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is that one of finding a point (x̄, ȳ) ∈ A×B such that

f(x̄, y) ≤ f(x̄, ȳ) ≤ f(x, ȳ) ∀x ∈ A, ∀y ∈ B.(1.2)

If (x̄, ȳ) ∈ A × B satisfies (1.2), then one says that it is a saddle point of the
minimax problem (1.1).

Definition 1.1 ([10]). Let X,Y be Banach spaces with the dual spaces denoted
respectively by X∗ and Y ∗. Let A ⊂ X,B ⊂ Y be nonempty closed convex
sets, and let F1 : A × B → X∗, F2 : A × B → Y ∗ be arbitrary given func-
tions. The minimax variational inequality problem (MV IP ) defined by data
set {A,B, F1, F2} is the problem for finding a point (x̄, ȳ) ∈ A×B such that

⟨F2(x̄, ȳ), y − ȳ⟩ ≤ 0 ≤ ⟨F1(x̄, ȳ), x− x̄⟩ ∀x ∈ A, ∀y ∈ B.

The solution set of (MV IP ) is denoted by Sol(MV IP ).

Remark 1.2. According to Theorem 1.1 of [10], if the solution set of (1.1) is
denoted by S then it holds S ⊂ Sol(MV IP ), provided that we put F1 = ∇xf and
F2 = ∇yf . Moreover, if f(·, y) is pseudo-convex on A and f(x, ·) is pseudo-concave
on B for every (x, y) ∈ A×B, then S = Sol(MV IP ) by Theorem 1.2 of [10]. Thus,
(MV IP ) can be used in studying the minimax problem (1.1).

Consider an operatorG : A×B → X∗×Y ∗ defined byG(x, y) = (F1(x, y),−F2(x, y))
for all (x, y) ∈ A × B. Thus, the value of the functional G(x, y) ∈ A∗ × B∗ at
(u, v) ∈ A×B is given by

⟨G(x, y), (u, v)⟩ = ⟨F1(x, y), u⟩ − ⟨F2(x, y), v⟩.(1.3)

Unless otherwise stated, the norm in the product space X ×Y is defined by setting
∥(x, y)∥ = ∥x∥+ ∥y∥. We are interested in the variational inequality defined by the
closed convex set A×B ⊂ X × Y and the operator G : A×B → X∗ × Y ∗.

(1.4) Find (x̄, ȳ) ∈ A×B such that

⟨G(x̄, ȳ), (x, y)− (x̄, ȳ)⟩ ≥ 0 ∀(x, y) ∈ A×B.

Proposition 1.3 ([10]). The inclusion (x̄, ȳ) ∈ Sol(MV IP ) holds if and only if
(x̄, ȳ) is a solution of (1.4).

In this paper, we will study some sufficient conditions the solution existence of
minimax variational inequality problems for relaxed α-pseudomonotone mappings in
reflexive Banach spaces, and generalized Lipschiz mappings in Hilbert spaces. The
remainder of this paper has 3 sections. In section 2, we recall and state preliminaries
various operator in form MVIP. In section 3, we present the solution existence of
MVIP for relaxed α-pseudomonotone in reflexive Banach spaces and in the last
section we investigate the solution existence and uniqueness of MVIP for Generalized
Lipschitz in Hilbert spaces.
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2. Preliminaries

In this paper the variational inequalities, weakly coercivity, monotonicity, pseu-
domonotonicity, relaxed α-pseudomonotonicity and strong monotonicity are funda-
mental concepts; see e.g.[1, 7, 11, 12, 19]. It is widely known that strong mono-
tonicity ⇒ monotonicity ⇒ pseudomonotonicity ⇒ relaxed α-pseudomonotonicity
and strong monotonicity ⇒ weakly coercivity.

Applied to the operator G = (F1,−F2) : A×B → X∗×Y ∗ given in (1.3) and the
variational inequality (1.4), weakly coercivity, monotonicity, pseudomonotonicity,
relaxed α-pseudomonotonicity and strong monotonicity in theory of V IP mean the
following.

Definition 2.1. Problem (1.4) is said to satisfy the weakly coercivity condition if
there exists a point (u, v) ∈ A×B such that

lim
∥(x,y)∥→∞, (x,y)∈A×B

⟨G(x, y)−G(u, v), (x, y)− (u, v)⟩ = ∞.(2.1)

Definition 2.2 ([10]). Problem (1.4) is said to be monotone if

⟨G(x, y)−G(u, v), (x, y)− (u, v)⟩ ≥ 0,(2.2)

∀(x, y), (u, v) ∈ A×B.

Definition 2.3 ([10]). Problem (1.4) is said to be pseudomonotone if

⟨G(u, v), (x, y)− (u, v)⟩ ≥ 0 ⇒ ⟨G(x, y), (x, y)− (u, v)⟩ ≥ 0,(2.3)

∀(x, y), (u, v) ∈ A×B.

Definition 2.4. Problem (1.4) is said to be relaxed α-pseudomonotone if

(2.4) ⟨G(u, v), (x, y)− (u, v)⟩ ≥ 0 ⇒
⟨G(x, y), (x, y)− (u, v)⟩ ≥ α(x− u, y − v),

∀(x, y), (u, v) ∈ A×B where α : A×B → R with

α(tz) = tpα(z), ∀t > 0, ∀p > 1, ∀z ∈ A×B.

Definition 2.5. [10] Problem (1.4) is said to be strongly monotone if there exists
a constant α > 0 such that

⟨G(x, y)−G(u, v), (x, y)− (u, v)⟩ ≥ α(∥x− u∥2 + ∥y − v∥2),(2.5)

∀(x, y), (u, v) ∈ A×B.

Example 2.6. Let X = Y = A = R, P = R+ and let T : X → Y be defined by

T (x) =

{
3
2x if x ≥ 0,
−1

2x if x < 0,

and

α(x) = −1

2
x2, ∀x ∈ X.

This is an example to show that there is a mapping T such that T is relaxed α-
pseudomonotone but not pseudomonotone.
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Definition 2.7. The operator T is hemicontinuous on A if for every pair of points
x, y ∈ A, the following function is continuous

t → ⟨T (tx+ (1− t)y), x− u⟩, 0 ≤ t ≤ 1.

3. MVIP for relaxed α-pseudomonotone mapping in Banach Spaces

In this section, we assumed that X,Y are reflexive Banach spaces. The norm in
the product space X × Y is given by setting ∥(x, y)∥ = ∥x∥ + ∥y∥. Then X × Y
is also a reflexive Banach space. Besides, (X × Y )∗ ≡ X∗ × Y ∗ and the value of
(x∗, y∗) ∈ X∗×Y ∗ at (x, y) ∈ X ×Y is given by ⟨(x∗, y∗), (x, y)⟩ = ⟨x∗, x⟩+ ⟨y∗, y⟩.
This conventions imply that ∥(x∗, y∗)∥ = max{∥x∗∥, ∥y∗∥}.

Lemma 3.1 ([1],Theorem 3.1)). Let X be a reflexive Banach space, A a nonempty
closed convex subset of X and F : A → X∗ a relaxed α-pseudomonotone operator
which is hemicontinuous on finite-dimensional subspace. Then vector u is a solution
of the variational inequaity

u ∈ A, ⟨F (u), x− u⟩ ≥ 0, ∀x ∈ A(3.1)

if and only if

u ∈ A, ⟨F (x), x− u⟩ ≥ α(x− u), ∀x ∈ A.(3.2)

Moreover, the solution set of (3.1) is closed and convex.

Theorem 3.2. Let X be a reflexive Banach space, A a nonempty closed bounded
and convex subset of X and F : A → X∗ a relaxed α-pseudomonotone operator
which is continuous on finite-dimensional subspace. Then there exists u ∈ A such
that

⟨F (u), x− u⟩ ≥ 0, ∀x ∈ A.

Moreover, the solution set is nonempty closed bounded and convex.

Proof. We consider a finite-dimensional subspace M of X such that A ∩ M is
nonempty. Since A ∩ M is nonempty closed bounded and convex in M and F :
A ∩ M → X∗ is continuous, it follows from Stampacchia ([14], Lemma 3.1) that
there exists xM ∈ A ∩M such that

⟨F (xM ), x− xM ⟩ ≥ 0, ∀x ∈ A ∩M.

By Theorem 3.1, we have

⟨F (x), x− xM ⟩ ≥ α(x− xM ), ∀x ∈ A ∩M.(3.3)

For each x ∈ A define

S(x) = {u ∈ A : ⟨F (x), x− u⟩ ≥ α(x− u)}.
Then the family {S(x) : x ∈ A} has a finite intersection property. Indeed, for
any finite subset {xi : 1 ≤ i ≤ m} of K, let M be the finite-dimensional subspace
spanned by {xi : 1 ≤ i ≤ m}. By the finite-dimensional case (3.3) that we have
shown, there exist xM ∈ A ∩M such that

⟨F (x), x− xM ⟩ ≥ α(x− xM ), ∀x ∈ A ∩M.

In particular, we have ⟨F (xi), xi − xM ⟩ ≥ 0 for all 1 ≤ i ≤ m. This implies that
xM ∈

∩m
i=1 S(xi). Hence S(x) is not empty for all x ∈ A. Since S(x) is closed for
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all x ∈ A and A is closed and bounded, it follows that
∩

x∈A S(x) is nonempty. Let
u ∈

∩
x∈A S(x). Then ⟨F (x), x− u⟩ ≥ α(x− u) for all x ∈ A. By Theorem 3.1, we

have ⟨F (u), x− u⟩ ≥ 0, ∀x ∈ A. Finally, by Theorem 3.1 again and bounded of A,
the solution set is nonempty closed bounded and convex. □

Lemma 3.3 ([19],Theorem 4.4)). Let X be a reflexive Banach space, A a nonempty
closed convex subset of X, F : A → X∗ and there exists a closed bounded and convex
subset C of A with intA(C) nonempty satisfying the following condition: for each
x ∈ ∂A(C) there exists u ∈ intA(C) such that ⟨F (x), x− u⟩ ≥ 0. If u ∈ A such that
⟨F (u), x− u⟩ ≥ 0 for all x ∈ C, then ⟨F (u), x− u⟩ ≥ 0 for all x ∈ A.

Lemma 3.4. Let X be a reflexive Banach space, A a nonempty closed convex subset
of X and F : A → X∗ a relaxed α-pseudomonotone operator which is continuous on
finite-dimensional subspace. If there exists a closed bounded and convex subset C
of A with intA(C) nonempty satisfying the following condition: for each x ∈ ∂A(C)
there exists u ∈ intA(C) such that ⟨F (x), x− u⟩ ≥ 0. Then there exists u ∈ A such
that

⟨F (u), x− u⟩ ≥ 0, ∀x ∈ A.

Proof. The result is follows from Theorem 3.2 and Lemma 3.3. □

Theorem 3.5. Let X be a reflexive Banach space. Suppose that A is a closed
convex subset of X with 0 ∈ A and F : A → X∗ is a weakly coercive relaxed α-
pseudomonotone operator which is continuous on finite-dimensional subspace. Then
there exists u ∈ A such that

⟨F (u), x− u⟩ ≥ 0, ∀x ∈ A.

Proof. Since F is weakly coercive there is an r > 0 such that ⟨F (x), x⟩ ≥ 0 for all
x ∈ A and ∥x∥ ≥ r. Let C = A∩Br. Then the set C is closed bounded and convex
with intA(C) nonempty. For each x ∈ ∂A(C), there exists 0 ∈ intA(C) such that
⟨F (x), x− 0⟩ ≥ 0. Therefore, by Lemma 3.4, we can complete the proof. □

An analogue of Theorem 3.1, 3.2 and 3.5, MVIP for relaxed α-pseudomonotone
can be formulated as follows.

Theorem 3.6. Let X,Y be reflexive Banach spaces. Suppose that A ⊂ X,B ⊂
Y are nonempty closed convex subsets and F1 : A × B → X∗, F2 : A × B →
Y ∗ are hemicontinuous on finite-dimensional subspaces and (MV IP ) is relaxed α-
pseudomonotone. Then vector (u, v) is a solution of the (MV IP )

⟨F1(u, v), x− u⟩ − ⟨F2(u, v), y − v⟩ ≥ 0, ∀(x, y) ∈ A×B.

if and only if

⟨F1(x, y), x− u⟩ − ⟨F2(x, y), y − v⟩ ≥ α(x− u, y − v), ∀(x, y) ∈ A×B.

Moreover, the solution set of (3.1) is closed and convex.

Proof. Let G = (F1,−F2). Since F1, F2 are hemicontinuous on finite-dimentional
subspaces, we obtains that G : A × B → X∗ × Y ∗ is hemicontinuous on finite-
dimentional subspaces. Hence, by Theorem 3.1, we can complete the proof. □
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Theorem 3.7. Let X,Y be reflexive Banach spaces. Suppose that A ⊂ X,B ⊂ Y
are nonempty closed bounded and convex subsets and F1 : A × B → X∗, F2 : A ×
B → Y ∗ are continuous on finite-dimensional subspaces and (MV IP ) is relaxed
α-pseudomonotone. Then there exists (u, v) ∈ A×B such that

⟨F1(u, v), x− u⟩ − ⟨F2(u, v), y − v⟩ ≥ 0, ∀(x, y) ∈ A×B.

Moreover, the solution set is nonempty closed bounded and convex.

Proof. We note that, if F1, F2 are continuous on finite-dimentional subspaces, then
G = (F1,−F2) is also continuous on finite-dimentional subspaces. Hence by our
assumption, we can get the assertion directly from Theorem 3.2. □
Theorem 3.8. Let X,Y be reflexive Banach spaces. Suppose that A ⊂ X,B ⊂ Y
are nonempty closed convex subsets of X with (0, 0) ∈ A × B and F1 : A × B →
X∗, F2 : A×B → Y ∗ are continuous on finite-dimensional subspaces and (MV IP )
is weakly coercive relaxed α-pseudomonotone. Then there exists (u, v) ∈ A×B such
that

⟨F1(u, v), x− u⟩ − ⟨F2(u, v), y − v⟩ ≥ 0, ∀(x, y) ∈ A×B.

Proof. The proof is similar with previous theorem. Hence we can also get the
assertion directly from Theorem 3.5. □

4. MVIP for generalized Lipschitz mapping in Hilbert Spaces

In this section, we assumed that X,Y are Hilbert spaces. Then X∗ and Y ∗ can be
identified with X and Y , respectively. The value of x∗ ∈ X∗ at x ∈ X is identified
with the inner product ⟨x∗, x⟩ of two vectors in X. A similar interpretation is
given for the inner product ⟨y∗, y⟩ of two vectors in Y . Setting ⟨(x, y), (u, v)⟩ =
⟨x, u⟩ + ⟨y, v⟩ for all (x, y), (u, v) ∈ X × Y , we define an innerproduct in X × Y .

Note that X × Y is also a Hilbert space with the norm ∥(x, y)∥ = (∥x∥2 + ∥y∥2)1/2.
We call z ∈ A the metric projection of a point x ∈ X onto a closed convex subset

A ⊂ X and write z = PA(x) if ∥x− z∥ = inf{∥x− u∥ : u ∈ A}.
It is well known that the metric projection z = PA(x) exists and is uniquely

defined by x ([12],Lemma 2.1 p.8). Besides, z = PA(x) if and only if z ∈ A and
⟨x−z, u−z⟩ ≤ 0 for every u ∈ A ([12],Theorem 2.3 p.9). We also know that PK(·) :
X → K is a nonexpansive mapping, that is, ∥PK(x′)−PK(x)∥ ≤ ∥x′−x∥, ∀x, x′ ∈ X
([12],Corollary 2.4 p.10).

Theorem 4.1. Let X be a Hilbert space. Suppose that A is a nonempty closed
convex subset of X and F : A → X is a generalized Lipschitz, strongly monotone
mapping, i.e., there exist constant L > 0 and α ≥ 0 such that

∥F (x)− F (u)∥ ≤ L(1 + ∥x− u∥) ∀x, u ∈ A
⟨F (x)− F (u), x− u⟩ ≥ α∥x− u∥2 ∀x, u ∈ A

Then the variational inequality problem;
Find x̄ ∈ A such that ⟨F (z̄), x− x̄⟩ ≥ 0 ∀x ∈ A,

has a unique solution.

Proof. If A is a singleton set, it obviously that the solution has unique. Suppose
that A has at least two elements, then by estimation

|⟨F (x)− F (u), x− u⟩| ≤ ∥F (x)− F (u)∥∥x− u∥
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and by assumption we note that

α∥x− u∥2 ≤ |⟨F (x)− F (u), x− u⟩|
and

|⟨F (x)− F (u), x− u⟩| ≤ L(1 + ∥x− u∥)∥x− u∥,
this implies that 0 < α ≤ LC where C = 1+∥x−u∥

∥x−u∥ . With loss of generality we may

assume that α ≤ LC. Take any ρ ∈ (0, α
L2C2 ] and we define a map g : A → A by

setting g(x) = PA(x− ρF (x)) for all x ∈ A. Thus,

∥(g(x)− g(u)∥2 = ∥PA(x− ρF (x))− PA(u− ρF (u))∥2

≤ ∥(x− ρF (x))− (u− ρF (u))∥2

= ∥ − (ρF (x)− ρF (u)) + (x− u)∥2

= ∥ρF (x)− ρF (u)∥2 − 2⟨ρF (x)− ρF (u), x− u⟩+ ∥x− u∥2

= ∥F (x)− F (u)∥2 − 2ρ⟨F (x)− F (u), x− u⟩+ ∥x− u∥2

≤ ρ2L2C2∥x− u∥2 − 2ρα∥x− u∥2 + ∥x− u∥2

= (ρ2L2C2 − 2ρα+ 1)∥x− u∥2, ∀x, u ∈ A.

Since 0 < ρ2 ≤ ρα
L2C2 , we have ρ2L2C2 ≤ ρα. Hence

ρ2L2C2 − 2ρα+ 1 = (ρ2L2C2 − ρα) + (1− ρα) ≤ 1− ρα.

And since 0 < ρα ≤ α2

L2C2 ≤ 1, we see that 0 ≤ 1− ρα < 1.
It follows that

∥g(x)− g(u)∥ ≤ r∥x− u∥
where r :=

√
1− ρα ∈ [0, 1).

By the Banach contractive mapping principle, there is a unique point x̄ ∈ A
satisfying g(x̄) = x̄. Thus PA(x̄ − ρF (x̄)) = x̄. By using the characterization of
metric projection, we obtain that

x̄ = PA(x̄− ρF (x̄)) ⇔ x̄ ∈ A and ⟨x̄− ρF (x̄)− x̄, x− x̄⟩ ≤ 0, ∀x ∈ A

⇔ x̄ ∈ A and ⟨−ρF (x̄), x− x̄⟩ ≤ 0, ∀x ∈ A

⇔ x̄ ∈ A and ⟨ρF (x̄), x− x̄⟩ ≥ 0, ∀x ∈ A

⇔ x̄ ∈ A and ⟨F (x̄), x− x̄⟩ ≥ 0, ∀x ∈ A.

Since g(x̄) = x̄ has a unique fixed point, we can conclude that ⟨F (x̄), x− x̄⟩ ≥ 0 for
all x ∈ A has a unique solution. □
Theorem 4.2. Let X,Y be a Hilbert spaces. Suppose that A ⊂ X, B ⊂ Y are
nonempty closed convex subsets and F1 : A × B → X, F2 : A × B → Y are
generalized Lipschitz. i.e., there exist constant Li > 0 (i = 1, 2) such that

∥Fi(x, y)− Fi(u, v)∥ ≤ Li(1 + ∥(x, y)− (u, v)∥)(4.1)

for all (x, y), (u, v) ∈ A× B, i = 1, 2. If the (MVIP) is strongly monotone, then it
has a unique solution.

Proof. Consider the mapping G(F1,−F2) : A×B → X × Y .Thus,

∥G(x, y)−G(u, v)∥2 = ∥(F1(x, y),−F2(x, y))− (F1(u, v),−F2(u, v))∥2

= ∥(F1(x, y)− F1(u, v),−F2(x, y) + F2(u, v))∥2
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= ∥F1(x, y)− F1(u, v)∥2 + ∥ − F2(x, y) + F2(u, v)∥2

≤ L2
1(1 + ∥(x, y)− (u, v)∥)2 + L2

2(1 + ∥(x, y)− (u, v)∥)2

= (L2
1 + L2

2)(1 + ∥(x, y)− (u, v)∥)2, ∀(x, y), (u, v) ∈ A×B.

Hence

∥G(x, y)−G(u, v)∥ ≤
√

L2
1 + L2

2(1 + ∥(x, y)− (u, v)∥),
for all (x, y), (u, v) ∈ A×B. We obtain that G = (F1,−F2) is a generalized Lipschitz
mapping. By Theorem 4.1, we can conclude the theorem. □
Theorem 4.3. Let X be a Hilbert space. Suppose that A is a nonempty bounded
closed and convex subset of X and F : A → 2X is a generalized Lipschitz, strongly
monotone mapping, i.e., there exist constant L > 0 and α ≥ 0 such that

H(F (x), F (u)) ≤ L(1 + ∥x− u∥) ∀x, u ∈ A, where H is the Hausdorff metric,
⟨y − v, x− u⟩ ≥ α∥x− u∥2 ∀F (x), F (u) ⊂ A.

Then the variational inequality problem;
Find x̄ ∈ A and z̄ ∈ F (x̄) such that ⟨z̄, x− x̄⟩ ≥ 0 ∀x ∈ A,

has a solution.

Proof. Suppose that A has at least two elements, then by estimation

|⟨y − v, x− u⟩| ≤ ∥y − v∥∥x− u∥
and by assumption we note that

α∥x− u∥2 ≤ |⟨y − v, x− u⟩|
and

|⟨y − v, x− u⟩| ≤ L(1 + ∥x− u∥)∥x− u∥,
this implies that 0 < α ≤ LC where C = 1+∥x−u∥

∥x−u∥ . With loss of generality we may

assume that α ≤ LC. Take any ρ ∈ (0, α
L2C2 ] and we define a map g : A → 2A by

setting g(x) = {PA(x− ρz) : z ∈ F (x)}. Suppose that

H(g(x), g(u)) = sup
z∈g(x)

inf
w∈g(u)

∥z − w∥.

Thus,

[H(g(x), g(u))]2 = sup
z∈g(x)

inf
w∈g(u)

∥z − w∥2

= sup
y∈F (x)

inf
v∈F (u)

∥PA(x− ρy)− PA(u− ρv)∥2

≤ sup
y∈F (x)

inf
v∈F (u)

∥(x− ρy)− (u− ρv)∥2

= sup
y∈F (x)

inf
v∈F (u)

∥ − (ρy − ρv) + (x− u)∥2

= sup
y∈F (x)

inf
v∈F (u)

(∥ρy − ρv∥2 − 2⟨ρy − ρv, x− u⟩+ ∥x− u∥)2

= ρ2 sup
y∈F (x)

inf
v∈F (u)

∥y − v∥2 − 2ρ sup
y∈F (x)

inf
v∈F (u)

⟨y − v, x− u⟩

+∥x− u∥2
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≤ ρ2L2C2∥x− u∥2 − 2ρα∥x− u∥2 + ∥x− u∥2

= (ρ2L2C2 − 2ρα+ 1)∥x− u∥2.

Since 0 < ρ2 ≤ ρα
L2C2 , we have ρ2L2C2 ≤ ρα. Hence

ρ2L2C2 − 2ρα+ 1 = (ρ2L2C2 − ρα) + (1− ρα) ≤ 1− ρα.

And since 0 < ρα ≤ α2

L2C2 ≤ 1, we see that 0 ≤ 1− ρα < 1.
It follows that

H(g(x), g(u)) ≤ r∥x− u∥

where r :=
√
1− ρα ∈ [0, 1).

Similarly, if H(g(x), g(u)) = supw∈g(u) infz∈g(x) ∥w − z∥, we also get the same

result. By Nadler’s fixed point theorem, there exists a point x̄ ∈ A and z̄ ∈ F (x̄)
satisfying x̄ ∈ g(x̄). Thus x̄ = PA(x̄− ρz̄). By using the characterization of metric
projection, we obtain that

x̄ = PA(x̄− ρz̄) ⇔ x̄ ∈ A, z̄ ∈ F (x̄) and ⟨x̄− ρz̄ − x̄, x− x̄⟩ ≤ 0, ∀x ∈ A

⇔ x̄ ∈ A, z̄ ∈ F (x̄) and ⟨−ρz̄, x− x̄⟩ ≤ 0, ∀x ∈ A

⇔ x̄ ∈ A, z̄ ∈ F (x̄) and ⟨ρz̄, x− x̄⟩ ≥ 0, ∀x ∈ A

⇔ x̄ ∈ A, z̄ ∈ F (x̄) and ⟨z̄, x− x̄⟩ ≥ 0, ∀x ∈ A.

Therefore, we can conclude that ⟨z̄, x− x̄⟩ ≥ 0 for all x ∈ A has a solution. □

Theorem 4.4. Let X,Y be a Hilbert spaces. Suppose that A ⊂ X, B ⊂ Y are
nonempty bounded closed and convex subsets and F1 : A×B → 2X , F2 : A×B → 2Y

are generalized Lipschitz. i.e., there exist constant Li > 0 (i = 1, 2) such that

H(Fi(x, y), Fi(u, v)) ≤ Li(1 + ∥(x, y)− (u, v)∥)

for all (x, y), (u, v) ∈ A× B, i = 1, 2. If the (MVIP) is strongly monotone, then it
has a solution.

Proof. Consider the mapping G(F1,−F2) : A×B → 2X × 2Y . Suppose that

H(G(x, y), G(u, v)) = sup
(z,w)∈G(x,y)

inf
(s,t)∈G(u,v)

∥(z, w)− (s, t)∥,

we have

[H(G(x, y), G(u, v))]2 = sup
(z,w)∈G(x,y)

inf
(s,t)∈G(u,v)

∥(z − s, w − t)∥2

= sup
(z,w)∈G(x,y)

inf
(s,t)∈G(u,v)

(∥z − s∥2 + ∥w − t∥2)

= sup
(z,w)∈G(x,y)

inf
(s,t)∈G(u,v)

∥z − s∥2

+ sup
(z,w)∈G(x,y)

inf
(s,t)∈G(u,v)

∥w − t∥2

≤ (H(F1(x, y), F1(u, v)))
2 + (H(F2(x, y), F2(u, v)))

2

≤ L2
1(1 + ∥(x, y)− (u, v)∥)2 + L2

2(1 + ∥(x, y)− (u, v)∥)2

= (L2
1 + L2

2)(1 + ∥(x, y)− (u, v)∥)2, ∀(x, y), (u, v) ∈ K × L.



2320 K. BURANAKORN AND S. PLUBTIENG

Hence

H(G(x, y), G(u, v)) ≤
√

L2
1 + L2

2(1 + ∥(x, y)− (u, v)∥),

for all (x, y), (u, v) ∈ A×B. Similarly, if

H(G(x, y), G(u, v)) = sup
(s,t)∈G(u,v)

inf
(z,w)∈G(x,y)

∥(s, t)− (z, w)∥,

we also get that G = (F1,−F2) is a generalized Lipschitz mapping. By Theorem
4.3, we can conclude the theorem. □

Recall that a function φ : X → R is said to be strongly convex on a convex set
A ⊂ X if there exists ρ > 0 such that

φ((1− t)x+ tu) ≤ (1− t)φ(x) + tφ(u)− ρt(1− t)∥x− u∥2,

∀x, u ∈ A, ∀t ∈ (0, 1). The number ρ is called a coefficient of strong convexity of φ
on K. If −φ is strongly convex on A with a coefficient of strong convexity ρ > 0,
then φ is said to be strongly concave on A with the coefficient of strong concavity
ρ > 0. It is well known that φ is strongly convex on A with a coefficient of strong
convexity ρ if and only if the function φ(x) := φ(x) − ρ∥x∥2 is convex on A (see
[15]). Moreover, if φ is continuously differentiable in an open set containing A, then
this strong convexity property holds if and only if

⟨∇φ(x)−∇φ(u), x− u⟩ ≥ 2ρ∥x− u∥2, ∀x, u ∈ A.

A proof of the fact can be found in [15] for the case X = Rn. Observe that the
method of proof works also for the case where X is an arbitrary Hilbert space (see
also [18]).

Theorem 4.2 gives us the following result on the existence and uniqueness of a
saddle point.

Theorem 4.5. Let X,Y be a Hilbert spaces. Suppose that A ⊂ X, B ⊂ Y are
nonempty closed convex subsets and there exist constants ρ > 0 and Li > 0 (i =
1, 2) such that such that the conditions (2.5) and (4.1) are satisfied for G(x, y) =
(F1(x, y),−F2(x, y)) where F1(x, y) = ∇xf(x, y) and F2(x, y) = ∇yf(x, y), then
(1.1) has a unique saddle point.

Proof. It suffices to apply Theorems 4.2 and Theorem 1.2 in [10], observing that
the assumptions made imply that, for any (x, y) ∈ A×B, f(·, y) is strongly-convex
on A and f(x, ·) is strongly-concave on B with the coefficient of strong convexity ρ

2
and the coefficient of strong concavity ρ

2 . □

Example 4.6 ([3]). Let E = R and let T : E → E be defined by

Tx =


x− 1 if x ∈ (−∞,−1),

x−
√

1− (x+ 1)2 if x ∈ [−1, 0).

x+
√

1− (x− 1)2 if x ∈ [0, 1].
x+ 1 if x ∈ (1,∞).

This is an easy example to show that T is a generalized Lipschitz mapping but not
Lipschitz.
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