Journal of Nonlinear and Convex Analysis Volume 16, Number 11, 2015, 2279–2295

ON THE UNIFORM NON- ℓ_1^n -NESS AND NEW CLASSES OF CONVEX FUNCTIONS

MIKIO KATO AND TAKAYUKI TAMURA

Dedicated to Professor Wataru Takahashi on the ocasion of his 70th birthday

ABSTRACT. Let X_1, \ldots, X_N be uniformly non-square Banach spaces. We shall characterize the uniform non- ℓ_1^n -ness of the ψ -direct sum $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ with a strictly monotone norm by means of the convex function ψ , which extends some recent results on the uniform non-squareness. In the course of doing this we shall introduce subclasses $\Psi_N^{(1,n)}$ of the class $\Psi_N^{(1)}$ of convex functions which yields partiall ℓ_1 -norms; this enables us to have precise observations on the structure of the class of $\Psi_N^{(1)}$. Our results hold true for A-direct sums, more general direct sums with the norm induced from an arbitrary norm on \mathbb{R}^N , a fortiori, for the Z-direct sums. As a corollary the uniform non- ℓ_1^n -ness will be characterized for \mathbb{C}^N , as well.

1. INTRODUCTION

Recently the uniform non-squareness and non- ℓ_1^n -ness have been discussed for direct sums of Banach spaces ([3–7,9,11–13,15,16], etc.) in connection with the fixed point property for nonexpansive mappings, super-reflexivity, and various estimates of geometric constants, etc. Our concern in this paper is originated from the following result ([9]): $A \psi$ -direct sum $X \oplus_{\psi} Y$ is uniformly non-square if and only if X and Y are uniformly non-square and the convex function ψ is neither ψ_1 nor ψ_{∞} , where ψ_1 and ψ_{∞} are the corresponding convex functions to the ℓ_1 - and ℓ_{∞} -norms on \mathbb{C}^2 , respectively.

In the same paper [9] it was asked to extend this result to the finitely many Banach spaces case. Dowling-Saejung [7] presented a partial answer in terms of properties T_1^N and T_∞^N under the condition that the ψ -norm $\|\cdot\|_{\psi}$ is strictly monotone. In the recent paper [5] of Dompongsa, Kato and Tamura an equivalent result was presented by means of a class of convex functions $\Psi_N^{(1)}$ which yield ℓ_1 -like norms: Let X_1, \ldots, X_N be uniformly non-square Banach spaces and $\|\cdot\|_{\psi}$ is strictly monotone. Then, the ψ -direct sum $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non-square if and only if $\psi \notin \Psi_N^{(1)}$.

In this paper we shall extend this result to characterize the uniform non- ℓ_1^n -ness of the ψ -direct sum of uniformly non-square Banach spaces X_1, \ldots, X_N by means of the convex function ψ (Section 4, Theorem 4.8). In the course of doing this we

²⁰¹⁰ Mathematics Subject Classification. 46B20, 52A21, 52A99, 26B25.

Key words and phrases. Absolute norm, convex function, partial ℓ_1 -norm, direct sum of Banach spaces, uniform non-squareness, uniform non- ℓ_1^n -ness.

The authors were supported in part by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science No. 26400131.

shall introduce and investigate subclasses $\Psi_N^{(1,n)}$ of the class $\Psi_N^{(1)}$, which enables us to make precise observations on the structure of the class $\Psi_N^{(1)}$ (Section 3). In particular a norm on \mathbb{C}^N which is uniformly non- ℓ_1^{n+1} but not uniformly non- ℓ_1^n will be easily constructed (Section 4, Example 4.10). As a corollary the uniform non- ℓ_1^n -ness of \mathbb{C}^N will be characterized (Corollary 4.9).

Finally, in Section 5 we shall observe that some of our main results hold true for more general A-direct sums, those with the norm induced from an arbitrary norm on \mathbb{R}^N ([5]), a fortiori, for the Z-direct sums.

2. Preliminaries

A norm $\|\cdot\|$ on \mathbb{C}^N is called *absolute* if $\|(z_1, \ldots, z_N)\| = \|(|z_1|, \ldots, |z_N|)\|$ for all $(z_1, \ldots, z_N) \in \mathbb{C}^N$, and *normalized* if $\|(1, 0, \ldots, 0)\| = \cdots = \|(0, \ldots, 0, 1)\| = 1$. The collection of all absolute normalized norms on \mathbb{C}^N is denoted by AN_N . A norm $\|\cdot\|$ on \mathbb{C}^N is called *monotone* provided that

(2.1)
$$||(z_1, \ldots, z_N)|| \le ||(w_1, \ldots, w_N)||$$
 if $|z_j| \le |w_j|$ $(1 \le j \le N)$,

and is called *strictly monotone* if it is monotone and the inequality (2.1) is strict if $|z_j| < |w_j|$ for some j. The following fact is known.

Proposition 2.1 ([1]). A norm $\|\cdot\|$ on \mathbb{C}^N is absolute if and only if it is monotone.

For strict monotonicity we have the following.

Proposition 2.2 ([14]). Let $\|\cdot\|$ be an absolute norm on \mathbb{C}^N . Let $(z_1, \ldots, z_N) \in \mathbb{C}^N$ and let $0 < |z_j| < |w_j|$ with $w_j \in \mathbb{C}$ for some $1 \le j \le N$. Then the following are equivalent.

(i)
$$\|(z_1, \dots, \overset{j}{z_j}, \dots, z_N)\| < \|(z_1, \dots, \overset{j}{w_j}, \dots, z_N)\|$$

(ii) $\|(z_1, \dots, \overset{j}{0}, \dots, z_N)\| < \|(z_1, \dots, \overset{j}{w_j}, \dots, z_N)\|.$

For every absolute normalized norm on \mathbb{C}^N there corresponds a unique convex function ψ on the standard N-simplex $\Delta_N \subset \mathbb{R}^{N-1}$ and vice versa ([17]; cf. [2] for the case N = 2): Let $\|\cdot\| \in AN_N$ and let

(2.2)
$$\psi(s) = \left\| \left(1 - \sum_{i=1}^{N-1} s_i, s_1, \dots, s_{N-1} \right) \right\| \text{ for } s = (s_1, \dots, s_{N-1}) \in \Delta_N,$$

where

$$\Delta_N = \left\{ s = (s_1, \dots, s_{N-1}) \in \mathbb{R}^{N-1} : \sum_{i=1}^{N-1} s_i \le 1, \ s_i \ge 0 \right\}$$

Then, ψ is convex (continuous) on the convex set Δ_N and satisfies the following.

$$(A_0) \ \psi(0,\dots,0) = \psi(1,0,\dots,0) = \dots = \psi(0,\dots,0,1) = 1,$$

$$(A_1) \ \psi(s_1,\dots,s_{N-1}) \ge \Big(\sum_{i=1}^{N-1} s_i\Big)\psi\Big(\frac{s_1}{\sum_{i=1}^{N-1} s_i},\dots,\frac{s_{N-1}}{\sum_{i=1}^{N-1} s_i}\Big) \text{ if } 0 < \sum_{i=1}^{N-1} s_i \le 1,$$

The converse holds true: Denote by Ψ_N the class of all convex functions ψ on Δ_N satisfying $(A_0) - (A_N)$. For any $\psi \in \Psi_N$ define

(2.3)
$$\|(z_1, \dots, z_N)\|_{\psi} = \begin{cases} \left(\sum_{j=1}^N |z_j|\right) \psi\left(\frac{|z_2|}{\sum_{j=1}^N |z_j|}, \dots, \frac{|z_N|}{\sum_{j=1}^N |z_j|}\right) \\ \text{if } (z_1, \dots, z_N) \neq (0, \dots, 0), \\ 0 & \text{if } (z_1, \dots, z_N) = (0, \dots, 0) \end{cases}$$

Then $\|\cdot\|_{\psi} \in AN_N$ and $\|\cdot\|_{\psi}$ satisfies (2.2). For the ℓ_p -norm $\|\cdot\|_p \in AN_N$:

$$\|(z_1, \dots, z_N)\|_p = \begin{cases} \{|z_1|^p + \dots + |z_N|^p\}^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{|z_1|, \dots, |z_N|\} & \text{if } p = \infty, \end{cases}$$

the corresponding convex function ψ_p is given by

$$\psi_p(s) = \begin{cases} \left\{ \left(1 - \sum_{i=1}^{N-1} s_i\right)^p + s_1^p + \dots + s_{N-1}^p \right\}^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{1 - \sum_{i=1}^{N-1} s_i, s_1, \dots, s_{N-1}\} & \text{if } p = \infty \end{cases}$$

for $s = (s_1, \ldots, s_{N-1}) \in \Delta_N$. In particular, the convex function corresponding to the ℓ_1 -norm is $\psi_1(s) = 1$. For any $\psi \in \Psi_N$ we have $\|\cdot\|_{\infty} \leq \|\cdot\|_{\psi} \leq \|\cdot\|_1$ ([17]).

Let $X_1, ..., X_N$ be Banach spaces and let $\psi \in \Psi_N$. The ψ -direct sum $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is their direct sum equipped with the norm

$$\|(x_1, \dots, x_N)\|_{\psi} := \|(\|x_1\|, \dots, \|x_N\|)\|_{\psi} \text{ for } (x_1, \dots, x_N) \in X_1 \oplus \dots \oplus X_N$$

([8,18]).

3. Subclasses
$$\Psi_N^{(1,n)}$$
 of $\Psi_N^{(1)}$

Recently, the present authors [14] (cf. [15]) introduced a subclass $\Psi_N^{(1)}$ of Ψ_N consisting of those functions which yield ℓ_1 -like norms (or "partial ℓ_1 -norms") as follows:

Definition 3.1 (cf. [14–16]). Let $\psi \in \Psi_N$. We say $\psi \in \Psi_N^{(1)}$ if there exists $(a_1, \ldots, a_N) \in \mathbb{R}^N_+$ (with non-negative entries) and some nonempty proper subset T of $\{1, \ldots, N\}$

$$\|(a_1, \dots, a_N)\|_{\psi} = \|(\chi_T(1)a_1, \dots, \chi_T(N)a_N)\|_{\psi} + \|(\chi_{T^c}(1)a_1, \dots, \chi_{T^c}(N)a_N)\|_{\psi},$$

where $(\chi_T(1)a_1, \dots, \chi_T(N)a_N)$ and $(\chi_{T^c}(1)a_1, \dots, \chi_{T^c}(N)a_N)$ are nonzero.

It is obvious that the ℓ_1 -norm satisfies this property, and in the case N = 2, $\Psi_2^{(1)} = \{\psi_1\}$. We refer the reader to [14,16] for several examples. The functions ψ in $\Psi_N^{(1)}$ are characterized as follows:

Theorem 3.2 ([14]). Let $\psi \in \Psi_N$. Then the following are equivalent.

(i) $\psi \in \Psi_N^{(1)}$. (ii) There exists an element $(s_1, \dots, s_{N-1}) \in \Delta_N$ and some nonempty subset Sof $\{1, \dots, N-1\}$ with $0 < M := \sum_{i=1}^{N-1} \chi_S(i) s_i < 1$,

$$\psi(s_1, \dots, s_{N-1}) = M\psi\left(\frac{\chi_S(1)s_1}{M}, \dots, \frac{\chi_S(N-1)s_{N-1}}{M}\right) + (1-M)\psi\left(\frac{\chi_{S^c}(1)s_1}{1-M}, \dots, \frac{\chi_{S^c}(N-1)s_{N-1}}{1-M}\right).$$

Now, we shall introduce subclasses $\Psi_N^{(1,n)}$ of $\Psi_N^{(1)}$, which will enable us to make more precise investigation on $\Psi_N^{(1)}$.

Definition 3.3. Let $\psi \in \Psi_N$ and let $2 \leq n \leq N$. We say $\psi \in \Psi_N^{(1,n)}$ if there exist $(a_1, \ldots, a_N) \in \mathbb{R}^N_+$ and mutually disjoint nonempty proper subsets T_1, \ldots, T_n of $\{1, \ldots, N\}$ with $\bigcup_{k=1}^n T_k = \{1, \ldots, N\}$ such that

(3.1)
$$\|(a_1,\ldots,a_N)\|_{\psi} = \sum_{k=1}^n \|(\chi_{T_k}(1)a_1,\ldots,\chi_{T_k}(N)a_N)\|_{\psi},$$

where $(\chi_{T_k}(1)a_1, \ldots, \chi_{T_k}(N)a_N)$ are nonzero.

The next inequalities are useful.

Lemma 3.4 (Sharp triangle inequality: [10]). Let X be a Banach space. Then, for nonzero $x_1, \ldots, x_N \in X$

$$\begin{split} \left\| \sum_{j=1}^{N} x_{j} \right\| + \left(N - \left\| \sum_{j=1}^{N} \frac{x_{j}}{\|x_{j}\|} \right\| \right) \min_{1 \le j \le N} \|x_{j}\| \\ & \le \sum_{j=1}^{N} \|x_{j}\| \le \left\| \sum_{j=1}^{N} x_{j} \right\| + \left(N - \left\| \sum_{j=1}^{N} \frac{x_{j}}{\|x_{j}\|} \right\| \right) \max_{1 \le j \le N} \|x_{j}\|. \end{split}$$

Theorem 3.5 (cf. [16, Theorem 7]). Let $\psi \in \Psi_N$ and let $2 \le n \le N$. Then, the following are equivalent.

- (i) $\psi \in \Psi_N^{(1,n)}$.
- (ii) There exist $(a_1, \ldots, a_N) \in \mathbb{R}^N_+$ and mutually disjoint nonempty proper subsets T_1, \ldots, T_n of $\{1, \ldots, N\}$ with $\bigcup_{k=1}^n T_k = \{1, \ldots, N\}$ such that

,

$$\|(a_1, \dots, a_N)\|_{\psi} = \sum_{k=1}^n \|(\chi_{T_k}(1)a_1, \dots, \chi_{T_k}(N)a_N)\|_{\psi}$$

where $\|(\chi_{T_k}(1)a_1, \dots, \chi_{T_k}(N)a_N)\| = 1$ for $1 \le k \le n$.

(iii) There exist $(a_1, \ldots, a_N) \in \mathbb{R}^N_+$ and mutually disjoint nonempty proper subsets T_1, \ldots, T_n of $\{1, \ldots, N\}$ with $\cup_{k=1}^n T_k = \{1, \ldots, N\}$ such that for every $1 \le k \le n$

$$\begin{aligned} \|(a_1, \dots, a_N)\|_{\psi} &= \|(\chi_{T_k}(1)a_1, \dots, \chi_{T_k}(N)a_N)\|_{\psi} \\ &+ \|(\chi_{T_k^c}(1)a_1, \dots, \chi_{T_k^c}(N)a_N)\|_{\psi}, \end{aligned}$$

where $(\chi_{T_k}(1)a_1,\ldots,\chi_{T_k}(N)a_N)$ are nonzero.

(iv) There exist $(s_1, \ldots, s_{N-1}) \in \Delta_N$ and nonempty subsets S_1, \ldots, S_n of $\{1, \ldots, N-1\}$ with $0 < M_k := \sum_{i=1}^{N-1} \chi_{S_k}(i) s_i < 1$ such that

$$(3.2) \quad \psi(s_1, \dots, s_{N-1}) = M_k \psi\left(\frac{\chi_{S_k}(1)s_1}{M_k}, \dots, \frac{\chi_{S_k}(N-1)s_{N-1}}{M_k}\right) \\ + (1-M_k) \psi\left(\frac{\chi_{S_k}(1)s_1}{1-M_k}, \dots, \frac{\chi_{S_k}(N-1)s_{N-1}}{1-M_k}\right)$$

for every $1 \leq k \leq n$, where S_1^c, S_2, \ldots, S_n are mutually disjoint and $S_1^c \cup (\bigcup_{k=2}^n S_k) = \{1, \ldots, N-1\}$ (S_1^c can be empty).

Proof. The implication (ii) \Rightarrow (i) is trivial. Conversely, assume that $\psi \in \Psi_N^{(1,n)}$, and let $(a_1, \ldots, a_N) \in \mathbb{R}^N_+$ and T_1, \ldots, T_n be as in Definition 3.3. Let $\boldsymbol{v}_k = (\chi_{T_k}(1)a_1, \ldots, \chi_{T_k}(N)a_N), 1 \leq k \leq n$. Then, by Lemma 3.4

$$\left\|\sum_{k=1}^{n} \boldsymbol{v}_{k}\right\|_{\psi} + \left(n - \left\|\sum_{k=1}^{n} \frac{\boldsymbol{v}_{k}}{\|\boldsymbol{v}_{k}\|_{\psi}}\right\|_{\psi}\right) \min_{1 \le k \le n} \|\boldsymbol{v}_{k}\|_{\psi} \le \sum_{k=1}^{n} \|\boldsymbol{v}_{k}\|_{\psi}$$

Hence by (3.1) we have

$$\left\|\sum_{k=1}^{n} \frac{\boldsymbol{v}_{k}}{\|\boldsymbol{v}_{k}\|_{\psi}}\right\|_{\psi} = n,$$

which implies (ii). The implications (ii) \Leftrightarrow (iii) is obtained in [16, Theorem 7].

(iii) \Rightarrow (iv). Let $(a_1, \ldots, a_N) \in \mathbb{R}^N_+$ and T_1, \ldots, T_n be as in (iii). Without loss of generality we may assume that $T_1 \ni 1$. Let

$$S_k = T_k - 1$$
 for $2 \le k \le n$ and $S_1 = T_1^c - 1$

Then, S_1, S_2, \ldots, S_n are nonempty and S_1^c, S_2, \ldots, S_n are mutually disjoint. In fact, S_2, \ldots, S_n are evidently mutually disjoint. If we have $j \in S_1^c \cap S_k$ for some $2 \le k \le n$, then $j + 1 \notin T_1^c$, while $j + 1 \in T_k$, a contradiction. Also it is immediate to see that $S_1^c \cup (\bigcup_{k=2}^n S_k) = \{1, \ldots, N-1\}$. Let

$$s_i = \frac{a_{i+1}}{\sum_{j=1}^N a_j}$$
 for $1 \le i \le N - 1$.

Let $k \geq 2$. Then, we have

$$\begin{aligned} \|(a_1,\ldots,a_N)\|_{\psi} &= \|(0,\chi_{T_k}(2)a_2\ldots,\chi_{T_k}(N)a_N)\|_{\psi} \\ &+ \|(a_1,\chi_{T_k^c}(2)a_2,\ldots,\chi_{T_k^c}(N)a_N)\|_{\psi}, \end{aligned}$$

from which it follows that

$$\psi(s_1,\ldots,s_{N-1}) = \left(\sum_{i=1}^{N-1} \chi_{S_k}(i)s_i\right) \psi\left(\frac{\chi_{S_k}(1)s_1}{\sum_{i=1}^{N-1} \chi_{S_k}(i)s_i},\ldots,\frac{\chi_{S_k}(N-1)s_{N-1}}{\sum_{i=1}^{N-1} \chi_{S_k}(i)s_i}\right)$$

M. KATO AND T. TAMURA

$$+ \left(1 - \sum_{i=1}^{N-1} \chi_{S_k}(i) s_i\right) \psi\left(\frac{\chi_{S_k^c}(1) s_1}{1 - \sum_{i=1}^{N-1} \chi_{S_k}(i) s_i}, \dots, \frac{\chi_{S_k^c}(N-1) s_{N-1}}{1 - \sum_{i=1}^{N-1} \chi_{S_k}(i) s_i}\right),$$

or (3.3) with $M_k = \sum_{i=1}^{N-1} \chi_{S_k}(i) s_i$ (see [14,16] for the same discussion). Let k = 1. Then, since

$$\|(a_1,\ldots,a_N)\|_{\psi} = \|(\chi_{T_1}(1)a_1,\ldots,\chi_{T_1}(N)a_N)\|_{\psi} + \|(\chi_{T_1^c}(1)a_1,\ldots,\chi_{T_1^c}(N)a_N)\|_{\psi},$$

we have

we have

$$\left\| \left(1 - \sum_{i=1}^{N-1} s_i, s_1, \dots, s_{N-1}\right) \right\|_{\psi} = \left\| \left(1 - \sum_{i=1}^{N-1} s_i, \chi_{S_1^c}(1)s_1, \dots, \chi_{S_1^c}(N-1)s_{N-1}\right) \right\|_{\psi} + \left\| (0, \chi_{S_1}(1)s_1, \dots, \chi_{S_1}(N-1)s_{N-1}) \right\|_{\psi}.$$

Here the both terms of the right side term are not zero (see Remark 3.6). Therefore we have $0 < M_1 = \sum_{i=1}^{N-1} \chi_{S_1}(i) s_i < 1$. From the foregoing formula it follows that $\psi(s_1, \ldots, s_N, z_1)$

$$\begin{aligned} \psi(s_1, \dots, s_{N-1}) &= \left(1 - \sum_{i=1}^{N-1} \chi_{S_1}(i) s_i\right) \psi\left(\frac{\chi_{S_1^c}(1) s_1}{1 - \sum_{i=1}^{N-1} \chi_{S_1}(i) s_i}, \dots, \frac{\chi_{S_1^c}(N-1) s_{N-1}}{1 - \sum_{i=1}^{N-1} \chi_{S_1}(i) s_i}\right) \\ &+ \left(\sum_{i=1}^{N-1} \chi_{S_1}(i) s_i\right) \psi\left(\frac{\chi_{S_1}(1) s_1}{\sum_{i=1}^{N-1} \chi_{S_1}(i) s_i}, \dots, \frac{\chi_{S_1}(N-1) s_{N-1}}{\sum_{i=1}^{N-1} \chi_{S_1}(i) s_i}\right), \end{aligned}$$

or (3.3) with $M_1 = \sum_{i=1}^{N-1} \chi_{S_1}(i) s_i$. We note that in the above argument, if $T_1 = \{1\}$, we have $S_1 = \{1, \ldots, N-1\}$, or $S_1^c = \emptyset$. (iv) \Rightarrow (iii). Let $(s_1, \ldots, s_{N-1}) \in \Delta_N, S_1, \ldots, S_n$ and M_k be as in (iv). Then we

have

(3.3)
$$\left\| \left(1 - \sum_{i=1}^{N-1} s_i, s_1, \dots, s_{N-1} \right) \right\|_{\psi} = \left\| (0, \chi_{S_k}(1)s_1, \dots, \chi_{S_k}(N-1)s_{N-1}) \right\|_{\psi} + \left\| \left(1 - \sum_{i=1}^{N} s_i, \chi_{S_k^c}(1)s_1, \dots, \chi_{S_k^c}(N-1)s_{N-1} \right) \right\|_{\psi},$$

where $(0, \chi_{S_k}(1)s_1, \dots, \chi_{S_k}(N-1)s_{N-1}), (1-\sum_{i=1}^N s_i, \chi_{S_k^c}(1)s_1, \dots, \chi_{S_k^c}(N-1)s_{N-1})$ are nonzero. Let

$$(a_1, a_2, \dots, a_N) = \left(1 - \sum_{i=1}^{N-1} s_i, s_1, \dots, s_{N-1}\right)$$

and let

 $T_k = S_k + 1$ for $k \ge 2$ and $T_1 = (S_1^c + 1) \cup \{1\}.$

Then, T_k 's are mutually disjoint and their union is $\{1, \ldots, N\}$. From the formula (3.3) we have for $k \geq 2$

$$\begin{aligned} \|(a_1, a_2, \dots, a_N)\|_{\psi} &= \|(0, \chi_{T_k}(2)a_2, \dots, \chi_{T_k}(N)a_N)\|_{\psi} \\ &+ \|(a_1, \chi_{T_k^c}(2)a_2, \dots, \chi_{T_k^c}(N)a_N)\|_{\psi}, \end{aligned}$$

where $(0, \chi_{T_k}(2)a_2, \dots, \chi_{T_k}(N)a_N), (a_1, \chi_{T_k^c}(2)a_2, \dots, \chi_{T_k^c}(N)a_N)$ are nonzero. If k = 1, since $\chi_{S_1}(i) = \chi_{T_1^c}(i+1)$, we have by (3.3)

$$\|(a_1, a_2, \dots, a_N)\|_{\psi} = \|(0, \chi_{T_1^c}(2)a_2, \dots, \chi_{T_1^c}(N)a_N)\|_{\psi} + \|(a_1, \chi_{T_1}(2)a_2, \dots, \chi_{T_1}(N)a_N)\|_{\psi}.$$

This completes the proof.

Remark 3.6 ([16, Remark 2]). We note that in Theorem 3.5 (iii) we have that $(\chi_{T_k^c}(1)a_1, ..., \chi_{T_k^c}(N)a_N)$ are nonzero from the assumption $(\chi_{T_k}(1)a_1, ..., \chi_{T_k}(N)a_N)$ are nonzero.

Proposition 3.7. $\Psi_N^{(1)} = \Psi_N^{(1,2)} \supset \Psi_N^{(1,3)} \supset \cdots \supset \Psi_N^{(1,N)} = \{\psi_1\}.$

Proof. Let $2 \leq n < N$. It is obvious that $\Psi_N^{(1)} = \Psi_N^{(1,2)}$. So we shall show that $\Psi_N^{(1,n)} \supset \Psi_N^{(1,n+1)}$ and $\Psi_N^{(1,N)} = \{\psi_1\}$. Assume that $\psi \in \Psi_N^{(1,n+1)}$. Then there exist $(a_1,\ldots,a_N) \in \mathbb{R}^N_+$ and mutually disjoint nonempty subsets T_1,\ldots,T_{n+1} of $\{1,\ldots,N\}$ with $\cup_{k=1}^{n+1}T_k = \{1,\ldots,N\}$ such that

$$\|(a_1,\ldots,a_N)\|_{\psi} = \sum_{k=1}^{n+1} \|(\chi_{T_k}(1)a_1,\ldots,\chi_{T_k}(N)a_N)\|_{\psi},$$

where $(\chi_{T_k}(1)a_1, \ldots, \chi_{T_k}(N)a_N)$ are nonzero. Then we have

$$\begin{aligned} \|(a_1, \dots, a_N)\|_{\psi} &= \left\| \sum_{k=1}^{n+1} (\chi_{T_k}(1)a_1, \dots, \chi_{T_k}(N)a_N) \right\|_{\psi} \\ &= \left\| \sum_{k=1}^{n-1} (\chi_{T_k}(1)a_1, \dots, \chi_{T_k}(N)a_N) + (\chi_{T_n \cup T_{n+1}}(1)a_1, \dots, \chi_{T_n \cup T_{n+1}}(N)a_N) \right\|_{\psi} \\ &\leq \sum_{k=1}^{n-1} \|(\chi_{T_k}(1)a_1, \dots, \chi_{T_k}(N)a_N)\|_{\psi} + \|(\chi_{T_n \cup T_{n+1}}(1)a_1, \dots, \chi_{T_n \cup T_{n+1}}(N)a_N)\|_{\psi} \\ &\leq \sum_{k=1}^{n+1} \|(\chi_{T_k}(1)a_1, \dots, \chi_{T_k}(N)a_N)\|_{\psi} \\ &= \|(a_1, \dots, a_N)\|_{\psi}, \end{aligned}$$

from which it follows that

$$\|(a_1, \dots, a_N)\|_{\psi} = \sum_{k=1}^{n-1} \|(\chi_{T_k}(1)a_1, \dots, \chi_{T_k}(N)a_N)\|_{\psi} + \|(\chi_{T_n\cup T_{n+1}}(1)a_1, \dots, \chi_{T_n\cup T_{n+1}}(N)a_N)\|_{\psi}$$

Since $(\bigcup_{k=1}^{n-1}T_k) \cup (T_n \cup T_{n+1}) = \{1, \dots, N\}$ and $(\chi_{T_n \cup T_{n+1}}(1)a_1, \dots, \chi_{T_n \cup T_{n+1}}(N)a_N)$ Since $(\bigcirc_{k=1}^{n} \land_{k}) \bigcirc (\square = n + 1)$ is nonzero, we have $\psi \in \Psi_{N}^{(1,n)}$. Next, assume that $\psi \in \Psi_{N}^{(1,N)}$. Then, we can take $(a_{1}, \ldots, a_{N}) \in \mathbb{R}^{N}_{+}$ so that

$$\|(a_1,\ldots,a_N)\|_{\psi} = \sum_{k=1}^N \|(0,\ldots,0,\overset{k}{a_k},0,\ldots,0)\|_{\psi} = \sum_{k=1}^N a_k,$$

where $a_k > 0$. Let $M = \sum_{k=1}^N a_k$. Then

$$\psi\left(\frac{a_2}{M},\ldots,\frac{a_N}{M}\right) = \|(a_1/M,\ldots,a_N/M)\| = 1,$$

which implies that $\psi = \psi_1$, as ψ is convex (cf. [16, Theorem 1]). This completes the proof.

Example 3.8. Let $2 \leq n < N$. The inclusion $\Psi_N^{(1,n)} \supset \Psi_N^{(1,n+1)}$ is strict. In fact, define an absolute normalized norm on \mathbb{C}^N by

$$||(a_1,\ldots,a_N)|| = \max\left\{\sum_{j=1}^n a_j, a_{n+1},\ldots,a_N\right\}$$
 for $(a_1,\ldots,a_N) \in \mathbb{C}^N$.

The corresponding convex function ψ is given by

$$\psi(s) = \max\left\{1 - \sum_{i=n}^{N-1} s_i, \ s_n, \dots, s_{N-1}\right\}$$
 for $s = (s_1, \dots, s_{N-1}) \in \Delta_N$.

Then, $\psi \in \Psi_N^{(1,n)} \setminus \Psi_N^{(1,n+1)}$. In fact,

$$\|(\overbrace{1,\ldots,1}^{n},0,\ldots,0)\|_{\psi} = n = \sum_{k=1}^{n} \|(0,\ldots,0,\overbrace{1}^{k},0,\ldots,0)\|_{\psi}$$

Therefore, $\psi \in \Psi_N^{(1,n)}$. Next, suppose that $\psi \in \Psi_N^{(1,n+1)}$. Then there exist $(a_1, \ldots, a_N) \in \mathbb{R}^N_+$ and mutually disjoint nonempty proper subsets T_1, \ldots, T_{n+1} of $\{1, \ldots, N\}$ with $\cup_{k=1}^{n+1} T_k = \{1, \ldots, N\}$ such that

$$\|(a_1,\ldots,a_N)\|_{\psi} = \sum_{k=1}^{n+1} \|(\chi_{T_k}(1)a_1,\ldots,\chi_{T_k}(N)a_N)\|_{\psi}$$

where $(\chi_{T_k}(1)a_1, \ldots, \chi_{T_k}(N)a_N)$ are nonzero. Then, for some $1 \leq k \leq N$, $T_k \subset \{n+1,\ldots,N\}$. Without loss of generality we may assume that $T_k = T_{n+1}$. Since

$$\begin{aligned} \|(a_1, \dots, a_N)\|_{\psi} &= \left\| \left(\sum_{k=1}^{n+1} \chi_{T_k}(1) a_1, \dots, \sum_{k=1}^{n+1} \chi_{T_k}(N) a_N \right) \right\|_{\psi} \\ &\leq \left\| \left(\sum_{k=1}^n \chi_{T_k}(1) a_1, \dots, \sum_{k=1}^n \chi_{T_k}(N) a_N \right) \right\|_{\psi} \\ &+ \|(\chi_{T_{n+1}}(1) a_1, \dots, \chi_{T_{n+1}}(N) a_N)\|_{\psi} \\ &\leq \sum_{k=1}^{n+1} \|(\chi_{T_k}(1) a_1, \dots, \chi_{T_k}(N) a_N)\|_{\psi}, \end{aligned} \end{aligned}$$

we have

$$\|(a_1, \dots, a_N)\|_{\psi} = \left\| \left(\sum_{k=1}^n \chi_{T_k}(1) a_1, \dots, \sum_{k=1}^n \chi_{T_k}(N) a_N \right) \right\|_{\psi} + \|(\chi_{T_{n+1}}(1) a_1, \dots, \chi_{T_{n+1}}(N) a_N)\|_{\psi}.$$

Here, we obtain that

(3.4)
$$\|(a_1, \dots, a_N)\|_{\psi} = \left\| \left(\sum_{k=1}^n \chi_{T_k}(1) a_1, \dots, \sum_{k=1}^n \chi_{T_k}(N) a_N \right) \right\|_{\psi}$$

or

(3.5)
$$\|(a_1,\ldots,a_N)\|_{\psi} = \|(\chi_{T_{n+1}}(1)a_1,\ldots,\chi_{T_{n+1}}(N)a_N)\|_{\psi}.$$

Indeed,

$$||(a_1,\ldots,a_N)||_{\psi} = \max\{||(a_1,\ldots,a_n)||_1, ||(a_{n+1},\ldots,a_N)||_{\infty}\}$$

and

$$\left\| \left(\sum_{k=1}^{n} \chi_{T_k}(1) a_1, \dots, \sum_{k=1}^{n} \chi_{T_k}(N) a_N \right) \right\|_{\psi}$$

= max{ $\| (a_1, \dots, a_n) \|_1, \| (\chi_{T_{N+1}^c}(n+1) a_{n+1}, \dots, \chi_{T_{N+1}^c}(n+1) a_N) \|_{\infty}$ }

 $\|(\chi_{T_{n+1}}(1)a_1,\ldots,\chi_{T_{n+1}}(N)a_N)\|_{\psi}$

$$= \max\{\|(\chi_{T_{n+1}}(1)a_1, \dots, \chi_{T_{n+1}}(n)a_n)\|_1, \\ \|(\chi_{T_{n+1}}(n+1)a_{n+1}, \dots, \chi_{T_{n+1}(N)}a_N)\|_\infty\} \\ = \|(\chi_{T_{n+1}}(n+1)a_{n+1}, \dots, \chi_{T_{n+1}(N)}a_N)\|_\infty.$$

Now, let $||(a_1, \ldots, a_n)||_1 \ge ||(a_{n+1}, \ldots, a_N)||_{\infty}$. Then

$$\|(a_1,\ldots,a_N)\|_{\psi} = \|(a_1,\ldots,a_n)\|_1 = \left\|\left(\sum_{k=1}^n \chi_{T_k}(1)a_1,\ldots,\sum_{k=1}^n \chi_{T_k}(N)a_N\right)\right\|_{\psi},$$

or (3.4). Let $||(a_1, \ldots, a_n)||_1 \le ||(a_{n+1}, \ldots, a_N)||_{\infty}$. Then, if $||(a_{n+1}, \ldots, a_N)||_{\infty} = ||(\chi_{T_{N+1}}(n+1)a_{n+1}, \ldots, \chi_{T_{N+1}}(n+1)a_N)||_{\infty}$, we have

$$\|(a_1,\ldots,a_N)\|_{\psi} = \|(a_{n+1},\ldots,a_N)\|_{\infty} = \|(\chi_{T_{n+1}}(1)a_1,\ldots,\chi_{T_{n+1}}(N)a_N)\|_{\psi},$$

or (3.5). If $||(a_{n+1},\ldots,a_N)||_{\infty} = ||(\chi_{T_{N+1}^c}(n+1)a_{n+1},\ldots,\chi_{T_{N+1}^c}(n+1)a_N)||_{\infty}$, we have

$$\|(a_1,\ldots,a_N)\|_{\psi} = \|(a_{n+1},\ldots,a_N)\|_{\infty} = \left\|\left(\sum_{k=1}^n \chi_{T_k}(1)a_1,\ldots,\sum_{k=1}^n \chi_{T_k}(N)a_N\right)\right\|_{\psi},$$

or (3.4). Since $(\chi_{T_k}(1)a_1, \ldots, \chi_{T_k}(N)a_N)$ are nonzero and T_1, \ldots, T_{n+1} are mutually disjoint, $(\sum_{k=1}^n \chi_{T_k}(1)a_1, \ldots, \sum_{k=1}^n \chi_{T_k}(N)a_N)$ is nonzero. Therefore we have

$$\|(a_1, \dots, a_N)\|_{\psi} < \left\| \left(\sum_{k=1}^n \chi_{T_k}(1) a_1, \dots, \sum_{k=1}^n \chi_{T_k}(N) a_N \right) \right\|_{\psi} + \|(\chi_{T_{n+1}}(1) a_1, \dots, \chi_{T_{n+1}}(N) a_N)\|_{\psi},$$

which is a contradiction. Thus, we have $\psi \notin \Psi_N^{(1,n+1)}$.

M. KATO AND T. TAMURA

4. Uniform non- ℓ_1^n -ness

A Banach space X is called *uniformly non-* ℓ_1^n , $n \ge 2$, if there exists a constant $\varepsilon > 0$ such that

$$\min\left\{\left\|\sum_{j=1}^{n}\theta_{j}x_{j}\right\|:\theta_{j}=\pm1\right\}\leq N(1-\varepsilon) \text{ for all } x_{1},\ldots,x_{n}\in S_{X},$$

where S_X is the unit sphere of X. When n = 2, X is called *uniformly non-square*. It is known that every uniformly non- ℓ_1^n space is uniformly non- ℓ_1^{n+1} . In fact, we have the following.

Lemma 4.1. Let X be a Banach space and let $\{x_k^{(1)}\}, \ldots, \{x_k^{(n)}\}\)$ be n sequences in the unit sphere of X. Let $1 \leq m < n$. Then,

If
$$\lim_{k \to \infty} \left\| \sum_{j=1}^{n} x_k^{(j)} \right\| = n$$
, then $\lim_{k \to \infty} \left\| \sum_{j=1}^{m} x_k^{(j)} \right\| = m$.

Proof. Assume that $\lim_{k\to\infty} \|\sum_{j=1}^n x_k^{(j)}\| = n$. Then

$$m \geq \left\| \sum_{j=1}^{m} x_{k}^{(j)} \right\| = \left\| \sum_{j=1}^{n} x_{k}^{(j)} - \sum_{j=m+1}^{n} x_{k}^{(j)} \right\|$$
$$\geq \left\| \sum_{j=1}^{n} x_{k}^{(j)} \right\| - \sum_{j=m+1}^{n} \|x_{k}^{(j)}\| = \left\| \sum_{j=1}^{n} x_{k}^{(j)} \right\| - (n-m)$$

for all k, from which it follows that $\lim_{k\to\infty} \|\sum_{j=1}^m x_j^{(k)}\| = m$.

Recently Kato and Tamura [16] showed the following result which is equivalent to Dowling and Saejung's result in [7].

Theorem 4.2 ([16, Theorem 10]; cf. [7, Theorem 13]). Let X_1, \ldots, X_N be Banach spaces and let $\psi \in \Psi_N$. Assume that $\|\cdot\|_{\psi}$ is strictly monotone. Then, the following are equivalent.

- (i) $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non-square.
- (ii) X_1, \ldots, X_N are uniformly non-square and $\psi \notin \Psi_N^{(1)}$.

In the case N = 2, $\Psi_2^{(1)} = \{\psi_1\}$. Therefore we obtain the next result.

Corollary 4.3. Let X and Y be Banach spaces and let $\psi \in \Psi_2$. Assume that $\|\cdot\|_{\psi}$ is strictly monotone. Then, the following are equivalent.

- (i) $X \oplus_{\psi} Y$ is uniformly non-square.
- (ii) X and Y are uniformly non-square and $\psi \neq \psi_1$.

Remark 4.4. This result should be compared with the previous result in [9] without the assumption on strict monotonicity of $\|\cdot\|_{\psi}$: $X \oplus_{\psi} Y$ is uniformly non-square if and only if X and Y are uniformly non-square and $\psi \neq \psi_1, \psi_{\infty}$.

Theorem 4.2 especially asserts the following.

Corollary 4.5. Let X_1, \ldots, X_N be uniformly non-square Banach spaces. Let $\psi \in \Psi_N$ and assume that the norm $\|\cdot\|_{\psi}$ is strictly monotone. Then the following are equivalent.

- (i) $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non-square.
- (ii) $\psi \notin \Psi_N^{(1)}$.

In the following, we shall characterize the uniform non- ℓ_1^n -ness of $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ for uniformly non-square spaces X_1, \ldots, X_N . First we note that the ℓ_1 -sum $(X_1 \oplus \cdots \oplus X_N)_1$ cannot be uniformly non- ℓ_1^N for any spaces X_1, \ldots, X_N (recall that ℓ_1^n is embedded into the direct sum of X_i 's). To the contrary we have the following.

Theorem 4.6 ([12]). Let X_1, \ldots, X_N be uniformly non-square. Then $(X_1 \oplus \cdots \oplus X_N)_1$ is uniformly non- ℓ_1^{N+1} .

We are now in a position to present the main result, which extends Corollary 4.5.

Theorem 4.7. Let X_1, \ldots, X_N be uniformly non-square Banach spaces. Let $\psi \in \Psi_N$ and let $\|\cdot\|_{\psi}$ be strictly monotone. Let $2 \leq n \leq N$. Then, the following are equivalent.

- (i) $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non- ℓ_1^n .
- (ii) $\psi \notin \Psi_N^{(1,n)}$.

Proof. (i) \Rightarrow (ii). Suppose that $\psi \in \Psi_N^{(1,n)}$. Then, by Theorem 3.5 there exist $(a_1, \ldots, a_N) \in \mathbb{R}^N_+$ and mutually disjoint nonempty proper subsets T_1, \ldots, T_n of $\{1, \ldots, N\}$ with $\bigcup_{k=1}^n T_k = \{1, \ldots, N\}$ such that

$$||(a_1,\ldots,a_N)||_{\psi} = \sum_{k=1}^n ||(\chi_{T_k}(1)a_1,\ldots,\chi_{T_k}(N)a_N)||_{\psi},$$

and $\|(\chi_{T_k}(1)a_1,\ldots,\chi_{T_k}(N)a_N)\| = 1$. Then, for any signs $\theta_k = \pm 1$

$$\begin{split} \left\| \sum_{k=1}^{n} \theta_{k}(\chi_{T_{k}}(1)a_{1}, \dots, \chi_{T_{k}}(N)a_{N}) \right\|_{\psi} &= \left\| \left(\sum_{k=1}^{n} \theta_{k}\chi_{T_{k}}(1)a_{1}, \dots, \sum_{k=1}^{n} \theta_{k}\chi_{T_{k}}(N)a_{N} \right) \right\|_{\psi} \\ &= \left\| (\theta_{k_{1}}a_{1}, \dots, \theta_{k_{N}}a_{N}) \right\|_{\psi} \\ &= \left\| (a_{1}, \dots, a_{N}) \right\|_{\psi} = n, \end{split}$$

where $k_j, 1 \leq j \leq N$, is chosen so that $j \in T_{k_j}$ for $j \in \{1, \ldots, N\}$. This implies that $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is not uniformly non- ℓ_1^n .

(ii) \Rightarrow (i). Suppose that $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is not uniformly non- ℓ_1^n . Then there exist *n* sequences $\{(x_{11}^{(\ell)}, \ldots, x_{N_1}^{(\ell)})\}_{\ell}, \ldots, \{(x_{1n}^{(\ell)}, \ldots, x_{N_n}^{(\ell)})\}_{\ell}$ in the unit sphere of $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ such that

(4.1)
$$\lim_{\ell \to \infty} \left\| \sum_{k=1}^{n} \theta_k(x_{1k}^{(\ell)}, \dots, x_{Nk}^{(\ell)}) \right\|_{\psi} = n \text{ for all } \theta_k = \pm 1.$$

By taking subsequences if necessary, we may assume that

$$\lim_{\ell \to \infty} \|x_{1k}^{(\ell)}\| = a_{1k}, \dots, \lim_{\ell \to \infty} \|x_{Nk}^{(\ell)}\| = a_{Nk}.$$

Then

2290

(4.2)
$$||(a_{1k}, \dots, a_{Nk})||_{\psi} = 1 \text{ for } 1 \le k \le n$$

By the formula (4.1) and Lemma 4.1, we have for any $1 \le p < q \le n$

$$\lim_{\ell \to \infty} \| (x_{1p}^{(\ell)}, \dots, x_{Np}^{(\ell)}) \pm (x_{1q}^{(\ell)}, \dots, x_{Nq}^{(\ell)}) \|_{\psi} = 2.$$

Then

$$\begin{aligned} 2 &= \lim_{\ell \to \infty} \| (x_{1p}^{(\ell)}, \dots, x_{Np}^{(\ell)}) \pm (x_{1q}^{(\ell)}, \dots, x_{Nq}^{(\ell)}) \|_{\psi} \\ &= \| (\lim_{\ell \to \infty} \| x_{1p}^{(\ell)} \pm x_{1q}^{(\ell)} \|, \dots, \lim_{\ell \to \infty} \| x_{Np}^{(\ell)} \pm x_{Nq}^{(\ell)} \|) \|_{\psi} \\ &\leq \| (\lim_{\ell \to \infty} \| x_{1p}^{(\ell)} \| + \lim_{\ell \to \infty} \| x_{1q}^{(\ell)} \|, \dots, \lim_{\ell \to \infty} \| x_{Np}^{(\ell)} \| + \lim_{\ell \to \infty} \| x_{Nq}^{(\ell)} \|) \|_{\psi} \\ &\leq \| (\lim_{\ell \to \infty} \| x_{1p}^{(\ell)} \|, \dots, \lim_{\ell \to \infty} \| x_{Np}^{(\ell)} \|) \|_{\psi} + \| (\lim_{\ell \to \infty} \| x_{1q}^{(\ell)} \|, \dots, \lim_{\ell \to \infty} \| x_{Nq}^{(\ell)} \|) \|_{\psi} \\ &= \lim_{\ell \to \infty} \| (\| x_{1p}^{(\ell)} \|, \dots, \| x_{Np}^{(\ell)} \|) \|_{\psi} + \lim_{\ell \to \infty} \| (\| x_{1q}^{(\ell)} \|, \dots, \| x_{Nq}^{(\ell)} \|) \|_{\psi} = 2, \end{aligned}$$

from which it follows that

$$\begin{aligned} \|(\lim_{\ell \to \infty} \|x_{1p}^{(\ell)} \pm x_{1q}^{(\ell)}\|, \dots, \lim_{\ell \to \infty} \|x_{Np}^{(\ell)} \pm x_{Nq}^{(\ell)}\|)\|_{\psi} \\ &= \|(\lim_{\ell \to \infty} \|x_{1p}^{(\ell)}\| + \lim_{\ell \to \infty} \|x_{1q}^{(\ell)}\|, \dots, \lim_{\ell \to \infty} \|x_{Np}^{(\ell)}\| + \lim_{\ell \to \infty} \|x_{Nq}^{(\ell)}\|)\|_{\psi}. \end{aligned}$$

By strict monotonicity of $\|\cdot\|_{\psi}$ we have

(4.3)
$$\lim_{\ell \to \infty} \|x_{jp}^{(\ell)} \pm x_{jq}^{(\ell)}\| = \lim_{\ell \to \infty} \|x_{jp}^{(\ell)}\| + \lim_{\ell \to \infty} \|x_{jq}^{(\ell)}\| = a_{jp} + a_{jq} \text{ for all } 1 \le j \le N.$$

Then, we have for every $1 \le j \le N$

(4.4)
$$\min\{a_{jp}, a_{jq}\} = 0 \text{ for all } 1 \le p < q \le n,$$

which implies that $\{k : a_{jk} > 0\}$ is at most a singleton for every $1 \le j \le N$. Indeed, suppose that for some $1 \le j \le N$ and some $1 \le p < q \le n$

$$\min\{a_{jp}, a_{jq}\} = \min\{\lim_{\ell \to \infty} \|x_{jp}^{(\ell)}\|, \lim_{\ell \to \infty} \|x_{jq}^{(\ell)}\|\} > 0.$$

By Lemma 3.4, for sufficiently large $\ell,$

$$\|x_{jp}^{(\ell)} \pm x_{jq}^{(\ell)}\| + \left(2 - \left\|\frac{x_{jp}^{(\ell)}}{\|x_{jp}^{(\ell)}\|} \pm \frac{x_{jq}^{(\ell)}}{\|x_{jq}^{(\ell)}\|}\right\|\right) \min\{\|x_{jp}^{(\ell)}\|, \|x_{jp}^{(\ell)}\|\} \le \|x_{jp}^{(\ell)}\| + \|x_{jq}^{(\ell)}\|.$$

Letting $\ell \to \infty$, we have

$$\lim_{\ell \to \infty} \left\| \frac{x_{jp}^{(\ell)}}{\|x_{jp}^{(\ell)}\|} \pm \frac{x_{jq}^{(\ell)}}{\|x_{jq}^{(\ell)}\|} \right\| = 2$$

by (4.3), which contradicts to the uniform non-squareness of X_j . Therefore, we have (4.4).

Next let

$$T_k = \{j : a_{jk} > 0\}$$
 for $1 \le k < n$

and

$$T_n = \{j : a_{jn} > 0\} \cup \{j : a_{jk} = 0 \text{ for all } 1 \le k \le n\}.$$

Then, by (4.2) the sets T_1, \ldots, T_n are nonempty and clearly $\bigcup_{k=1}^n T_k = \{1, \ldots, N\}$. Since the set $\{k : a_{jk} > 0\}$ is at most a singleton for every $1 \le j \le N$, the sets $T_1, \ldots, T_{n-1}, \{j : a_{jn} > 0\}$ are mutually disjoint, and therefore T_1, \ldots, T_n are mutually disjoint. To obtain the conclusion we shall first see that

(4.5)
$$\sum_{k=1}^{n} a_{jk} = \sum_{k=1}^{n} \chi_{T_k}(j) a_{jk} \text{ for all } 1 \le j \le N.$$

Indeed, since $\{k : a_{jk} > 0\}$ is at most a singleton, if $\{k : a_{jk} > 0\}$ is nonempty for some $1 \le j \le N$, there exists a unique $1 \le k_j \le n$ such that $\{k : a_{jk} > 0\} = \{k_j\}$. Hence, $a_{jk_j} > 0$, or $j \in T_{k_j}$. Therefore, in this case, we have

$$\sum_{k=1}^{n} a_{jk} = a_{jk_j} = \chi_{T_{k_j}}(j)a_{jk_j} = \sum_{k=1}^{n} \chi_{T_k}(j)a_{jk_j}$$

or (4.5). If $a_{jk} = 0$ for all $1 \le k \le n$, the equation (4.5) is obvious. Next, by the formulae (4.1) and (4.5) we have

$$n = \lim_{\ell \to \infty} \left\| \sum_{k=1}^{n} \theta_{k}(x_{1k}^{(\ell)}, \dots, x_{Nk}^{(\ell)}) \right\|_{\psi}$$

$$= \left\| \left(\lim_{\ell \to \infty} \left\| \sum_{k=1}^{n} \theta_{k} x_{1k}^{(\ell)} \right\|, \dots, \lim_{\ell \to \infty} \left\| \sum_{k=1}^{n} \theta_{k} x_{Nk}^{(\ell)} \right\| \right) \right\|_{\psi}$$

$$\leq \left\| \left(\lim_{\ell \to \infty} \sum_{k=1}^{n} \|x_{1k}^{(\ell)}\|, \dots, \lim_{\ell \to \infty} \sum_{k=1}^{n} \|x_{Nk}^{(\ell)}\| \right) \right\|_{\psi}$$

$$= \left\| \left(\sum_{k=1}^{n} a_{1k}, \dots, \sum_{k=1}^{n} a_{Nk} \right) \right\|_{\psi}$$

$$\leq \sum_{k=1}^{n} \|(\chi_{T_{k}}(1)a_{1k}, \dots, \chi_{T_{k}}(N)a_{Nk})\|_{\psi}$$

$$\leq \sum_{k=1}^{n} \|(\alpha_{1k}, \dots, \alpha_{Nk})\|_{\psi} = n,$$

from which it follows that

(4.6)
$$\left\|\sum_{k=1}^{n} (\chi_{T_{k}}(1)a_{1k}, \dots, \chi_{T_{k}}(N)a_{Nk})\right\|_{\psi} = \sum_{k=1}^{n} \|(\chi_{T_{k}}(1)a_{1k}, \dots, \chi_{T_{k}}(N)a_{Nk})\|_{\psi} = n.$$

Noting that

$$\left\|\sum_{k=1}^{n} (\chi_{T_k}(1)a_{1k}, \dots, \chi_{T_k}(N)a_{Nk})\right\|_{\psi} = (a_{1k_1}, \dots, a_{Nk_N}),$$

where $j \in T_{k_j}$, $1 \le j \le N$, we have

$$(a_{1k_1}, \dots, a_{Nk_N}) = \sum_{k=1}^n \|(\chi_{T_k}(1)a_{1k}, \dots, \chi_{T_k}(N)a_{Nk})\|_{\psi}$$

$$= \sum_{k \in \{k_1, \dots, k_N\}} \|(\chi_{T_k}(1)a_{1k_1}, \dots, \chi_{T_k}(N)a_{Nk})\|_{\psi}$$

$$= \sum_{k \in \{k_1, \dots, k_N\}} \|(\chi_{T_k}(1)a_{1k_1}, \dots, \chi_{T_k}(N)a_{Nk_N})\|_{\psi}$$

Here, the last identity is valid since

$$\begin{pmatrix} \chi_{T_{k_1}}(1)a_{1k_1} \\ \chi_{T_{k_2}}(1)a_{1k_2} \\ \vdots \\ \chi_{T_{k_N}}(1)a_{1k_N} \end{pmatrix} = \begin{pmatrix} a_{1k_1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \chi_{T_{k_1}}(1)a_{1k_1} \\ \chi_{T_{k_2}}(1)a_{1k_1} \\ \vdots \\ \chi_{T_{k_N}}(1)a_{1k_1} \end{pmatrix}$$

and the same is true for the rest columns. By (??), $(\chi_{T_k}(1)a_{1k_1},\ldots,\chi_{T_k}(N)a_{Nk_N})$ are nonzero. Consequently, we have $\psi \in \Psi_N^{(1,n)}$. This completes the proof.

In the case n = 2, $\Psi_N^{(1,2)} = \Psi_N^{(1)}$. Thus, Theorem 4.7 includes Corollary 4.5. Also, if n = N, $\Psi_N^{(1,N)} = \{\psi_1\}$. Therefore, Theorem 4.7, combining Theorem 4.2, is reformulated as follows.

Theorem 4.8. Let X_1, \ldots, X_N be uniformly non-square Banach spaces. Let $\psi \in$ Ψ_N and let $\|\cdot\|_{\psi}$ be strictly monotone. Let $n \geq 2$.

- (i) When n = 2, $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non-square if and only if
- $\psi \notin \Psi_N^{(1)}$. (ii) When 2 < n < N, $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non- ℓ_1^n if and only if $\psi \not\in \Psi_N^{(1,n)}.$
- (iii) When n = N, $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non- ℓ_1^N if and only if $\psi \neq \psi_1$.
- (iv) When $n \ge N+1$, $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non- ℓ_1^{N+1} , and hence uniformly non- ℓ_1^n .

For the assertion (iv), if $\psi \neq \psi_1$, $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly non- ℓ_1^N by (iii) and hence uniformly non- ℓ_1^n for $n \geq N+1$. If $\psi = \psi_1$, we have the conclusion by Theorem 4.6.

As a direct consequence we have the following characterization of the uniform non- ℓ_1^n -ness for \mathbb{C}^N .

Corollary 4.9. Let $\psi \in \Psi_N$. Assume that $\|\cdot\|_{\psi}$ is strictly monotone on \mathbb{C}^N . Let $n \geq 2.$

(i) When n = 2, $(\mathbb{C}^N, \|\cdot\|_{\psi})$ is uniformly non-square if and only if $\psi \notin \Psi_N^{(1)}$.

ON THE UNIFORM NON-*l*^{*r*}^{*r*}-NESS AND NEW CLASSES OF CONVEX FUNCTIONS 2293

- (ii) When 2 < n < N, $(\mathbb{C}^N, \|\cdot\|_{\psi})$ is uniformly non- ℓ_1^n if and only if $\psi \notin \Psi_N^{(1,n)}$. (iii) When n = N, $(\mathbb{C}^N, \|\cdot\|_{\psi})$ is uniformly non- ℓ_1^N if and only if $\psi \neq \psi_1$.
- (iv) When $n \ge N+1$, $(\mathbb{C}^N, \|\cdot\|_{\psi})$ is uniformly non- ℓ_1^{N+1} , and hence uniformly non- ℓ_1^n .

Example 4.10.

- (i) Let $1 . The <math>\ell_p$ -norm $\|\cdot\|_p$ is strictly monotone and $\psi_p \notin \Psi_N^{(1)}$ (cite[Example 5.10]KT3). Therefore, the ℓ_p -sum $(\mathbb{C}^N, \|\cdot\|_p)$ is uniformly non-square.
- (ii) Let $2 \leq n < N$. Let $\psi \in \Psi_N$ be as in Example 3.8. Then, since $\psi \in \Psi_N^{(1,n)} \setminus \Psi_N^{(1,n+1)}$, $(\mathbb{C}^N, \|\cdot\|_{\psi})$ is uniformly non- ℓ_1^{n+1} , but not uniformly non ℓ_1^n .

5. Concluding Remarks

According to Dhompongsa, Kato and Tamura [5] an A-direct sum $(X_1 \oplus \cdots \oplus X_N)_A$ is defined to be a direct sum equipped with the norm

 $||(x_1,\ldots,x_N)||_A := ||(||x_1||,\ldots,||x_N||)||_A$ for $(x_1,\ldots,x_N) \in X_1 \oplus \cdots \oplus X_N$,

where the norm $\|\cdot\|_A$ in the right side is an arbitrary norm on \mathbb{R}^N . A Z-direct sum is defined in the same way from a Z-norm $\|\cdot\|_Z$ which is a norm on \mathbb{R}^N with monotonicity property on \mathbb{R}^N_+ . Thus a ψ -direct sum is a Z-direct sum, and a Zdirect sum is an A-direct sum, while all of these notions are equivalent. In fact they showed the following.

Theorem 5.1 ([5, Theorem 5.2]). For any A-direct sum there exists a $\psi \in \Psi_N$ for which the A-direct sum $(X_1 \oplus \cdots \oplus X_N)_A$ is isometrically isomorphic to the ψ -direct sum $(X_1 \oplus \cdots \oplus X_N)_{\psi}$.

Now recall that a norm $\|\cdot\|$ on \mathbb{C}^N is said to have *Property* T_1^N ([7]) if for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{C}^N$ with $\|\boldsymbol{a}\| = \|\boldsymbol{b}\| = \frac{1}{2}\|\boldsymbol{a} + \boldsymbol{b}\| = 1$ one has supp $\boldsymbol{a} \cap \text{supp } \boldsymbol{b} \neq \emptyset$, where supp $\boldsymbol{a} = \{j : a_j \neq 0\}$. A recent reuslt [5, Theorem 4.3] says that this property is equivalent to $\psi \notin \Psi_N^{(1)}$ for a ψ -norm. Thus, owing to Theorem 5.1 we shall immediately obtain some consequences for A-direct sums from our preceeding results.

Corollary 5.2. Let X_1, \ldots, X_N be uniformly non-square. Let $\|\cdot\|$ be an arbitrary strictly monotone norm on \mathbb{R}^N . Then:

- (i) $(X_1 \oplus \cdots \oplus X_N)_A$ is uniformly non-square if and only if the norm $\|\cdot\|$ has Property T_1^N .
- (ii) $(X_1 \oplus \cdots \oplus X_N)_A$ is uniformly non- ℓ_1^N if and only if $\|\cdot\| \neq \|\cdot\|_1$. (iii) For all $n \ge N+1$, $(X_1 \oplus \cdots \oplus X_N)_A$ is uniformly non- ℓ_1^n .

In particular we have

Corollary 5.3. Let $\|\cdot\|$ be an arbitrary strictly monotone norm on \mathbb{C}^N . Then:

- (i) $(\mathbb{C}^N, \|\cdot\|)$ is uniformly non-square if and only if $\|\cdot\|$ has Property T_1^N .
- (ii) $(\mathbb{C}^N, \|\cdot\|)$ is uniformly non- ℓ_1^N if and only if $\|\cdot\| \neq \|\cdot\|_1$. (iii) For all $n \ge N+1$, $(\mathbb{C}^N, \|\cdot\|)$ is uniformly non- ℓ_1^n .

M. KATO AND T. TAMURA

We note that in the above two corollaries the corresponding results for the case 2 < n < N are not known because any equivalent property to $\psi \notin \Psi_N^{(1,n)}$ (free form ψ) is not known, although we have results using ψ for which $(X_1 \oplus \cdots \oplus X_N)_A$ is isometrically isomorphic to $(X_1 \oplus \cdots \oplus X_N)_{\psi}$ from Theorem 4.8 and Corollary 4.9.

We shall close our discussion with an observation on a relation between the uniform non-suareness for direct sums and for the scalar case \mathbb{C}^N . Betiuk-Pilarska and Prus [3] showed that a Z-direct sum $(X_1 \oplus \cdots \oplus X_N)_Z$ is uniformly non-square if and only if all the underlying spaces X_1, \ldots, X_N and the Z-norm $\|\cdot\|_Z$ on \mathbb{R}^N are uniformly non-square. By virtue of Theorem 5.1 this holds true for the A-direct sum $(X_1 \oplus \cdots \oplus X_N)_A$, while it remains still unknown when a given norm on \mathbb{R}^N is uniformly non-square. The forgoing result in Corollary 5.3 is a partial answer.

References

- [1] R. Bhatia, *Matrix Analysis*, Springer-Verlag, New York, 1997.
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, 1973.
- [3] A. Betiuk-Pilarska and S. Prus, Uniform nonsquareness of direct sums Banach spaces, Topol. Methods Nonlinear Anal. 34 (2009), 181–186.
- [4] S. Dhompongsa, A. Kaewcharoen and A. Kaewkhao, Fixed point property of direct sums, Nonlinear Anal. 63 (2005), e2177–e2188.
- [5] S. Dhompongsa, M. Kato and T. Tamura, Uniform non-squareness for A-direct sums of Banach spaces with a strictly monotone norm, to appear in Linear Nonlinear Anal.
- [6] P. N. Dowling, On convexity properties of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 288 (2003), 540–543.
- [7] P. N. Dowling and S. Saejung, Non-squareness and uniform non-squareness of Z-direct sums, J. Math. Anal. Appl. 369 (2010), 53–59.
- [8] M. Kato, K.-S. Saito and T. Tamura, On the \u03c6-direct sums of Banach spaces and convexity, J. Aust. Math. Soc. 75 (2003), 413–422.
- [9] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of ψ -direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), 429-437.
- [10] M. Kato, K.-S. Saito and T. Tamura, Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl. 10 (2007), 451–460.
- M. Kato, K.-S. Saito and T. Tamura, Uniform non-ℓ₁ⁿ-ness of ψ-direct sums of Banach spaces, J. Nonlinear Convex Anal. 11 (2010), 13–33.
- [12] M. Kato and T. Tamura, Uniformly non-lⁿ₁-ness of l₁-sum of Banach spaces, Comment. Math. Prace Mat. 47 (2007), 161–170.
- [13] M. Kato and T. Tamura, Uniformly non-lⁿ₁-ness of l_∞-sum of Banach spaces, Comment. Math. 49 (2009), 179–187.
- [14] M. Kato and T. Tamura, Weak nearly uniform smoothness of the ψ -direct sums $(X_1 \oplus \cdots \oplus X_N)_{\psi}$, Comment. Math. **52** (2012), 171–198.
- [15] M. Kato and T. Tamura, On a class of convex functions which yield partial l₁-norms, in: Banach and Function Spaces IV, Eds. M. Kato, L. Maligranda and T. Suzuki, Yokohama Publishers, Yokohama, 2014, pp. 199–210.
- [16] M. Kato and T. Tamura, On partial ℓ_1 -norm and convex functions, preprint.
- [17] K.-S. Saito, M. Kato and Y. Takahashi, On absolute norms on \mathbb{C}^n , J. Math. Anal. Appl. 252 (2000), 879–905.
- [18] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on C² and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179–186.

Manuscript received August 31, 2014 revised December 5, 2015

Μικιο Κατο

Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan *E-mail address:* katom@mns.kyutech.ac.jp

Takayuki Tamura

Graduate School of Humanities and Social Sciences, Chiba University, Chiba 263-8522, Japan *E-mail address*: tamura@le.chiba-u.ac.jp