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Let card(T, r) be the distribution of the eigenvalues of T which is defined as

card(T, r) = max{i∈N ;λi(T ) > r}, r > 0.

Moreover, let G(T ) and g(T ) be the upper growth order and the lower growth order
of {λi; i∈N} which are defined as

G(T ) = lim sup
r→+0

card(T, r)

log(1/r)

and

g(T ) = lim inf
r→+0

card(T, r)

log(1/r)
,

respectively. It is well known that the equality

E(T ) = G(T )

holds (cf. [5]).
For any ε > 0 and for any relatively compact subset F of H, an ε-covering is

defined as a family of open balls with radii ε and whose union can cover F , and
moreover, an ε-packing is defined as a family of open balls with centers in F and
radii ε whose pairwise intersections are all empty. Here, the ε-entropy of F , which
is denoted by S(F , ε), is defined as the base-2 logarithm of the minimum number
of elements of all ε-covering of F , and the ε-capacity of F , which is denoted by
C(F , ε), is defined as the base-2 logarithm of the maximum number of elements of
all ε-packing of F .

For any positive number ε, the ε-entropy of T and the ε-capacity of T are defined
as S(T (U), ε) and C(T (U), ε), respectively, where U is the closed unit ball of H.
Then, by Prosser (cf. [5]) and Akashi (cf. [1]), it is known that, for any positive
number δ, there exists a positive number εδ satisfying(

1

ε

)g(T )−δ

≤ S(T (U), ε) ≤
(
1

ε

)G(T )+δ

, 0 < ε < εδ.

3. Topological structures of the ranges of H under the compact
operators

In this section, we discuss the topological structure of the ranges of the closed
unit ball under the compact positive operators.

Let T be a compact positive operator on H. Then, the range of H under the
operator T is exactly represented as the following:

T (H) =
∪
c>0

T (U),

where U is the closed unit ball of H. Here, let qT (·) be the Minkowski norm on
T (H) which is defined as

qT (y) = inf {c > 0; y ∈ cT (U)} .

Then, we obtain the following:

Proposition 3.1. (T (H), qT (·)) is a Banach space.
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Proof. Since it is clear that (T (H), qT (·)) is a normed space, we have only to prove
that this space is complete. Let {yn}∞n=1 be a Cauchy sequence consisting of T (H).
Then, for any positive number ε, there exists a positive integer nε satisfying the
following condition:

qT (ym − yn) < ε, m, n ≥ nε.

This inequality implies that, for any n which is greater than nε, the following
inequalities:

qT (yn) ≤ qT (yn − ynε) + qT (ynε)

≤ ε+ qT (ynε)

hold. This result implies that {yn}∞n=1 can be included by the range of a certain
bounded subset of H under the mapping T . Namely, there exists a certain positive
number M satisfying

yn ∈ T (MU), n ≥ 1.

Therefore, for any positive integer n, there exists xn which belongs to MU and
satisfies yn = Txn. Since Banach-Alaoglu theorem assures that there exists a sub-
sequence {xnk

}∞k=1 of {xn}∞n=1 which converges weakly at a certain element z be-
longing to H, {Txnk

}∞k=1 also converges strongly at Tz. These results imply that
the equality:

lim
n→0

qT (Txn − Tz) = 0

holds, because, for any positive integer k, ||xnk
−Tz|| = qT (Txnk

−Tz) holds. These
results conclude the proof. □

Now, we can prove the following:

Theorem 3.2. Let T1 and T2 be two compact positive operators on H satisfying
G(T1)̸=g(T2). Then, (T1(H), qT1(·)) (resp. (T2(H), qT2(·))) is not embedded into
(T2(H), qT2(·)) (resp. (T1(H), qT1(·))), that is, there exist neither any bijective con-
tinuous linear operator on (T1(H), qT1(·))) with values in (T2(H), qT2(·))) nor any bi-
jective continuous linear operator on (T2(H), qT2(·))) with values in (T1(H), qT1(·)))

Proof. Without loss of generality, we can assume G(T1) < G(T2). Assume that
there exists a bijective continuous linear operator W satisfying W (T1(H)) = T2(H).
Then, we can assume that there exist two positive constants c and d such that the
two inequalities:

qT2(Wx) ≤ cqT1(x), x∈T1(H)

and

qT1(x) ≤ dqT2(Wx), x∈T1(H)

hold. Here Proposition 1 and the assumption lead us to the following inclusions:

T2(U) = {y∈T2(H); qT2(y)≤1}
⊂ {Wx; x∈T1(H), qT1(x)≤d}
= W (dT1(U)).

But these inclusions imply that, for any positive number ε,

S(T2(U), ε) ≤ S(W (dT1(U)), ε).
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Moreover, according to the relations between qT1(·) and qT2(·), we have

S(W (T1(U)), ∥W∥ε) ≤ S(T1(U), ε).
Therefore, these two inequalities show that

G(T2) ≤ G(T1).

But this inequality contradicts that G(T1) < G(T2) holds. Therefore, it has been
proved that there does not exist any bijective continuous linear operator W on
T1(H) with values in T2(H). If we assume that there exists a bijective continuous
linear operator on T2(H) with values in T1(H), Banach-Steinhaus theorem leads to
the conclusion that this bijective continuous linear operator should play the role of
a homeomorphic homomorphism on T1(H) with values in T2(H). Therefore, this
assumption also contradicts the former part of this proof. □
Remarks. Theorem 3.2 shows that, for any two compact positive operators T1

and T2 satisfying G(T1) ̸= G(T2), there does not exist such a unitary operator U
that T1 = U∗T2U holds. Moreover, it can be proved that, for any compact positive
operator T , there does not exist any Banach space where T (H) can be embedded.
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