=\sum_{k=1}^{N} a_{k}$. Then

$$
\psi\left(\frac{a_{2}}{M}, \ldots, \frac{a_{N}}{M}\right)=\left\|\left(a_{1} / M, \ldots, a_{N} / M\right)\right\|=1
$$

which implies that $\psi=\psi_{1}$, as ψ is convex (cf. [16, Theorem 1]). This completes the proof.

Example 3.8. Let $2 \leq n<N$. The inclusion $\Psi_{N}^{(1, n)} \supset \Psi_{N}^{(1, n+1)}$ is strict. In fact, define an absolute normalized norm on \mathbb{C}^{N} by

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|=\max \left\{\sum_{j=1}^{n} a_{j}, a_{n+1}, \ldots, a_{N}\right\} \text { for }\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{C}^{N}
$$

The corresponding convex function ψ is given by

$$
\psi(s)=\max \left\{1-\sum_{i=n}^{N-1} s_{i}, s_{n}, \ldots, s_{N-1}\right\} \text { for } s=\left(s_{1}, \ldots, s_{N-1}\right) \in \Delta_{N}
$$

Then, $\psi \in \Psi_{N}^{(1, n)} \backslash \Psi_{N}^{(1, n+1)}$. In fact,

$$
\|(\overbrace{1, \ldots, 1}^{n}, 0, \ldots, 0)\|_{\psi}=n=\sum_{k=1}^{n}\|(0, \ldots 0, \stackrel{k}{1}, 0, \ldots, 0)\|_{\psi}
$$

Therefore, $\psi \in \Psi_{N}^{(1, n)}$. Next, suppose that $\psi \in \Psi_{N}^{(1, n+1)}$. Then there exist $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ and mutually disjoint nonempty proper subsets T_{1}, \ldots, T_{n+1} of $\{1, \ldots, N\}$ with $\cup_{k=1}^{n+1} T_{k}=\{1, \ldots, N\}$ such that

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\sum_{k=1}^{n+1}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi}
$$

where $\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)$ are nonzero. Then, for some $1 \leq k \leq N, T_{k} \subset$ $\{n+1, \ldots, N\}$. Without loss of generality we may assume that $T_{k}=T_{n+1}$. Since

$$
\begin{aligned}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}= & \left\|\left(\sum_{k=1}^{n+1} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n+1} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
\leq & \left\|\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& +\left\|\left(\chi_{T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n+1}}(N) a_{N}\right)\right\|_{\psi} \\
\leq & \sum_{k=1}^{n+1}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi}
\end{aligned}
$$

we have

$$
\begin{aligned}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}= & \left\|\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& +\left\|\left(\chi_{T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n+1}}(N) a_{N}\right)\right\|_{\psi}
\end{aligned}
$$

Here, we obtain that

$$
\begin{equation*}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\left\|\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\left\|\left(\chi_{T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n+1}}(N) a_{N}\right)\right\|_{\psi} \tag{3.5}
\end{equation*}
$$

Indeed,

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\max \left\{\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{1},\left\|\left(a_{n+1}, \ldots, a_{N}\right)\right\|_{\infty}\right\}
$$

and

$$
\begin{aligned}
& \left\|\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& \quad=\max \left\{\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{1},\left\|\left(\chi_{T_{N+1}}^{c}(n+1) a_{n+1}, \ldots, \chi_{T_{N+1}^{c}}^{c}(n+1) a_{N}\right)\right\|_{\infty}\right\}, \\
& \left\|\left(\chi_{T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n+1}}(N) a_{N}\right)\right\|_{\psi} \\
& \quad=\max \left\{\left\|\left(\chi_{T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n+1}}(n) a_{n}\right)\right\|_{1},\right. \\
& \left.\quad\left\|\left(\chi_{T_{n+1}}(n+1) a_{n+1}, \ldots, \chi_{T_{n+1}(N)} a_{N}\right)\right\|_{\infty}\right\} \\
& \quad=\left\|\left(\chi_{T_{n+1}}(n+1) a_{n+1}, \ldots, \chi_{T_{n+1}(N)} a_{N}\right)\right\|_{\infty} .
\end{aligned}
$$

Now, let $\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{1} \geq\left\|\left(a_{n+1}, \ldots, a_{N}\right)\right\|_{\infty}$. Then

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{1}=\left\|\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi}
$$

or (3.4). Let $\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{1} \leq\left\|\left(a_{n+1}, \ldots, a_{N}\right)\right\|_{\infty}$. Then, if $\left\|\left(a_{n+1}, \ldots, a_{N}\right)\right\|_{\infty}=$ $\left\|\left(\chi_{T_{N+1}}(n+1) a_{n+1}, \ldots, \chi_{T_{N+1}}(n+1) a_{N}\right)\right\|_{\infty}$, we have

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\left\|\left(a_{n+1}, \ldots, a_{N}\right)\right\|_{\infty}=\left\|\left(\chi_{T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n+1}}(N) a_{N}\right)\right\|_{\psi}
$$

or (3.5). If $\left\|\left(a_{n+1}, \ldots, a_{N}\right)\right\|_{\infty}=\left\|\left(\chi_{T_{N+1}^{c}}(n+1) a_{n+1}, \ldots, \chi_{T_{N+1}^{c}}(n+1) a_{N}\right)\right\|_{\infty}$, we have

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\left\|\left(a_{n+1}, \ldots, a_{N}\right)\right\|_{\infty}=\left\|\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi}
$$

or (3.4). Since $\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)$ are nonzero and T_{1}, \ldots, T_{n+1} are mutually disjoint, $\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N}\right)$ is nonzero. Therefore we have

$$
\begin{aligned}
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}< & \left\|\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& +\left\|\left(\chi_{T_{n+1}}(1) a_{1}, \ldots, \chi_{T_{n+1}}(N) a_{N}\right)\right\|_{\psi}
\end{aligned}
$$

which is a contradiction. Thus, we have $\psi \notin \Psi_{N}^{(1, n+1)}$.

4. UNIFORM NON- ℓ_{1}^{n}-NESS

A Banach space X is called uniformly non- $\ell_{1}^{n}, n \geq 2$, if there exists a constant $\varepsilon>0$ such that

$$
\min \left\{\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\|: \theta_{j}= \pm 1\right\} \leq N(1-\varepsilon) \text { for all } x_{1}, \ldots, x_{n} \in S_{X}
$$

where S_{X} is the unit sphere of X. When $n=2, X$ is called uniformly non-square. It is known that every uniformly non- ℓ_{1}^{n} space is uniformly non- ℓ_{1}^{n+1}. In fact, we have the following.
Lemma 4.1. Let X be a Banach space and let $\left\{x_{k}^{(1)}\right\}, \ldots,\left\{x_{k}^{(n)}\right\}$ be n sequences in the unit sphere of X. Let $1 \leq m<n$. Then,

$$
\text { If } \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} x_{k}^{(j)}\right\|=n, \text { then } \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{m} x_{k}^{(j)}\right\|=m
$$

Proof. Assume that $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} x_{k}^{(j)}\right\|=n$. Then

$$
\begin{aligned}
m & \geq\left\|\sum_{j=1}^{m} x_{k}^{(j)}\right\|=\left\|\sum_{j=1}^{n} x_{k}^{(j)}-\sum_{j=m+1}^{n} x_{k}^{(j)}\right\| \\
& \geq\left\|\sum_{j=1}^{n} x_{k}^{(j)}\right\|-\sum_{j=m+1}^{n}\left\|x_{k}^{(j)}\right\|=\left\|\sum_{j=1}^{n} x_{k}^{(j)}\right\|-(n-m)
\end{aligned}
$$

for all k, from which it follows that $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{m} x_{j}^{(k)}\right\|=m$.
Recently Kato and Tamura [16] showed the following result which is equivalent to Dowling and Saejung's result in [7].

Theorem 4.2 ([16, Theorem 10]; cf. [7, Theorem 13]). Let X_{1}, \ldots, X_{N} be Banach spaces and let $\psi \in \Psi_{N}$. Assume that $\|\cdot\|_{\psi}$ is strictly monotone. Then, the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non-square.
(ii) X_{1}, \ldots, X_{N} are uniformly non-square and $\psi \notin \Psi_{N}^{(1)}$.

In the case $N=2, \Psi_{2}^{(1)}=\left\{\psi_{1}\right\}$. Therefore we obtain the next result.
Corollary 4.3. Let X and Y be Banach spaces and let $\psi \in \Psi_{2}$. Assume that $\|\cdot\|_{\psi}$ is strictly monotone. Then, the following are equivalent.
(i) $X \oplus_{\psi} Y$ is uniformly non-square.
(ii) X and Y are uniformly non-square and $\psi \neq \psi_{1}$.

Remark 4.4. This result should be compared with the previous result in [9] without the assumption on strict monotonicity of $\|\cdot\|_{\psi}: X \oplus_{\psi} Y$ is uniformly non-square if and only if X and Y are uniformly non-square and $\psi \neq \psi_{1}, \psi_{\infty}$.

Theorem 4.2 especially asserts the following.

Corollary 4.5. Let X_{1}, \ldots, X_{N} be uniformly non-square Banach spaces. Let $\psi \in$ Ψ_{N} and assume that the norm $\|\cdot\|_{\psi}$ is strictly monotone. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non-square.
(ii) $\psi \notin \Psi_{N}^{(1)}$.

In the following, we shall characterize the uniform non- ℓ_{1}^{n}-ness of $\left(X_{1} \oplus \cdots \oplus\right.$ $\left.X_{N}\right)_{\psi}$ for uniformly non-square spaces X_{1}, \ldots, X_{N}. First we note that the ℓ_{1}-sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{1}$ cannot be uniformly non- ℓ_{1}^{N} for any spaces X_{1}, \ldots, X_{N} (recall that ℓ_{1}^{n} is embedded into the direct sum of X_{j} 's). To the contrary we have the following.

Theorem 4.6 ([12]). Let X_{1}, \ldots, X_{N} be uniformly non-square. Then $\left(X_{1} \oplus \cdots \oplus\right.$ $\left.X_{N}\right)_{1}$ is uniformly non- ℓ_{1}^{N+1}.

We are now in a position to present the main result, which extends Corollary 4.5.
Theorem 4.7. Let X_{1}, \ldots, X_{N} be uniformly non-square Banach spaces. Let $\psi \in$ Ψ_{N} and let $\|\cdot\|_{\psi}$ be strictly monotone. Let $2 \leq n \leq N$. Then, the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non- ℓ_{1}^{n}.
(ii) $\psi \notin \Psi_{N}^{(1, n)}$.

Proof. (i) \Rightarrow (ii). Suppose that $\psi \in \Psi_{N}^{(1, n)}$. Then, by Theorem 3.5 there exist $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ and mutually disjoint nonempty proper subsets T_{1}, \ldots, T_{n} of $\{1, \ldots, N\}$ with $\cup_{k=1}^{n} T_{k}=\{1, \ldots, N\}$ such that

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=\sum_{k=1}^{n}\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi},
$$

and $\left\|\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|=1$. Then, for any signs $\theta_{k}= \pm 1$

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} \theta_{k}\left(\chi_{T_{k}}(1) a_{1}, \ldots, \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} & =\left\|\left(\sum_{k=1}^{n} \theta_{k} \chi_{T_{k}}(1) a_{1}, \ldots, \sum_{k=1}^{n} \theta_{k} \chi_{T_{k}}(N) a_{N}\right)\right\|_{\psi} \\
& =\left\|\left(\theta_{k_{1}} a_{1}, \ldots, \theta_{k_{N}} a_{N}\right)\right\|_{\psi} \\
& =\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{\psi}=n,
\end{aligned}
$$

where $k_{j}, 1 \leq j \leq N$, is chosen so that $j \in T_{k_{j}}$ for $j \in\{1, \ldots, N\}$. This implies that $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is not uniformly non- ℓ_{1}^{n}.
(ii) \Rightarrow (i). Suppose that $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is not uniformly non- ℓ_{1}^{n}. Then there exist n sequences $\left\{\left(x_{11}^{(\ell)}, \ldots, x_{N 1}^{(\ell)}\right)\right\}_{\ell}, \ldots,\left\{\left(x_{1 n}^{(\ell)}, \ldots, x_{N n}^{(\ell)}\right)\right\}_{\ell}$ in the unit sphere of $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ such that

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty}\left\|\sum_{k=1}^{n} \theta_{k}\left(x_{1 k}^{(\ell)}, \ldots, x_{N k}^{(\ell)}\right)\right\|_{\psi}=n \text { for all } \theta_{k}= \pm 1 \tag{4.1}
\end{equation*}
$$

By taking subsequences if necessary, we may assume that

$$
\lim _{\ell \rightarrow \infty}\left\|x_{1 k}^{(\ell)}\right\|=a_{1 k}, \ldots, \lim _{\ell \rightarrow \infty}\left\|x_{N k}^{(\ell)}\right\|=a_{N k}
$$

Then

$$
\begin{equation*}
\left\|\left(a_{1 k}, \ldots, a_{N k}\right)\right\|_{\psi}=1 \text { for } 1 \leq k \leq n \tag{4.2}
\end{equation*}
$$

By the formula (4.1) and Lemma 4.1, we have for any $1 \leq p<q \leq n$

$$
\lim _{\ell \rightarrow \infty}\left\|\left(x_{1 p}^{(\ell)}, \ldots, x_{N p}^{(\ell)}\right) \pm\left(x_{1 q}^{(\ell)}, \ldots, x_{N q}^{(\ell)}\right)\right\|_{\psi}=2
$$

Then

$$
\begin{aligned}
2 & =\lim _{\ell \rightarrow \infty}\left\|\left(x_{1 p}^{(\ell)}, \ldots, x_{N p}^{(\ell)}\right) \pm\left(x_{1 q}^{(\ell)}, \ldots, x_{N q}^{(\ell)}\right)\right\|_{\psi} \\
& =\left\|\left(\lim _{\ell \rightarrow \infty}\left\|x_{1 p}^{(\ell)} \pm x_{1 q}^{(\ell)}\right\|, \ldots, \lim _{\ell \rightarrow \infty}\left\|x_{N p}^{(\ell)} \pm x_{N q}^{(\ell)}\right\|\right)\right\|_{\psi} \\
& \leq\left\|\left(\lim _{\ell \rightarrow \infty}\left\|x_{1 p}^{(\ell)}\right\|+\lim _{\ell \rightarrow \infty}\left\|x_{1 q}^{(\ell)}\right\|, \ldots, \lim _{\ell \rightarrow \infty}\left\|x_{N p}^{(\ell)}\right\|+\lim _{\ell \rightarrow \infty}\left\|x_{N q}^{(\ell)}\right\|\right)\right\|_{\psi} \\
& \leq\left\|\left(\lim _{\ell \rightarrow \infty}\left\|x_{1 p}^{(\ell)}\right\|, \ldots, \lim _{\ell \rightarrow \infty}\left\|x_{N p}^{(\ell)}\right\|\right)\right\|_{\psi}+\left\|\left(\lim _{\ell \rightarrow \infty}\left\|x_{1 q}^{(\ell)}\right\|, \ldots, \lim _{\ell \rightarrow \infty}\left\|x_{N q}^{(\ell)}\right\|\right)\right\|_{\psi} \\
& =\lim _{\ell \rightarrow \infty}\left\|\left(\left\|x_{1 p}^{(\ell)}\right\|, \ldots,\left\|x_{N p}^{(\ell)}\right\|\right)\right\|_{\psi}+\lim _{\ell \rightarrow \infty}\left\|\left(\left\|x_{1 q}^{(\ell)}\right\|, \ldots,\left\|x_{N q}^{(\ell)}\right\|\right)\right\|_{\psi}=2
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
& \left\|\left(\lim _{\ell \rightarrow \infty}\left\|x_{1 p}^{(\ell)} \pm x_{1 q}^{(\ell)}\right\|, \ldots, \lim _{\ell \rightarrow \infty}\left\|x_{N p}^{(\ell)} \pm x_{N q}^{(\ell)}\right\|\right)\right\|_{\psi} \\
& =\left\|\left(\lim _{\ell \rightarrow \infty}\left\|x_{1 p}^{(\ell)}\right\|+\lim _{\ell \rightarrow \infty}\left\|x_{1 q}^{(\ell)}\right\|, \ldots, \lim _{\ell \rightarrow \infty}\left\|x_{N p}^{(\ell)}\right\|+\lim _{\ell \rightarrow \infty}\left\|x_{N q}^{(\ell)}\right\|\right)\right\|_{\psi} .
\end{aligned}
$$

By strict monotonicity of $\|\cdot\|_{\psi}$ we have

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty}\left\|x_{j p}^{(\ell)} \pm x_{j q}^{(\ell)}\right\|=\lim _{\ell \rightarrow \infty}\left\|x_{j p}^{(\ell)}\right\|+\lim _{\ell \rightarrow \infty}\left\|x_{j q}^{(\ell)}\right\|=a_{j p}+a_{j q} \text { for all } 1 \leq j \leq N \tag{4.3}
\end{equation*}
$$

Then, we have for every $1 \leq j \leq N$

$$
\begin{equation*}
\min \left\{a_{j p}, a_{j q}\right\}=0 \text { for all } 1 \leq p<q \leq n \tag{4.4}
\end{equation*}
$$

which implies that $\left\{k: a_{j k}>0\right\}$ is at most a singleton for every $1 \leq j \leq N$. Indeed, suppose that for some $1 \leq j \leq N$ and some $1 \leq p<q \leq n$

$$
\min \left\{a_{j p}, a_{j q}\right\}=\min \left\{\lim _{\ell \rightarrow \infty}\left\|x_{j p}^{(\ell)}\right\|, \lim _{\ell \rightarrow \infty}\left\|x_{j q}^{(\ell)}\right\|\right\}>0
$$

By Lemma 3.4, for sufficiently large ℓ,

$$
\left\|x_{j p}^{(\ell)} \pm x_{j q}^{(\ell)}\right\|+\left(2-\left\|\frac{x_{j p}^{(\ell)}}{\left\|x_{j p}^{(\ell)}\right\|} \pm \frac{x_{j q}^{(\ell)}}{\left\|x_{j q}^{(\ell)}\right\|}\right\|\right) \min \left\{\left\|x_{j p}^{(\ell)}\right\|,\left\|x_{j p}^{(\ell)}\right\|\right\} \leq\left\|x_{j p}^{(\ell)}\right\|+\left\|x_{j q}^{(\ell)}\right\|
$$

Letting $\ell \rightarrow \infty$, we have

$$
\lim _{\ell \rightarrow \infty}\left\|\frac{x_{j p}^{(\ell)}}{\left\|x_{j p}^{(\ell)}\right\|} \pm \frac{x_{j q}^{(\ell)}}{\left\|x_{j q}^{(\ell)}\right\|}\right\|=2
$$

by (4.3), which contradicts to the uniform non-squareness of X_{j}. Therefore, we have (4.4).

Next let

$$
T_{k}=\left\{j: a_{j k}>0\right\} \text { for } 1 \leq k<n
$$

and

$$
T_{n}=\left\{j: a_{j n}>0\right\} \cup\left\{j: a_{j k}=0 \text { for all } 1 \leq k \leq n\right\}
$$

Then, by (4.2) the sets T_{1}, \ldots, T_{n} are nonempty and clearly $\cup_{k=1}^{n} T_{k}=\{1, \ldots, N\}$. Since the set $\left\{k: a_{j k}>0\right\}$ is at most a singleton for every $1 \leq j \leq N$, the sets $T_{1}, \ldots, T_{n-1},\left\{j: a_{j n}>0\right\}$ are mutually disjoint, and therefore T_{1}, \ldots, T_{n} are mutually disjoint. To obtain the conclusion we shall first see that

$$
\begin{equation*}
\sum_{k=1}^{n} a_{j k}=\sum_{k=1}^{n} \chi_{T_{k}}(j) a_{j k} \text { for all } 1 \leq j \leq N \tag{4.5}
\end{equation*}
$$

Indeed, since $\left\{k: a_{j k}>0\right\}$ is at most a singleton, if $\left\{k: a_{j k}>0\right\}$ is nonempty for some $1 \leq j \leq N$, there exists a unique $1 \leq k_{j} \leq n$ such that $\left\{k: a_{j k}>0\right\}=\left\{k_{j}\right\}$. Hence, $a_{j k_{j}}>0$, or $j \in T_{k_{j}}$. Therefore, in this case, we have

$$
\sum_{k=1}^{n} a_{j k}=a_{j k_{j}}=\chi_{T_{k_{j}}}(j) a_{j k_{j}}=\sum_{k=1}^{n} \chi_{T_{k}}(j) a_{j k}
$$

or (4.5). If $a_{j k}=0$ for all $1 \leq k \leq n$, the equation (4.5) is obvious. Next, by the formulae (4.1) and (4.5) we have

$$
\begin{aligned}
n & =\lim _{\ell \rightarrow \infty}\left\|\sum_{k=1}^{n} \theta_{k}\left(x_{1 k}^{(\ell)}, \ldots, x_{N k}^{(\ell)}\right)\right\|_{\psi} \\
& =\|\left(\lim _{\ell \rightarrow \infty}\left\|\sum_{k=1}^{n} \theta_{k} x_{1 k}^{(\ell)}\right\|, \ldots, \lim _{\ell \rightarrow \infty}\left\|\sum_{k=1}^{n} \theta_{k} x_{N k}^{(\ell)}\right\| \|_{\psi}\right. \\
& \leq\left\|\left(\lim _{\ell \rightarrow \infty} \sum_{k=1}^{n}\left\|x_{1 k}^{(\ell)}\right\|, \ldots, \lim _{\ell \rightarrow \infty} \sum_{k=1}^{n}\left\|x_{N k}^{(\ell)}\right\|\right)\right\|_{\psi} \\
& =\left\|\left(\sum_{k=1}^{n} a_{1 k}, \ldots, \sum_{k=1}^{n} a_{N k}\right)\right\|_{\psi} \\
& =\left\|\left(\sum_{k=1}^{n} \chi_{T_{k}}(1) a_{1 k}, \ldots, \sum_{k=1}^{n} \chi_{T_{k}}(N) a_{N k}\right)\right\|_{\psi} \\
& \leq \sum_{k=1}^{n}\left\|\left(\chi_{T_{k}}(1) a_{1 k}, \ldots, \chi_{T_{k}}(N) a_{N k}\right)\right\|_{\psi} \\
& \leq \sum_{k=1}^{n}\left\|\left(a_{1 k}, \ldots, a_{N k}\right)\right\|_{\psi}=n,
\end{aligned}
$$

from which it follows that

$$
\begin{align*}
\left\|\sum_{k=1}^{n}\left(\chi_{T_{k}}(1) a_{1 k}, \ldots, \chi_{T_{k}}(N) a_{N k}\right)\right\|_{\psi} & =\sum_{k=1}^{n}\left\|\left(\chi_{T_{k}}(1) a_{1 k}, \ldots, \chi_{T_{k}}(N) a_{N k}\right)\right\|_{\psi} \tag{4.6}\\
& =n
\end{align*}
$$

Noting that

$$
\left\|\sum_{k=1}^{n}\left(\chi_{T_{k}}(1) a_{1 k}, \ldots, \chi_{T_{k}}(N) a_{N k}\right)\right\|_{\psi}=\left(a_{1 k_{1}}, \ldots, a_{N k_{N}}\right)
$$

where $j \in T_{k_{j}}, 1 \leq j \leq N$, we have

$$
\begin{aligned}
\left(a_{1 k_{1}}, \ldots, a_{N k_{N}}\right) & =\sum_{k=1}^{n}\left\|\left(\chi_{T_{k}}(1) a_{1 k}, \ldots, \chi_{T_{k}}(N) a_{N k}\right)\right\|_{\psi} \\
& =\sum_{k \in\left\{k_{1}, \ldots, k_{N}\right\}}\left\|\left(\chi_{T_{k}}(1) a_{1 k}, \ldots, \chi_{T_{k}}(N) a_{N k}\right)\right\|_{\psi} \\
& =\sum_{k \in\left\{k_{1}, \ldots, k_{N}\right\}}\left\|\left(\chi_{T_{k}}(1) a_{1 k_{1}}, \ldots, \chi_{T_{k}}(N) a_{N k_{N}}\right)\right\|_{\psi}
\end{aligned}
$$

Here, the last identity is valid since

$$
\left(\begin{array}{c}
\chi_{T_{k_{1}}}(1) a_{1 k_{1}} \\
\chi_{T_{k_{2}}}(1) a_{1 k_{2}} \\
\vdots \\
\chi_{T_{k_{N}}}(1) a_{1 k_{N}}
\end{array}\right)=\left(\begin{array}{c}
a_{1 k_{1}} \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
\chi_{T_{k_{1}}}(1) a_{1 k_{1}} \\
\chi_{T_{k_{2}}}(1) a_{1 k_{1}} \\
\vdots \\
\chi_{T_{k_{N}}}(1) a_{1 k_{1}}
\end{array}\right)
$$

and the same is true for the rest columns. By (??), $\left(\chi_{T_{k}}(1) a_{1 k_{1}}, \ldots, \chi_{T_{k}}(N) a_{N k_{N}}\right)$ are nonzero. Consequently, we have $\psi \in \Psi_{N}^{(1, n)}$. This completes the proof.

In the case $n=2, \Psi_{N}^{(1,2)}=\Psi_{N}^{(1)}$. Thus, Theorem 4.7 includes Corollary 4.5. Also, if $n=N, \Psi_{N}^{(1, N)}=\left\{\psi_{1}\right\}$. Therefore, Theorem 4.7, combining Theorem 4.2, is reformulated as follows.

Theorem 4.8. Let X_{1}, \ldots, X_{N} be uniformly non-square Banach spaces. Let $\psi \in$ Ψ_{N} and let $\|\cdot\|_{\psi}$ be strictly monotone. Let $n \geq 2$.
(i) When $n=2,\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non-square if and only if $\psi \notin \Psi_{N}^{(1)}$.
(ii) When $2<n<N$, $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non- ℓ_{1}^{n} if and only if $\psi \notin \Psi_{N}^{(1, n)}$.
(iii) When $n=N,\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non- ℓ_{1}^{N} if and only if $\psi \neq \psi_{1}$.
(iv) When $n \geq N+1$, $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non- ℓ_{1}^{N+1}, and hence uniformly non- ℓ_{1}^{n}.
For the assertion (iv), if $\psi \neq \psi_{1},\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is uniformly non- ℓ_{1}^{N} by (iii) and hence uniformly non- ℓ_{1}^{n} for $n \geq N+1$. If $\psi=\psi_{1}$, we have the conclusion by Theorem 4.6.

As a direct consequence we have the following characterization of the uniform non- ℓ_{1}^{n}-ness for \mathbb{C}^{N}.
Corollary 4.9. Let $\psi \in \Psi_{N}$. Assume that $\|\cdot\|_{\psi}$ is strictly monotone on \mathbb{C}^{N}. Let $n \geq 2$.
(i) When $n=2,\left(\mathbb{C}^{N},\|\cdot\|_{\psi}\right)$ is uniformly non-square if and only if $\psi \notin \Psi_{N}^{(1)}$.
(ii) When $2<n<N$, $\left(\mathbb{C}^{N},\|\cdot\|_{\psi}\right)$ is uniformly non- ℓ_{1}^{n} if and only if $\psi \notin \Psi_{N}^{(1, n)}$.
(iii) When $n=N,\left(\mathbb{C}^{N},\|\cdot\|_{\psi}\right)$ is uniformly non- ℓ_{1}^{N} if and only if $\psi \neq \psi_{1}$.
(iv) When $n \geq N+1$, $\left(\mathbb{C}^{N},\|\cdot\|_{\psi}\right)$ is uniformly non- ℓ_{1}^{N+1}, and hence uniformly non- ℓ_{1}^{n}.

Example 4.10.

(i) Let $1<p<\infty$. The ℓ_{p}-norm $\|\cdot\|_{p}$ is strictly monotone and $\psi_{p} \notin \Psi_{N}^{(1)}$ (cite[Example 5.10]KT3). Therefore, the ℓ_{p}-sum ($\mathbb{C}^{N},\|\cdot\|_{p}$) is uniformly non-square.
(ii) Let $2 \leq n<N$. Let $\psi \in \Psi_{N}$ be as in Example 3.8. Then, since $\psi \in$ $\Psi_{N}^{(1, n)} \backslash \Psi_{N}^{(1, n+1)},\left(\mathbb{C}^{N},\|\cdot\|_{\psi}\right)$ is uniformly non- ℓ_{1}^{n+1}, but not uniformly non ℓ_{1}^{n}.

5. Concluding remarks

According to Dhompongsa, Kato and Tamura [5] an A-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is defined to be a direct sum equipped with the norm

$$
\left\|\left(x_{1}, \ldots, x_{N}\right)\right\|_{A}:=\left\|\left(\left\|x_{1}\right\|, \ldots,\left\|x_{N}\right\|\right)\right\|_{A} \text { for }\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \oplus \cdots \oplus X_{N}
$$

where the norm $\|\cdot\|_{A}$ in the right side is an arbitrary norm on \mathbb{R}^{N}. A Z-direct sum is defined in the same way from a Z-norm $\|\cdot\|_{Z}$ which is a norm on \mathbb{R}^{N} with monotonicity property on \mathbb{R}_{+}^{N}. Thus a ψ-direct sum is a Z-direct sum, and a Z direct sum is an A-direct sum, while all of these notions are equivalent. In fact they showed the following.
Theorem 5.1 ([5, Theorem 5.2]). For any A-direct sum there exists a $\psi \in \Psi_{N}$ for which the A-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is isometrically isomorphic to the ψ-direct $\operatorname{sum}\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$.

Now recall that a norm $\|\cdot\|$ on \mathbb{C}^{N} is said to have Property T_{1}^{N} ([7]) if for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{C}^{N}$ with $\|\boldsymbol{a}\|=\|\boldsymbol{b}\|=\frac{1}{2}\|\boldsymbol{a}+\boldsymbol{b}\|=1$ one has supp $\boldsymbol{a} \cap \operatorname{supp} \boldsymbol{b} \neq \emptyset$, where supp $\boldsymbol{a}=\left\{j: a_{j} \neq 0\right\}$. A recent reuslt [5, Theorem 4.3] says that this property is equivalent to $\psi \notin \Psi_{N}^{(1)}$ for a ψ-norm. Thus, owing to Theorem 5.1 we shall immediately obtain some consequences for A-direct sums from our preceeding results.
Corollary 5.2. Let X_{1}, \ldots, X_{N} be uniformly non-square. Let $\|\cdot\|$ be an arbitrary strictly monotone norm on \mathbb{R}^{N}. Then:
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is uniformly non-square if and only if the norm $\|\cdot\|$ has Property T_{1}^{N}.
(ii) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is uniformly non- ℓ_{1}^{N} if and only if $\|\cdot\| \neq\|\cdot\|_{1}$.
(iii) For all $n \geq N+1,\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is uniformly non- ℓ_{1}^{n}.

In particular we have
Corollary 5.3. Let $\|\cdot\|$ be an arbitrary strictly monotone norm on \mathbb{C}^{N}. Then:
(i) $\left(\mathbb{C}^{N},\|\cdot\|\right)$ is uniformly non-square if and only if $\|\cdot\|$ has Property T_{1}^{N}.
(ii) $\left(\mathbb{C}^{N},\|\cdot\|\right)$ is uniformly non- ℓ_{1}^{N} if and only if $\|\cdot\| \neq\|\cdot\|_{1}$.
(iii) For all $n \geq N+1$, $\left(\mathbb{C}^{N},\|\cdot\|\right)$ is uniformly non- ℓ_{1}^{n}.

We note that in the above two corollaries the corresponding results for the case $2<n<N$ are not known because any equivalent property to $\psi \notin \Psi_{N}^{(1, n)}$ (free form $\psi)$ is not known, although we have results using ψ for which $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is isometrically isomorphic to $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ from Theorem 4.8 and Corollary 4.9.

We shall close our discussion with an observation on a relation between the uniform non-suareness for direct sums and for the scalar case \mathbb{C}^{N}. Betiuk-Pilarska and Prus [3] showed that a Z-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{Z}$ is uniformly non-square if and only if all the underlying spaces X_{1}, \ldots, X_{N} and the Z-norm $\|\cdot\|_{Z}$ on \mathbb{R}^{N} are uniformly non-square. By virtue of Theorem 5.1 this holds true for the A-direct $\operatorname{sum}\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$, while it remains still unknown when a given norm on \mathbb{R}^{N} is uniformly non-square. The forgoing result in Corollary 5.3 is a partial answer.

References

[1] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, 1973.
[3] A. Betiuk-Pilarska and S. Prus, Uniform nonsquareness of direct sums Banach spaces, Topol. Methods Nonlinear Anal. 34 (2009), 181-186.
[4] S. Dhompongsa, A. Kaewcharoen and A. Kaewkhao, Fixed point property of direct sums, Nonlinear Anal. 63 (2005), e2177-e2188.
[5] S. Dhompongsa, M. Kato and T. Tamura, Uniform non-squareness for A-direct sums of Banach spaces with a strictly monotone norm, to appear in Linear Nonlinear Anal.
[6] P. N. Dowling, On convexity properties of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 288 (2003), 540-543.
[7] P. N. Dowling and S. Saejung, Non-squareness and uniform non-squareness of Z-direct sums, J. Math. Anal. Appl. 369 (2010), 53-59.
[8] M. Kato, K.-S. Saito and T. Tamura, On the ψ-direct sums of Banach spaces and convexity, J. Aust. Math. Soc. 75 (2003), 413-422.
[9] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), 429-437.
[10] M. Kato, K.-S. Saito and T. Tamura, Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl. 10 (2007), 451-460.
[11] M. Kato, K.-S. Saito and T. Tamura, Uniform non- ℓ_{1}^{n}-ness of ψ-direct sums of Banach spaces, J. Nonlinear Convex Anal. 11 (2010), 13-33.
[12] M. Kato and T. Tamura, Uniformly non- $\ell_{1}^{n}-$ ness of $\ell_{1}-$ sum of Banach spaces, Comment. Math. Prace Mat. 47 (2007), 161-170.
[13] M. Kato and T. Tamura, Uniformly non- ℓ_{1}^{n}-ness of $\ell_{\infty}-$ sum of Banach spaces, Comment. Math. 49 (2009), 179-187.
[14] M. Kato and T. Tamura, Weak nearly uniform smoothness of the ψ-direct sums $\left(X_{1} \oplus \cdots \oplus\right.$ $\left.X_{N}\right)_{\psi}$, Comment. Math. 52 (2012), 171-198.
[15] M. Kato and T. Tamura, On a class of convex functions which yield partial ℓ_{1}-norms, in: Banach and Function Spaces IV, Eds. M. Kato, L. Maligranda and T. Suzuki, Yokohama Publishers, Yokohama, 2014, pp. 199-210.
[16] M. Kato and T. Tamura, On partial ℓ_{1}-norm and convex functions, preprint.
[17] K.-S. Saito, M. Kato and Y. Takahashi, On absolute norms on \mathbb{C}^{n}, J. Math. Anal. Appl. 252 (2000), 879-905.
[18] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on \mathbb{C}^{2} and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179-186.

Mikio Kato
Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan E-mail address: katom@mns.kyutech.ac.jp

Takayuki Tamura
Graduate School of Humanities and Social Sciences, Chiba University, Chiba 263-8522, Japan E-mail address: tamura@le.chiba-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 46B20, 52A21, 52A99, 26 B25.
 Key words and phrases. Absolute norm, convex function, partial ℓ_{1}-norm, direct sum of Banach spaces, uniform non-squareness, uniform non- ℓ_{1}^{n}-ness.

 The authors were supported in part by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science No. 26400131.

