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Definition 2.1. Let (X, d) be a ν-generalized metric space.

• A sequence {xn} in X is said to be Cauchy iff limn supm>n d(xm, xn) = 0
holds.

• A sequence {xn} in X is said to converge to x iff limn d(x, xn) = 0 holds.
• A sequence {xn} in X is said to converge exclusively to x iff limn d(x, xn) = 0
holds and limn d(y, xf(n)) = 0 does not hold for any y ∈ X \{x} and for any
subsequence {xf(n)} of {xn}.

• A sequence {xn} in X is said to converge to x in the strong sense iff {xn}
is Cauchy and {xn} converges to x.

Definition 2.2. Let (X, d) be a ν-generalized metric space.

• X is compact iff for any sequence {xn} in X, there exists a subsequence
{xf(n)} of {xn} converging to some z ∈ X.

• X is compact in the strong sense iff for any sequence {xn} in X, there exists
a subsequence {xf(n)} of {xn} converging to some z ∈ X in the strong sense.

Proposition 2.3. Let (X, d) be a ν-generalized metric space and let {xn} be a
sequence in X and let z be an element of X. Then the following hold:

(i) {xn} converges to z if and only if for every subsequence {xf(n)} of {xn},
there exists a subsequence {xf(g(n))} of {xf(n)} converging to z.

(ii) If {xn} converges to z in the strong sense, then {xn} converges exclusively
to z.

(iii) If {xn} converges to z, limn d(xn, xn+1) = 0 holds and xn ̸= z for any n ∈ N,
then {xn} is Cauchy, that is, {xn} converges to z in the strong sense.

Proof. In the case where ν = 1, the conclusions are obvious. So we assume ν ≥ 2.
The classical proof works on (i). We next show (ii). Arguing by contradiction,
we assume that there exists a subsequence {xf(n)} of {xn} converging to some
v ∈ X \ {z}. Since {xn} converges to z, we may assume that xf(n) ̸= v for n ∈ N.
Since {xf(n)} converges to v, we may also assume that xf(n) ̸= z for n ∈ N and
xf(n) are all different. We have

d(v, z) ≤ lim
n→∞

(
d(v, xf(n)) +

n+ν−2∑
j=n

d(xf(j), xf(j+1)) + d(xf(n+ν−1), z)
)
= 0,

which implies a contradiction. Therefore we have shown {xn} converges exclusively
to z. Let us prove (iii). Noting xn ̸= z for n ∈ N, we can define a function h from
N into itself by

h(n) := max{i : xi = xn} < ∞.

Arguing by contradiction, we assume that {xn} is not Cauchy. Then there exist
subsequences {xf(n)} and {xg(n)} of {xn} such that

max
{
f(n), g(n)

}
< min

{
f(n+ 1), g(n+ 1)

}
and d(xf(n), xg(n)) ≥ (ν + 1) ε for some ε > 0. We choose ℓ ∈ N such that
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d(xn, xn+1) < ε and d(xn, z) < ε

for n ≥ ℓ. Fix m ∈ N with f(m) ≥ ℓ. Without loss of generality, we may assume
h(f(m)) < h(g(m)). Put k0 = h(g(m)), k1 = h(k0) + 1, . . . , kν−1 = h(kν−2) + 1.
We also put yi = xki for i = 0, 1, . . . , ν − 1, yν = z and yν+1 = xh(f(m)). Then yi
are all different. So we have

(ν + 1) ε ≤ d(xf(m), xg(m)) = d(xh(g(m)), xh(f(m))) ≤
ν∑

i=0

d(yi, yi+1) < (ν + 1) ε,

which implies a contradiction. Therefore {xn} is Cauchy. □
Proposition 2.4. Let (X, d) be a compact ν-generalized metric space and let {xn}
be a sequence in X and let z be an element of X. Assume that there is no subse-
quence of {xn} converging to any v ∈ X \ {z}. Then {xn} converges exclusively to
z.

Proof. Let {xf(n)} be a subsequence in {xn}. Since X is compact, there exists
a convergent subsequence {xf(g(n))} of {xf(n)}. From the assumption, {xf(g(n))}
converges to z. Therefore by Proposition 2.3 (i), {xn} itself converges to z. From
the assumption again, {xn} converges exclusively to z. □

The following are connected with the continuity of d.

Proposition 2.5. Let (X, d) be a 2-generalized metric space. Let {xn} and {yn}
be sequences in X converging to u and v, respectively. Assume that for each n ∈ N,
four elements of xn, yn, u, v are all different. Then

(2.1) d(u, v) = lim
n→∞

d(xn, yn)

holds.

Remark 2.6. See also the proof of (iii) of Example 4.1 and the remark below the
proof.

Proof. By (N3), we have

lim sup
n→∞

d(xn, yn) ≤ lim
n→∞

(
d(xn, u) + d(u, v) + d(v, yn)

)
= d(u, v).

By (N3) again, we have

d(u, v) ≤ lim inf
n→∞

(
d(u, xn) + d(xn, yn) + d(yn, v)

)
= lim inf

n→∞
d(xn, yn).

Therefore we obtain the desired result. □
Proposition 2.7. Let (X, d) be a ν-generalized metric space. Let {xn} and {yn} be
sequences in X converging to u and v in the strong sense, respectively. Then (2.1)
holds.

Remark 2.8. See also the remark below the proof of Example 4.1.

Proof. In the case where ν = 1, the conclusion is obvious. So we assume ν ≥ 2. We
first note that

{n ∈ N : xn = a}
is a finite set for any a ∈ X \ {u}. We also note that {n ∈ N : yn = a} is a finite set
for any a ∈ X \ {v}. We consider the following four cases:
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• xn = u and yn = v for sufficiently large n ∈ N;
• xn ̸= u for infinitely many n; and yn = v for sufficiently large n ∈ N;
• xn = u for sufficiently large n ∈ N; and yn ̸= v for infinitely many n;
• xn ̸= u for infinitely many n; and yn ̸= v for infinitely many n.

In the first case, (2.1) obviously holds. Let us prove (2.1) in the fourth case. Fix
ε > 0. Then there exists ℓ ∈ N such that

d(xn, u) < ε, sup
m>n

d(xn, xm) < ε and d(yn, v) < ε

for any n ≥ ℓ. Fix n ∈ N with n ≥ ℓ. Since {xn : n ∈ N} is an infinite set, we can
choose k1, k2, . . . , kν−1 such that ki > n,

{u, v, xn, yn} ∩ {xk1 , xk2 , . . . , xkν−1} = ∅

and xk1 , xk2 , . . . , xkν−1 are all different. Further, we consider the following cases:

(i) xn = u and yn = v;
(ii) u = v and xn = yn;
(iii) u = v, xn ̸= u and yn = v;
(iv) u = v, xn ̸= yn, xn ̸= u and yn ̸= v;
(v) u ̸= v, xn = yn, xn ̸= u and yn ̸= v;
(vi) u ̸= v, xn ̸= yn, xn ̸= u and yn = v;
(vii) u ̸= v, xn ̸= yn, xn ̸= u, yn ̸= v and ν = 2;
(viii) u ̸= v, xn ̸= yn, xn ̸= u, yn ̸= v and ν ≥ 3.

We note that we do not have to consider the following cases because in the fourth
case, the conditions on {xn} and {yn} are the same.

(ix) u = v, xn = u and yn ̸= v;
(x) u ̸= v, xn ̸= yn, xn = u and yn ̸= v.

We also note that in the case where u ̸= v, we may assume that xn ̸= v and yn ̸= u.
In the cases of (i) and (ii), d(xn, yn) = d(u, v) holds, which implies

(2.2)
∣∣d(xn, yn)− d(u, v)

∣∣ < (ν + 1) ε.

In the case of (iii), d(u, v) = 0 holds by (N1). We have

d(xn, yn) = d(xn, u) < ε,

which implies (2.2). In the case of (iv), we have

d(xn, yn) ≤ d(xn, xk1) +

ν−2∑
i=1

d(xki , xki+1
) + d(xkν−1 , u) + d(v, yn)

< (ν + 1) ε,

which implies (2.2). In the case (v), d(xn, yn) = 0 holds. We have

d(u, v) ≤ d(u, xk1) +
ν−2∑
i=1

d(xki , xki+1
) + d(xkν−1 , xn) + d(yn, v)

< (ν + 1) ε,
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which implies (2.2). In the case of (vi), we have

d(xn, yn) ≤ d(xn, xk1) +
ν−2∑
i=1

d(xki , xki+1
) + d(xkν−1 , u) + d(u, v)

< ν ε+ d(u, v)

and

d(u, v) ≤ d(u, xk1) +
ν−2∑
i=1

d(xki , xki+1
) + d(xkν−1 , xn) + d(xn, yn)

< ν ε+ d(xn, yn),

which imply (2.2). In the case of (vii), we have

d(xn, yn) ≤ d(xn, u) + d(u, v) + d(v, yn) < 2 ε+ d(u, v)

and

d(u, v) ≤ d(u, xn) + d(xn, yn) + d(yn, v) < 2 ε+ d(xn, yn),

which imply (2.2). In the case of (viii), we have

d(xn, yn) ≤ d(xn, xk1) +

ν−3∑
i=1

d(xki , xki+1
) + d(xkν−2 , u) + d(u, v) + d(v, yn)

< ν ε+ d(u, v)

and

d(u, v) ≤ d(u, xk1) +

ν−3∑
i=1

d(xki , xki+1
) + d(xkν−2 , xn) + d(xn, yn) + d(yn, v)

< ν ε+ d(xn, yn),

which imply (2.2). We have shown (2.2) in all cases. Hence (2.1) holds in the fourth
case. Let us prove (2.1) in the second case. Without loss of generality, we may
assume yn = v. So we note that we do not have to consider the cases of (ix) nor
(x). Therefore we can prove (2.1) as in the proof of the fourth case. Similarly we
can prove (2.1) in the third case. □

3. Main results

We prove generalizations of Edelstein’s fixed point theorem.

Theorem 3.1. Let (X, d) be a compact 2-generalized metric space. Let T be a
mapping on X such that

(3.1) d(Tx, Ty) < d(x, y)

for any x, y ∈ X with x ̸= y. Then T has a unique fixed point z. Moreover {Tnx}
converges exclusively to z for any x ∈ X.

Remark 3.2. We do not know whether Theorem 3.1 holds for ν-generalized metric
spaces with ν ≥ 3.

Before proving Theorem 3.1, we need the following lemma.
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Lemma 3.3. Let (X, d) be a 2-generalized metric space and let T be a mapping on
X such that

(3.2) d(Tx, Ty) ≤ d(x, y)

for any x, y ∈ X. Let {xn} be a sequence in X converging to some v ∈ X. Then
{Txn} converges to Tv. Moreover, if Txn ̸= xn and Txn ̸= Tv for sufficiently large
n ∈ N and Tv ̸= v, then

(3.3) d(v, Tv) = lim
n→∞

d(xn, Txn)

holds.

Proof. By (3.2), we have

lim
n→∞

d(Txn, T v) ≤ lim
n→∞

d(xn, v) = 0

and hence {Txn} converges to Tv. We assume that Txn ̸= xn and Txn ̸= Tv for
sufficiently large n ∈ N and Tv ̸= v. Then we note xn ̸= v for sufficiently large
n ∈ N. Since {xn} and {Txn} converge to v and Tv respectively and v ̸= Tv, we
also note Txn ̸= v and xn ̸= Tv for sufficiently large n ∈ N. Therefore xn, Txn, v,
Tv are all different for sufficiently large n ∈ N. So by Proposition 2.5, we obtain
(3.3). □

Proof of Theorem 3.1. We note (3.2) holds for any x, y ∈ X. Put

β = inf
{
d(x, Tx) : x ∈ X

}
.

We shall show that T has a fixed point, dividing the following three cases:

• β = 0 and d(z, Tz) = β for some z ∈ X;
• β > 0 and d(v, Tv) = β for some v ∈ X;
• d(x, Tx) > β for any x ∈ X.

In the first case, such z is a fixed point. In the second case, we have by (3.1)

β ≤ d(Tv, T 2v) < d(v, Tv) = β.

This is a contradiction, thus, the second case cannot be possible. In the third
case, we note Tx ̸= x for any x ∈ X. We choose a sequence {xn} in X such
that {d(xn, Txn)} is strictly decreasing and converges to β. We note that xn are
all different. Since X is compact, there exists a subsequence {f(n)} of {n} such
that {xf(n)} converges to some v ∈ X. We note that {Txf(n)} converges to Tv by
Lemma 3.3. In the case where Txf(n) = Tv for sufficiently large n ∈ N, we have by
(3.2)

β < d(Tv, T 2v) = lim
n→∞

d(Txf(n), T
2xf(n)) ≤ lim

n→∞
d(xf(n), Txf(n)) = β,

which implies a contradiction. In the other case, we can choose a subsequence
{f(g(n))} of {f(n)} such that Txf(g(n)) ̸= Tv for n ∈ N. Then by Lemma 3.3, we
have

β < d(v, Tv) = lim
n→∞

d(xf(g(n)), Txf(g(n))) = β,
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which also implies a contradiction. Therefore the third case cannot be possible. We
have shown that T has a fixed point. Let y ∈ X \ {z} be a fixed point. Then we
have by (3.1)

d(y, z) = d(Ty, Tz) < d(y, z),

which implies a contradiction. Therefore the fixed point z is unique. Fix x ∈ X.
Arguing by contradiction, we assume that there exists a subsequence {T f(n)x} of
{Tnx} converging to some v ∈ X \ {z}. Then Tnx ̸= z holds for any n ∈ N. So
{d(Tnx, Tn+1x)} is strictly decreasing and hence it converges to some γ and Tnx

are all different. Since X is compact, there exists a subsequence {T f(g(n))−1x} of

{T f(n)−1x} converging to some u ∈ X. By Lemma 3.3, we have

Tu = T lim
n→∞

T f(g(n))−1x = lim
n→∞

T f(g(n))x = lim
n→∞

T f(n)x = v.

By Lemma 3.3 again, we have

lim
n→∞

T f(g(n))+1x = Tv = T 2u.

From v ̸= z, we have u ̸= Tu ̸= T 2u. By Lemma 3.3, we have

d(Tu, T 2u) = d(u, Tu) = γ.

By (3.1), we obtain γ = 0, which contradicts u ̸= Tu. Therefore by Proposition 2.4,
{Tnx} converges exclusively to z. □
Theorem 3.4. Let (X, d) be a ν-generalized metric space such that X is compact
in the strong sense. Let T be a mapping on X such that (3.1) holds for any x, y ∈ X
with x ̸= y. Then T has a unique fixed point z. Moreover for any x ∈ X, {Tnx}
converges to z in the strong sense.

Proof. We note (3.2) holds for any x, y ∈ X. Fix x ∈ X. Then since X is compact in

the strong sense, there exists a subsequence {T f(n)x} of a sequence {Tnx} converg-

ing to some z ∈ X in the strong sense. By (3.2), we have {T f(n)+1x} and {T f(n)+2x}
converge to Tz and T 2z in the strong sense, respectively. Noting {d(Tnx, Tn+1x)}
is nonincreasing, we have

d(z, Tz) = d(Tz, T 2z) = lim
n→∞

d(Tnx, Tn+1x)

by Proposition 2.7. Since d(z, Tz) > 0 contradicts (3.1), we obtain z is a fixed point
of T . We can prove the uniqueness of fixed point as in the proof of Theorem 3.1. □

4. Counterexample

We finally give an example which d is not continuous.

Example 4.1 ([6]). Let

X =
{
(0, 0)

}
∪
(
(0, 1]× [0, 1]

)
.

Define a function d from X ×X into [0,∞) by

d(x, x) = 0;

d
(
(0, 0), (s, 0)

)
= d

(
(s, 0), (0, 0)

)
= s if s ∈ (0, 1];

d
(
(s, 0), (p, q)

)
= d

(
(p, q), (s, 0)

)
= |s− p|+ q if s, p, q ∈ (0, 1];
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d(x, y) = 3 otherwise.

Then the following hold:

(i) (X, d) is a 2-generalized metric space and does not have a topology which
is compatible with d.

(ii) For each pair of distinct points u, v ∈ X there is a number ru,v > 0 such
that for every w ∈ X, ru,v ≤ d(u,w) + d(w, v).

(iii) d is not continuous.

Remark 4.2. See Proposition 2 in [5].

Proof. (i) is proved in [6]. (ii) is obvious. In order to prove (iii), we define sequences
{un} and {vn} in X by un = (1/2, 1/2n) and vn = (1/2, 1/3n). Then both {un}
and {vn} converge to (1/2, 0). However, we have

d
(
(1/2, 0), (1/2, 0)

)
= 0 ̸= 3 = lim

n→∞
d(un, vn).

Therefore d is not continuous. □

Remark 4.3. Connected with Propositions 2.5 and 2.7, we also give another
example on (iii). Define sequences {un} and {vn} in X by un = (1/3, 0) and
vn = (2/3, 1/2n). Then {un} and {vn} converge to (1/3, 0) and (2/3, 0), respec-
tively. We note that {un} is Cauchy. However,

d
(
(1/3, 0), (2/3, 0)

)
= 3 ̸= 1/3 = lim

n→∞
d(un, vn)

holds.
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