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ON THE UNIFORM NON-/'-NESS AND NEW CLASSES OF
CONVEX FUNCTIONS
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Dedicated to Professor Wataru Takahashi on the ocasion of his 70th birthday

ABSTRACT. Let Xi,...,Xn be uniformly non-square Banach spaces. We shall
characterize the uniform non-¢7-ness of the 1-direct sum (X1 @®---®Xn)y with a
strictly monotone norm by means of the convex function v, which extends some
recent results on the uniform non-squareness. In the course of doing this we shall
introduce subclasses \IIE\}’M of the class \IJS\}) of convex functions which yields
partiall /1-norms; this enables us to have precise observations on the structure
of the class of \Ilg\p. Our results hold true for A-direct sums, more general direct
sums with the norm induced from an arbitrary norm on R, a fortiori, for the
Z-direct sums. As a corollary the uniform non-¢7-ness will be characterized for
CV, as well.

1. INTRODUCTION

Recently the uniform non-squareness and non-¢}-ness have been discussed for
direct sums of Banach spaces ([3-7,9,11-13,15,16], etc.) in connection with the
fixed point property for nonexpansive mappings, super-reflexivity, and various es-
timates of geometric constants, etc. Our concern in this paper is originated from
the following result ([9]): A v-direct sum X ®y Y is uniformly non-square if and
only if X andY are uniformly non-square and the convex function i is neither ¥y
nor Yeo, where 1 and s are the corresponding convex functions to the £1- and
lso-norms on C2, respectively.

In the same paper [9] it was asked to extend this result to the finitely many Banach
spaces case. Dowling-Saejung [7] presented a partial answer in terms of properties
TN and T under the condition that the v-norm || - ||, is strictly monotone. In
the recent paper [5] of Dompongsa, Kato and Tamura an equivalent result was
presented by means of a class of convex functions \Ifg\l,) which yield ¢1-like norms: Let
Xi,..., XN be uniformly non-square Banach spaces and || - || is strictly monotone.
Then, the v-direct sum (X1 @ --- @ Xn)y s uniformly non-square if and only if
vy,

In this paper we shall extend this result to characterize the uniform non-¢}-ness
of the v-direct sum of uniformly non-square Banach spaces Xi,..., Xn by means
of the convex function ¢ (Section 4, Theorem 4.8). In the course of doing this we
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shall introduce and investigate subclasses \Dﬁ\l,’n) of the class \Ilg\lf), which enables

us to make precise observations on the structure of the class \I'%) (Section 3). In
particular a norm on C which is uniformly non—ﬁfrl but not uniformly non-¢7}
will be easily constructed (Section 4, Example 4.10). As a corollary the uniform
non-¢7-ness of C will be characterized (Corollary 4.9).

Finally, in Section 5 we shall observe that some of our main results hold true for
more general A-direct sums, those with the norm induced from an arbitrary norm
on RV ([5]), a fortiori, for the Z-direct sums.

2. PRELIMINARIES

A norm |- || on CV is called absolute if ||(21,...,2zn5)|| = |(|z1],- .-, |2x])|| for all
(21,...,2n) € CN, and normalized if ||(1,0,...,0)|| =--- = ||(0,...,0,1)|| = 1. The
collection of all absolute normalized norms on C¥ is denoted by ANy. A norm || -||
on C¥ is called monotone provided that

(2.1) H(Zl,... ,ZN)H < H(wl,. . .,wN)|| if |Zj| < \wj] (1 S] < N),

and is called strictly monotone if it is monotone and the inequality (2.1) is strict if
|zj| < |w;| for some j. The following fact is known.

Proposition 2.1 ([1]). A norm ||-|| on CV is absolute if and only if it is monotone.
For strict monotonicity we have the following.

Proposition 2.2 ([14]). Let ||| be an absolute norm on CN. Let (z1,...,zy) € CN
and let 0 < |z;| < |wj| with w; € C for some 1 < j < N. Then the following are
equivalent.

J J

(1) I(z1, o525, 2n)|| < (=152 wjy .oy 2N) ]
J j

(i) I(z1,---5 05-vs2n)]] < |[(215- -, wjy ..y 28) ]

For every absolute normalized norm on C¥ there corresponds a unique convex
function 1 on the standard N-simplex Ay C RV~ and vice versa ([17]; cf. [2] for
the case N =2): Let || - || € ANy and let

(22)  Y(s) = ”(1 —NZ_lsi,sl,...,sN_1>‘

=1

for s = (s1,...,8n-1) € Ap,

where

N-1
Ay = {3: (S1y.+.,SN-1) e RV Zsi <1, s 20}.
i=1
Then, v is convex (continuous) on the convex set Ay and satisfies the following.

(AO) ¢(0770):¢(1,07a0)::¢(07’071):17
~1

N N-1
(A1) Y(s15.--58n-1) = (Z&)d}( ]\fil - Sjifv__ll ) if0< > s <1,
i=1

*
i=1 D1 Si dim1 Si
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s SN— .
(A2) w(sl,...,sN_l)2(1—31)¢<O,1 2 e N 1) ifo<s; <1,
— S1 1—81
......... \ .
(An) ¢(31,---75N—1)2(1—51\[—1)@1}(1 L 70>
— SN-1 1—sn_1

if0<sy_1<1.

The converse holds true: Denote by Wy the class of all convex functions v on
A satisfying (Ag) — (An). For any ¢ € ¥y define

|22] |2n |
<Z§V:1 |Zj|) ¢<N.’ cees N>
23) [(z1see 2l = 2yl - ZF}VQ 0.....0),
0 if (z1,...,2n) =(0,...,0)

Then || - ||, € ANy and || - ||, satisfies (2.2).
For the ¢,-norm || - ||, € ANy:

{|z1|P +--- + |ZN|p}1/p if1<p< oo,

||(Z17""ZN)||I7 = {

max{|z1],..., |zn]|} if p= o0,

the corresponding convex function v, is given by

_ P 1/p .
{(1—Zij\illsi> —1—311’—1—'--—1—8?\,_1} if 1 <p< oo,
Yp(s) =
max{l—Zfi}lsijsl,...,sz\/,l} if p=oo
for s = (s1,...,8ny-1) € An. In particular, the convex function corresponding to

the ¢1-norm is 11 (s) = 1. For any ¢ € U we have || - [|oc < || - |l < || - |1 ([17]).
Let X1, ..., Xy be Banach spaces and let ¢ € Uy. The t-direct sum (X, @ --- @
XnN)y is their direct sum equipped with the norm
It ozl = Il i)y for (@1, on) € Xy @+ ® Xy
([8,18]).

3. Suscrasses U™ or W)

Recently, the present authors [14] (cf. [15]) introduced a subclass \115\}) of Uy
consisting of those functions which yield ¢;-like norms (or ”partial ¢1-norms”) as
follows:

Definition 3.1 (cf. [14-16]). Let v € ¥y. We say ¢ € \115\1,) if there exists
(ai,...,an) € Rf (with non-negative entries) and some nonempty proper subset 7'
of {1,...,N}

I(a1, .. an)lly = [(xr(Dar, ..., xr(N)an)lly + [[(xre(D)ar, . .., xre(N)an) |y,
where (xr(1)a1,...,xr(N)ayn) and (x7e(1)aq,. .., xre(N)ay) are nonzero.
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It is obvious that the ¢1-norm satisfies this property, and in the case N = 2,
V= {11}. We refer the reader to [14, 16] for several examples. The functions 1)

n \I/S\I,) are characterized as follows:
Theorem 3.2 ([14]). Let ¢ € Y. Then the following are equivalent.
(i) ¥ € vy

(ii) There exists an element (s1,...,sNy—1) € An and some nonempty subset S
of {1,..., fl}wzthO<M ZleS()51<1
1)s N —1)sy—
¢(517-~75N—1) = M¢ <XS§W) 1)"'7XS( M) N 1>
Xsc(l)sl XSC(N - 1)8]\[,1
1-M e .
ra-any (et ey

Now, we shall introduce subclasses \Ilg\l,’n) of \115\1,), which will enable us to make

1)

more precise investigation on \I'EV .

Definition 3.3. Let ¢ € Uy and let 2 < n < N. We say ¢ € \IIS\}’") if there

exist (ai,...,an) € Rf and mutually disjoint nonempty proper subsets 11, ...,7T,
of {1,..., N} with U}_,T}, = {1,..., N} such that

(3.1) (a1, an)lly = ZH (xz (Day, -, xz (N)an)

where (x7,(1)a1, ..., xn, (IN)ayn) are nonzero.
The next inequalities are useful.

Lemma 3.4 (Sharp triangle inequality: [10]). Let X be a Banach space. Then, for
nonzero ri,...,rny € X

< H |xj|yH>1<<N’ zi

N N
.
< E < E —|[> =
el <N H = Nl H> 1SN ;1]

Theorem 3.5 (cf. [16, Theorem 7]). Let ¢p € U and let 2 < n < N. Then, the
following are equivalent.
(i) v e o™,
(ii) There ezist (a1,...,an) € ]RJX and mutually disjoint nonempty proper sub-
sets Ty, ..., Ty of {1,..., N} with Up_T), = {1,..., N} such that

N

j= 1

I(ar, . an)lly = > Il 0cr (Da, - -, xz, (N)aw) ||y,

where ||(x7,(1)a1, ..., x7,(N)an)|| =1 for 1 <k <n.
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(iii) There exist (ai,...,an) € ]Rf and mutually disjoint nonempty proper sub-
sets T, ..., Ty of {1,..., N} with Up_ T}, = {1,..., N} such that for every
1<k<n

l(a, ... an)lly = O (Dar, - .- x7, (N)an) |y
I (xrg(War, ... xae(N)an) ||y,
where (x7,(1)a1, ..., x1,(N)an) are nonzero.
(iv) There exist (s1,...,SN—1) € An and nonempty subsets Si,...,S, of

{1,...,N =1} with 0 < M}, := Zf\;l Xs, (1)si <1 such that

Xs, (1)s1 X5, (N = 1)sn—1
T A

(32) w(sl,...,SN_l) = MH/)(

Xse(1)s1 Xsg (N —1)sy—1
1-M k e k
+( k)l/}(l_Mk, VA
for every 1 < k < n, where S{,S2,...,S, are mutually disjoint and S{ U

(Up_oSk) ={1,...,N — 1} (S{ can be empty).
Proof. The implication (ii) = (i) is trivial. Conversely, assume that 1 € \Ifg\lf’n),
and let (a1,...,an) € R_]X and T1,...,7, be as in Definition 3.3. Let v, =
(x7,(Daq,...,x7,(N)an), 1 <k <n. Then, by Lemma 3.4

n n n
Vg .
— < .
+ (n > H )é}gn\\vk\lw <D loxlly
¥ k=1 ¥ k=1

D
okl
Hence by (3.1) we have

k=1

:’)’L7

n
> o
2 Tonl |,
which implies (ii). The implications (ii) <> (iii) is obtained in [16, Theorem 7].
(iif) = (iv). Let (a1,...,an) € RY and Ty,...,T, be as in (iii). Without loss of
generality we may assume that 77 > 1. Let
Sp=Tp—1for2<k<mnand S, =17 — 1.

Then, S1,52,...,S5, are nonempty and S{, S, ..., S, are mutually disjoint. In fact,
Sa, ..., Sy, are evidently mutually disjoint. If we have j € S{NS) for some 2 < k < n,
then j + 1 ¢ 1Y, while j + 1 € T}, a contradiction. Also it is immediate to see that
SfU(Up_58k) ={1,...,N —1}. Let
Qi+1

~ for1<i< N -—1.
Zj:laj

S; =

Let & > 2. Then, we have
l(at,. .. an)lly = [(0,x1.(2)az ..., x5, (N)an) |y
+ (a1, xTe(2)az, . .., x7e (N)an) ||y,
from which it follows that

N-1
S S = 1)8; Xsk(l)sl o XSk (N B l)sN—l
¢( 1s-:: N*l) <;XSIC( ) Z>¢<ZZ]\L_11XSIC(Z)817 ’ Zf\i_llxsk(l)sz >
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N-1
. Xse(1)s1 xse(N —1)sn-1
+<1 - Z XS, (z)si)¢< ] — T . ,
i=1 1 =300 X8, (0)si 1 =300 X8 ()8

or (3.3) with My, = SN 7! xs, (i)s; (see [14,16] for the same discussion). Let k = 1.
Then, since

(a1, an)lly = [(xry (Das -« xn (N)an) [y + [[(xrg(Dars - .. xre (N)an) ||y,
we have
N-1 N-1
H (1 — Z Siy 81, .,8N1> H = H <1 — Z siy xss(1)s1, -+, xse(N — 1)SN1> H
i=1 P i=1 P
=+ ||(O7X5'1(1)817 < XS (N - 1)SN—1)||T/J‘

Here the both terms of the right side term are not zero (see Remark 3.6). Therefore
we have 0 < M; = Zf\i ' xs,(i)s; < 1. From the foregoing formula it follows that

1/}(813 s 7SN71)
N—-1
o, L Xsg(1)s1 Xsg(N —1)sy—1
B (1 2 (Z)S’>¢<1 s s U 1I- Y s, (z‘)s)

e ]

=1 XSI =1 XS1

or (3.3) with M; = Zf:ll Xs, (7)s;. We note that in the above argument, if 73 = {1},
we have S} = {1,...,N — 1}, or S{ = 0.

(iv) = (iii). Let (s1,...,s8n-1) € Ay, S1,...,S, and M be as in (iv). Then we
have

(3.3) H (1 - NZ_:S S1y.ens SN_1>

N
+ H (1 —> si xse (Vs oy xse(N — 1)3N—1>
=1

] 0 x5, (D515 s x5 (N — D))
P

)

X

where (0, xs, (1)s1, .-, x5, (N=1)sy-1), (1=3"10 86, xs¢ (1)s1,- -, xse (N—1)sn-1)
are nonzero. Let

N-1
(a17a27"'7aN):<1_ E Si7817"’78N—1>
i—1

and let
T, =Sk +1for k>2and Th = (ST +1) U{1}.

Then, T}’s are mutually disjoint and their union is {1,..., N}. From the formula
(3.3) we have for k > 2

H(alv az,..., aN)”’LZJ = H<07XTI¢(2)0’27 <o 7XTI¢(N)CLN)”’¢J
+(a1, xre(2)az, ..., xre(N)an) |y,
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where (0, x73,(2)az, - .., xz, (N)an), (a1, xtg(2)az, . .., xre(N)ay) are nonzero. If
k =1, since xs, (i) = x7¢(i + 1), we have by (3.3)
a1, a2, an)lly = 1100, x7¢(2)az, ..., xre(N)an)lly
+ll(a1, XT1 (2)az, ..., XT (N)CLN)Hlb‘
This completes the proof. Il
Remark 3.6 ([16, Remark 2]). We note that in Theorem 3.5 (iii) we have that

(xte(L)ar, ..., xTe (N)an) are nonzero from the assumption (xr, (1)at, ..., xz, (N)an)
are nonzero.

Proposition 3.7. \Il(l) \Il(l 2 5 \11(1 N \IJ (1,N) _ = {41}

Proof. Let 2 < n < N. It is obvious that \Ilgv) = \Il( 2 So we shall show that
\Il%’n) > \Il(1 ") and \If(l M = {¢1}. Assume that ¢ € \I'(l "t Then there

exist (a1,...,an) € RY 2 and mutually disjoint nonempty Subsets Ti,...,The1 of
{1,...,N} w1th U Ty = {1,..., N} such that
n+1

(a1, 7aN)||¢ = Z ||(XTk(]‘>a1? S 7XTk(N)aN>”¢7

where (x7,(1)a1,...,x7,(IN)an) are nonzero. Then we have
n+1

l(ar..an)lls = | Yo tem@ar. . xn (Waw) |
k=1
= || Yt e (Nan) + (erut Wan - xrus (Vaw) |
=1
< Z H(XTk(l)ala <oy XTy, (N)CLN)Hw + ”(XTnUqu(l)al? <oy XTUT g1 (N)QN)Hiﬁ

<D I0en (War, - xr (Naw) |y

= H(alv"‘ 7aN)||'¢J7

from which it follows that

H(al,..., ||1j) ZH XTk ala“'vXTk(N)a’N)Hw

+H(XTnuTn+1(1)ah e s XTuUTngr (N)an) ||y

Since (Uz;%Tk)U(TnUTn+1) = {1, ce ,N} and (XTnUTn.H(l)aL e s XTuUT g1 (N)CLN)
. (1,n)
is nonzero, we have ¢ € W,
Next, assume that ¢ € lllg\lf’N). Then, we can take (aj,...,ay) € Rﬂy so that

N k

N
||((11,...,CLN)H¢ :ZH(077075;670770)H¢ :Za’ka
k=1

k=1
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where a;, > 0. Let M = Z]kvzl ar. Then
(5 55) = ar/M, . an /M) = 1,
which implies that i) = 1)1, as 1 is convex (cf. [16, Theorem 1]). This completes the
proof. O

Example 3.8. Let 2 < n < N. The inclusion \Il(l R \Il(l n+1)

define an absolute normalized norm on CV by

is strict. In fact,

n

l(a1,...,an)|| :max{Zaj, anH,...,aN} for (ay,...,ay) € CV.

j=1

The corresponding convex function v is given by

N—
P(s) = max{l — Z 84, sn,...,sN_l} for s = (s1,...,8n-1) € An.

Then, ¢ € \I/S\I,’n)\\ll%’n—i_l). In fact,

n

,—/\‘ -
I, Hw—n—ZH 0,5 0)fy-

I—‘??‘

Therefore, ¥ € \I/%’"). Next, suppose that i € \Ilg\lf’nﬂ). Then there exist
(ai,...,an) € ]R and mutually disjoint nonempty proper subsets T17,...,Th 41
of {1,..., N} with U”‘HT = {1,..., N} such that

n+1
I(ar, - an)lly = > I 0cr (Day, - ., xz, (N)ay) ||y,

where (x7,(1)a1,...,x7.(N)an) are nonzero. Then, for some 1 < k < N, T}, C
{n+1,...,N}. Without loss of generality we may assume that T}, = T},+1. Since
n+1 n+1
s als = | (R rno 3 n x|
k=1
<

H (;xml)al, . .,gmwm) H¢

+H(XT7L+1(]‘)G’17 <o s XTg1 (N)CLN)HUJ
n+1

> e (War, . xo, (Naw) [y,

IN

we have

@1, am)lly = H(;mﬂ)ah--";;XT'C(N)“@Hw

+H(XTn+1(1)a17 <o s XTg (N)GN)Hw‘
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Here, we obtain that

(3.4) I(a,...,an)|y = H <Zm ar, .. .,ZXTk(N)aN> H
k=1 P
or
(3.5) (a1, . ;an)lly = (X7 (Dar, - XT iy (N)an) ||y
Indeed,
H(ah s 7aN)HTZJ = maX{H(ah s ,Cln)Hl, H(an-i-h s 7aN)HOO}
and

H <ZXTk(1)a17 ) ZXTk(N)GN) H
k=1 k=1
=max{[|(ar,...,an)[l1, [[(xrg,,(n+Dans1, ..., x5, (n+ 1an)||o},

H(XTnJrl(l)alv <o s XTpt (N)GN)HIP
= maX{||(XTn+1 (1)&1, <oy XTnt1 (n)an)Hlﬁ
(X2 (+ Dant1s oo X7 (V) 0N ) [loo

= [(X2sa (0 + D)angr, - X1y (v)0N) [l oo

Now, let |[(a1,...,an)|l1 > |[(an+1, .-, aN)||co. Then

o sl = 1, s = | (xS )|

r (3.4). Let |[(a1,...,an)|l1 < [[(@nt1,---aN)|lco- Then, if |[(ant1,-..,an)|lcc =
[(XTysr (0 + Dangt1, ..o, XTxir (P + 1)an) oo, we have

(a1, san)lly = l(ant1s- - an)llo = [[(XTa (D@1, - - X7y (N)an) ||y

r (3.5). If [(ant1,---an)|loo = H(XT]cVH(n + Danti,---5 X N+1(n+ 1an)| oo, we
have

Iar,- o am)lly = [ @nsrs- - ax)lloo = H(gxnu)al,...émwm)\

or (3.4). Since (x7,(1)a1,...,x7,(IN)an) are nonzero and 11, . .., Tj,+1 are mutually
disjoint, (3> p_; x7, (1)a1,..., > p_q x7.(N)an) is nonzero. Therefore we have

(a1, - an)lly < H(ZXT’“ al""’gXT’“(N)aN>Hw

+||(XTn+1(]‘)a’l’ sy XT 1 (N)aN)H'lZJ’

9

¥

which is a contradiction. Thus, we have ¢ ¢ \IJ (Lnt1),
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4. UNIFORM NON-/]-NESS

A Banach space X is called uniformly non-¢}, n > 2, if there exists a constant
€ > 0 such that

n
mm{ E Ojx;
i=1

where Sx is the unit sphere of X. When n = 2, X is called uniformly non-square.
It is known that every uniformly non-¢7 space is uniformly non—E’fH. In fact, we

have the following.

:Hj—il} < N(1—¢) for all z1,...,z, € Sx,

Lemma 4.1. Let X be a Banach space and let {a;,(cl)}, .

the unit sphere of X. Let 1 < m <n. Then,

- ) : . (9)
If 1 E = 1 E
f kgrrolonz1 xy n, then lim H xy

k—oo || 4
Jj=1

.,{x,&n)} be n sequences in

=m.

Proof. Assume that limye0 | D274 x]ij) | = n. Then

n

Z x,ﬁj)

j=m+1

Z J)” Zx

j=m+1

3
v

(J)

Vv

for all k, from which it follows that limg_ o || D" O

j=1 j H =

Recently Kato and Tamura [16] showed the following result which is equivalent
to Dowling and Saejung’s result in [7].

Theorem 4.2 ([16, Theorem 10]; cf. [7, Theorem 13]). Let X1,..., Xy be Banach
spaces and let | € V. Assume that ||-||y is strictly monotone. Then, the following
are equivalent.

(i) (X1 @---® Xn)y is uniformly non-square.

(i) X1,..., XN are uniformly non-square and ¢ ¢ Wy o

In the case N = 2, \I/gl) = {¢1}. Therefore we obtain the next result.
Corollary 4.3. Let X and Y be Banach spaces and let ¢ € Uy. Assume that || - ||y
is strictly monotone. Then, the following are equivalent.

(i) X @y Y is uniformly non-square.
(ii) X and Y are uniformly non-square and 1) # ;.

Remark 4.4. This result should be compared with the previous result in [9] without
the assumption on strict monotonicity of || - ||y: X @y Y is uniformly non-square if
and only if X and Y are uniformly non-square and ¢ # 1, so-

Theorem 4.2 especially asserts the following.
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Corollary 4.5. Let X1,..., Xy be uniformly non-square Banach spaces. Let 1 €
Uy and assume that the norm || - || is strictly monotone. Then the following are
equivalent.

(i) (X1 @---® Xn)y is uniformly non-square.
(if) v ¢ Uy
In the following, we shall characterize the uniform non-¢}-ness of (X1 & --- @
XnN)y for uniformly non-square spaces X1, ..., Xy. First we note that the ¢1-sum

(X1®---®Xx)1 cannot be uniformly non-¢Y¥ for any spaces X1, ..., Xy (recall that
% is embedded into the direct sum of X;’s). To the contrary we have the following.

Theorem 4.6 ([12]). Let Xy,...,Xn be uniformly non-square. Then (X1 @ --- @

Xn)1 is uniformly non—éjlv"’l.

We are now in a position to present the main result, which extends Corollary 4.5.

Theorem 4.7. Let X1,..., XN be uniformly non-square Banach spaces. Let ¢ €
Uy and let || - ||y be strictly monotone. Let 2 < n < N. Then, the following are
equivalent.

(i) (X1 @---® Xn)y is uniformly non-C7.
(ii) o ¢ vy,
Proof. (i) = (ii). Suppose that ¢ € \I!S\}’n). Then, by Theorem 3.5 there exist

(a1,...,an) € ]Rf and mutually disjoint nonempty proper subsets 11,...,7T;, of
{1,...,N} with U_, T}, = {1,..., N} such that

Iar, .. am)lly = Y e (Dar, - xz (Naw)

and ||(x7,(1)ai,...,xr,(V)an)| = 1. Then, for any signs 0 = +1

H <ZekXTk )ai, . . Z OrxT, (N

[(Ok,a1, -, Okyan)lly
= H(ah"'?aN)”’l/) =n,
where k;,1 < j < N, is chosen so that j € T}, for j € {1,..., N}. This implies that
(X1 ®--- ® Xn)y is not uniformly non—ﬁ’f.
(ii) = (i). Suppose that (X; @ --- ® Xy), is not uniformly non-¢7. Then

znzgk(XTk(l)al’ o ,ka(N)aN)H

: )

there exist n sequences {(:1:11 . x%)l)}g {(xgiz, . an)}g in the unit sphere
of (X1 @ ---® Xn)y such that

) )

(4.1) TN

=n for all 6, = £1.
Y

By taking subsequences if necessary, we may assume that

{—00

: 0 — : 0 —
eyl = awk, .., lim [leyll = ey
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Then
(4.2) ||(a1k, . ,CLNk)||¢ =1forl < k <n.
By the formula (4.1) and Lemma 4.1, we have for any 1 <p < g <n
: ) (0 (0 (©) _
Eli>rgc> ”(xlpv" . 7pr) + (xlq s 7qu>H1lJ =2.
Then
. l 4 J4 l
2 = Jim @), 2l,) = (@), 2l
_ : @ : (0
= [(lim [l £ lim ), £ 20 Dl
. Y4 . . . 4
< [l )]+ tm [l Tim e+ lim (2 Dl
4 . 4 4 . 4
< NQtm - Jim [l Dl + 11 (a3 lm (2D
—00
. /4 l .
= lim (il Dl + Jim (1l 2y Dl =2,
from which it follows that
4 . l l
Ilim flay) £ 2501, ., lim [l = 20 Dl
_ : (©) ) : @) : (0
= [|(lim [l + lim {2, lim [lef, | + lim [l Dlls-
By strict monotonicity of || - ||, we have
. Y4 . 4 .
(4.3) hm ||m :l:x || = elgrolo ||m§.p)|| +£11>1£10 ng-q)H =ajp+ajq forall1 <j < N.

Then, we have for every 1 < j < N
(4.4) min{a;p,a;q} =0forall 1 <p<gq<mn,

which implies that {k : a;, > 0} is at most a singleton for every 1 < j < N. Indeed,
suppose that for some 1 < j < N andsomel <p<qg<n

min{azy, ajq} = ming lim 257, Jim 0]} > 0.

By Lemma 3.4, for sufficiently large ¢,
() (0
€T\ €T\

n”ixu+(

Jp jq
+
¢ ¢
[ I Eel|
Letting ¢ — oo, we have

©
D il I, 251} < le§)1l+ 251

(4) ()
Y4
e ]! H|@m
by (4.3), which contradicts to the uniform non-squareness of X;. Therefore, we
have (4.4).
Next let

Tk:{j:ajk>0}for1§k<n
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and

Tn={j:aj>0tU{j:a;,=0forall<k<n}
Then, by (4.2) the sets T1,...,T;, are nonempty and clearly Uy_ T}, = {1,...,N}.
Since the set {k : a;, > 0} is at most a singleton for every 1 < j < N, the

sets T1,...,Tp—1,{j : ajn > 0} are mutually disjoint, and therefore T1,...,T), are
mutually disjoint. To obtain the conclusion we shall first see that

(4.5) Za]k = Zka J)aji forall 1 < j < N.

Indeed, since {k : aj;, > 0} is at most a singleton, if {k : aj;, > 0} is nonempty for
some 1 < j < N, there exists a unique 1 < k; < n such that {k : a;, > 0} = {k;}.
Hence, aji; > 0, or j € Ty,. Therefore, in this case, we have

n
Zajk = ajkj = XTk a]/c - ZXTk a]kv
k=1

r (4.5). If aj, = 0 for all 1 < k < n, the equation (4.5) is obvious. Next, by the
formulae (4.1) and (4.5) we have

. - ¢
= < lim ZOkaﬁ ,elgn kzlﬁkmgv)k )H
< (S0 i Z 1efi) |
k=1

= <Zalk7"'7za’]\”€>H

k=1 k=1 ()
= <ZXTk(1)a1ka . -aZXTk(N)aNk> H

k=1 k=1 P
< D lxr, (Dak, - xz, (Nan) |l

n
< Z H(alkﬂ“ . 7a’Nk)H1/1 =n
k=1

from which it follows that

n

> (e Wak, - - xr (N)ank)
k=1

(4.6)

) _ Z |(xT, (Daik, - -, x1, (N)ang)||y
1

=T
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Noting that

n
> (e Wark, - xn (Nank)|| = a1k, - - anky),
k=1 P
where j € Ty, 1 <j < N, we have
n
(@1kss - anky) = DO Dark, - xa, (NVank) |y
k=1
= > G (Wasks - xn, (Nank) [l
ke{kl,...,kz\]}
= Z [(xr, (Datkys - X1, (N)anky )|y
ke{k17vk1\]}
Here, the last identity is valid since
X1y, (Daik, 1k, Xy, (1aik,
XTy, (1)a1k2 _ 0 _ X Ty (1)a1k1
XTiy, (1)a1ky 0 X, (1)aik,
and the same is true for the rest columns. By (??), (x7,(1)ais,,- -, x7,(N)anky)
are nonzero. Consequently, we have ¢ € \I/S\lf’n). This completes the proof. O

In the case n = 2, \1’5\1,’2) = \IJS\I,). Thus, Theorem 4.7 includes Corollary 4.5.

Also, if n = N, \IJS\II’N) = {¢1}. Therefore, Theorem 4.7, combining Theorem 4.2, is
reformulated as follows.

Theorem 4.8. Let X1,..., XN be uniformly non-square Banach spaces. Let ¢ €
Un and let || - ||y be strictly monotone. Let n > 2.

(i) When n = 2, (X1 ® - - ® Xp)y is uniformly non-square if and only if
vy,
ii) When 2 < n < N, (X1 ® --- @& Xn)y is uniformly non-£% if and only if
(4 1
b uyt.
iii) Whenn =N, (X1®---® Xn)y is uniformly non-tY if and only if 1 # 1.
(U 1
iv) Whenn > N+ 1, (X1® -+ ® Xn)y is uniformly non-tN', and hence
(4 1
uniformly non-£7.

For the assertion (iv), if ¢ # 1, (X1 @ - @ Xn)y is uniformly non-¢§ by (iii)
and hence uniformly non-¢7 for n > N + 1. If ¢ = 11, we have the conclusion by
Theorem 4.6.

As a direct consequence we have the following characterization of the uniform
non-¢7-ness for CV.

Corollary 4.9. Let ¢ € Uy. Assume that | - ||y is strictly monotone on CV. Let
n > 2.

(1) When n =2, (CN,||-|ly) is uniformly non-square if and only if 1 & ‘115\1,).
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(ii) When2<n < N, (CN,|-|ly) is uniformly non-€} if and only if 1 & \Ilg\lf’n).

(ii) When n= N, (CN,|| - |ly) is uniformly non-€ if and only if 1 # 1.

(iv) Whenn > N +1, (CN,|| - |ly) is uniformly non-tY+*, and hence uniformly
non-£7.

Example 4.10.

(i) Let 1 < p < 0o. The ¢,-norm || - ||, is strictly monotone and 1, ¢ \IJS\I,) (
cite[Example 5.10]KT3). Therefore, the £,-sum (CV, | - ||,) is uniformly
non-square.

(ii) Let 2 < n < N. Let ¢y € Uy be as in Example 3.8. Then, since 1) €
\lig\l,’n)\\lfg\l,’nﬂ), (CN,|l - |lyp) is uniformly non-¢}"*, but not uniformly non
0.

5. CONCLUDING REMARKS

According to Dhompongsa, Kato and Tamura [5] an A-direct sum (X1®---®Xn) A
is defined to be a direct sum equipped with the norm

(x1,...;zn)la == [|(J|lz1]l,-- -, lzn]])]|a for (z1,...,28) € X1 D+ @ XN,
where the norm || - ||4 in the right side is an arbitrary norm on RY. A Z-direct
sum is defined in the same way from a Z-norm || - ||z which is a norm on RY with

monotonicity property on Rf . Thus a -direct sum is a Z-direct sum, and a Z-
direct sum is an A-direct sum, while all of these notions are equivalent. In fact they
showed the following.

Theorem 5.1 ([5, Theorem 5.2]). For any A-direct sum there exists a 1 € Uy for
which the A-direct sum (X1 ®---®XnN)a is isometrically isomorphic to the -direct
sum (X1 @ - ® XN)y-

Now recall that a norm | - || on C¥ is said to have Property T} ( [7]) if for
all a,b € CV with |la|| = ||b|| = %[la + b|| = 1 one has supp a N supp b # 0,
where supp @ = {j : a; # 0}. A recent reuslt [5, Theorem 4.3] says that this
property is equivalent to ¢ ¢ \Ilg\l,) for a ¢¥-norm. Thus, owing to Theorem 5.1 we
shall immediately obtain some consequences for A-direct sums from our preceeding
results.

Corollary 5.2. Let Xi,...,Xn be uniformly non-square. Let || - || be an arbitrary
strictly monotone norm on RN . Then:
(1) (X1 ®---® XnN)a is uniformly non-square if and only if the norm || - || has
Property T} .
(ii) (X1 @ - @ Xn)a is uniformly non-tY if and only if | - || # || - ||1-
(ili) For alln > N +1, (X1 ®---® Xn)a is uniformly non-£7.

In particular we have
Corollary 5.3. Let || - || be an arbitrary strictly monotone norm on CN. Then:
(i) (CN,||-1)) is uniformly non-square if and only if || - || has Property Ti.

(ii) (CN, |- 1) is uniformly non-tY if and only if || - | # || - |1
(ii) For alln > N +1, (CN,||- ) is uniformly non-£}.
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We note that in the above two corollaries the corresponding results for the case

2 < n < N are not known because any equivalent property to ¢ ¢ \Ifg\lf’n) (free form
1) is not known, although we have results using 1 for which (X1 @ --- @ Xn)4 is
isometrically isomorphic to (X1 @ ---@® Xn)y from Theorem 4.8 and Corollary 4.9.
We shall close our discussion with an observation on a relation between the uni-
form non-suareness for direct sums and for the scalar case C"V. Betiuk-Pilarska and
Prus [3] showed that a Z-direct sum (X1 & --- & Xn)z is uniformly non-square if
and only if all the underlying spaces X1,..., Xy and the Z-norm || - ||z on RN are
uniformly non-square. By virtue of Theorem 5.1 this holds true for the A-direct
sum (X1 @®---® Xyn)a, while it remains still unknown when a given norm on RY is
uniformly non-square. The forgoing result in Corollary 5.3 is a partial answer.
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