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which would be easier to solve. We will show this by two examples in Sect. 4.
We find that our alternative result has close connection with supporting hyper-

planes to convex sets. As a matter of fact, we shall prove our alternative result
by proving a theorem on supporting hyperplanes to C at its boundary points. We
therefore discuss some basics about supporting hyperplanes in the next section. A
property of supporting hyperplanes will be proved in Sect. 3 which is then applied it
to prove our alternative result on V I(C,P ). Finally in Sect. 4, we use two examples
to illustrate advantages of solving the Eq. (1.3) over solving V I(C,P ).

2. Preliminaries

Let X be a linear space. It is well known that a proper linear subspace F of
X is maximal if any linear subspace F1 of X which properly contains F coincides
with the entire space X. Let x0 ∈ X and let F be a maximal linear subspace of X,
then L = x0 + F , a translation of F, is called a hyperplane. It is also well known
that if X is a normed linear space and L ⊂ X, then L is a closed hyperplane if and
only if there exists a non-zero continuous linear functional l on X and a constant
r such that L = F r

l , where F r
l = {x ∈ X : l(x) = r} is the level set of l at level

r. In particular, the level set F 0
l is the null space of l. For a given hyperplane Hr

l ,
it is easy to see that F r

l = x0 + F 0
l , where x0 is an arbitrary point in F r

l . (See
[2, 5] for more details about Banach space theory and its geometry). Recall that a
hyperplane L = F r

l is called a supporting hyperplane to a convex set C in X at a
boundary point x0 ∈ ∂C if

l(x) ≤ r = l(x0), x ∈ C

or

l(x) ≥ r = l(x0), x ∈ C.

Below is a classical result on supporting hyperplanes; see [2, 5] for details.

Theorem 2.1. Let X be a normed linear space. If E is a closed convex set of X
with interior points, then there exists a supporting hyperplane to E at each of the
boundary points of E.

In particular, if X = H be a real Hilbert space with inner product ⟨·, ·⟩ and F a
hyperplane pass through x0 then F = {x ∈ H : ⟨v, x− x0⟩ = 0} for some v ̸= 0.

From now on, we always assume thatH be a real Hilbert space with inner product
⟨·, ·⟩ and normal ∥ · ∥. Let φ be a real continuous convex function which is Gateaux
differentiable at each x ∈ H, that is, for an arbitrary x ∈ H, there exists an element
φ′(x) ∈ H, called Gateaux differential of φ at x, such that

lim
t→0

φ(x+ tv)− φ(x)

t
= ⟨v, φ′(x)⟩, v ∈ H.

Let φ1, φ2, · · · , φm be continuous convex functions on H and let C be defined by

C = {x ∈ H : φi(x) ≤ 0, i = 1, · · · ,m}.
Recall that the variational inequality, V I(C,P ), is started below:

find an x∗ ∈ C such that ⟨Px∗, x− x∗⟩ ≥ 0,



SUPPORTING HYPERPLANE AND VARIATIONAL INEQUALITIES 2325

where P : C → H is a nonlinear mapping.

Remark 2.2. We will assume that C has interior points since, otherwise, if C has
empty interior in H, we then restrict C to a closed subspace H ′ of H in which C
has nonempty interior.

At a boundary point x∗ of C, we use the following notation:

I∗ := {i : φi(x
∗) = 0},

C∗ := {x ∈ H : ⟨φ′
i(x

∗), x− x∗⟩ ≤ 0, i ∈ I∗}.

Lemma 2.3. Assume that x∗ is a boundary point of C. Then, for any interior
point x of C∗, there exists t > 0 such that x∗ + s(x− x∗) is an interior point of C
for all s ∈ (0, t).

Proof. Let i ∈ I∗, from the Gateaux differentiability of φi, we have:

lim
s→0

φi(x
∗ + s(x− x∗))− φi(x

∗)

s
= ⟨x− x∗, φ′

i(x
∗)⟩.

Further, since φi(x
∗) = 0, ⟨x − x∗, φ′

i(x
∗)⟩ < 0 (by the fact that x is an interior

point of C∗). These imply that φi(x
∗ + s(x − x∗)) < 0 for all s ∈ (0, ti) such that

ti is sufficiently small. Let t = min{ti : i ∈ I∗}; then φi(x
∗ + s(x− x∗)) < 0 for all

s ∈ (0, t) for i ∈ I∗. Further, as x∗ ∈ C ⇒ φi(x
∗) < 0 for all i ∈ {1, 2, · · · ,m} \ I∗.

So with t sufficiently small, φi(x
∗ + s(x − x∗)) < 0 for all s ∈ (0, t) for every

i ∈ {1, 2, · · · ,m}. □
Lemma 2.4. Assume that x∗ is a boundary point of C. Then a hyperplane F
supports C at x∗ if and only if F supports C∗ at x∗.

Proof. We first prove the sufficiency part. If x ∈ C, then by the subdifferential
inequality, we have

(2.1) ⟨φ′
i(x

∗), x− x∗⟩ = φ(x
∗) + ⟨φ′

i(x
∗), x− x∗⟩ ≤ φ(x) ≤ 0 ∀x ∈ C, ∀i ∈ I∗.

It turns out that x ∈ C∗, yielding C ⊂ C∗. Hence, if a hyperplane F supports C∗

at x∗, then F also supports C at x∗.
Next we prove the necessity part. If a hyperplane F is a supporting plane to

C at x∗, then F is also a supporting plane to C∗ at x∗. Indeed, if we assume
the contrary that F is not supporting to C∗ at x∗, then ∃x1, x2 ∈ C∗ such that
⟨f, x1−x∗⟩ < 0 < ⟨f, x2−x∗⟩, where f is a normal vector of F . Now, if x1 ∈ ∂(C∗),
by the fact that ⟨f, x1−x∗⟩ < 0, there exists a ball B(x1, r) such that ⟨f, x−x∗⟩ < 0
for all x ∈ B(x1, r). Since C∗ is convex with nonempty interior point set and
x1 ∈ ∂(C∗), we can take an interior point a1 of B(x1, r) ∩ C∗. Hence there exists
an interior point a1 of C∗ such that ⟨f, a1 − x∗⟩ < 0. By the same argument, there
exists an interior point a2 of C∗ such that ⟨f, a2 − x∗⟩ > 0.

Thank to Lemma 2.3, there exist t1 > 0, t2 > 0 such that x∗ + s(a1 − x∗) and
x∗ + k(a2 − x∗) are interior points of C for all s ∈ (0, t1), k ∈ (0, t2).

Take b1 = x∗+ t1
2 (a1−x∗) and b2 = x∗+ t2

2 (a2−x∗). Then b1, b2 ∈ C, ⟨f, b1−x∗⟩ =
t1
2 ⟨f, a1−x∗⟩ < 0 and ⟨f, b2−x∗⟩ = t2

2 ⟨f, a2−x∗⟩ > 0. Thus, F is not a supporting
plane to C at x∗. This is a contradiction.

□
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3. Main results

Theorem 3.1. A Hyperplane F is a supporting plane to C at a boundary point
x∗ of C if and only if there exists α belonging to conv{φ′

i(x
∗) : i ∈ I∗} such that

F = {x ∈ H : ⟨α, x− x∗⟩ = 0}.

Proof. We first prove the necessity part. Denote

ai := φ′
i(x

∗),

Fi := {x ∈ H : ⟨ai, x− x∗⟩ = 0},
C∗
i := {x ∈ H : ⟨ai, x− x∗⟩ ≤ 0}.

Without any loss of generality, we assume x∗ = 0. Take an interior point a of C∗.
Then a ̸= 0 and ⟨a, ai⟩ < 0 for all i ∈ I∗.

Denote v := a
∥a∥ and if F0 is a hyperplane with normal vector v, then ⟨v, ai⟩ < 0

for all i ∈ I∗.
For each x ∈ H, let x0 be the point of F0 which is closest to x. We have:

x = x0 + ⟨x− x0, v⟩v = x0 + ⟨x, v⟩v ≡ (x0;xv),

where xv = ⟨x, v⟩, and
⟨x, y⟩ = ⟨x0, y0⟩+ xvyv.

We have:

ai = ai0 + ⟨ai, v⟩v = ri

(ai0
ri

− v
)
= ri

(ai0
ri
;−1

)
,

where ri = |⟨ai, v⟩| and ai0 = projF0
(ai), and

C∗
i =

{
(x0;xv) ∈ H :

⟨(ai0
ri
;−1

)
, (x0;xv)

⟩
≤ 0

}
=

{
(x0;xv) ∈ H :

⟨ai0
ri
, x0

⟩
≤ xv

}
.

Since v is an interior point of C∗ and the hyperplane F is supporting C at x∗ = 0,
by Lemma 2.4, F is also supporting C∗ at x∗ = 0. So we can choose a normal vector
to F , f , such that ⟨f, v⟩ < 0. We have

f = f0 + ⟨f, v⟩v = r
(f0
r

− v
)
= r

(f0
r
;−1

)
with r = |⟨f, v⟩|, f0 = projF0

(f)

and

F =
{
(x0;xv) ∈ H :

⟨(f0
r
;−1

)
, (x0;xv)

⟩
= 0

}
=

{
(x0;xv) ∈ H :

⟨f0
r
, x0

⟩
= xv

}
.

We will prove that f0
r ∈ conv{ai0

ri
: i ∈ I∗}. Suppose to the contrary that f0

r is not

belong to conv{ai0
ri

: i ∈ I∗}. Let z0 be the point of conv{
ai0
ri

: i ∈ I∗} which is closest

to f0
r .

We have ⟨f0r − z0, y0 − z0⟩ ≤ 0 for all y0 ∈ conv{ai0
ri

: i ∈ I∗}. Let w0 = f0
r − z0;

then ⟨w0, y0⟩ ≤ ⟨w0, z0⟩ = ⟨w0, z0 − f0
r ⟩ + ⟨w0,

f0
r ⟩ = ⟨w0,

f0
r ⟩ − ∥w0∥2 for all y0 ∈

conv{ai0
ri

: i ∈ I∗}. It turns out that

(3.1) ⟨w0, y0⟩ ≤
⟨
w0,

f0
r

⟩
− ∥w0∥2 for all y0 ∈ conv

{ai0
ri

: i ∈ I∗
}
.
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As 0 ∈ F0, F0 is a subspace of H. Moreover f0
r ,

ai0
ri

∈ F0, so z0 ∈ F0, implying

w0 ∈ F0. Now, because F is a supporting plane to C∗ at x∗ = 0 (by Lemma 2.4),
there exists i0 ∈ I∗ such that

(3.2)
⟨ai00
ri0

, w0

⟩
≥

⟨f0
r
, w0

⟩
.

Indeed, by contradiction, suppose that
⟨ai0
ri
, w0

⟩
<

⟨f0
r
, w0

⟩
, for all i ∈ I∗. Let

s =
⟨f0
r
, w0

⟩
. Then (w0, s) ∈ F since

⟨
(f0r ;−1), (w0, s)

⟩
= 0, (w0, s) is a interior

point of C∗ since
⟨
(
ai0
ri
;−1). Since (w0, s)

⟩
=

⟨ai0
ri
, w0

⟩
− s =

⟨ai0
ri
, w0

⟩
−
⟨f0

r , w0

⟩
< 0

for all i ∈ I∗, F contains an interior point of C∗ and this is a contradiction to the
fact that F is a supporting plane to C∗ at x∗ = 0. Hence, inequality (3.2) holds.

Combining (3.1) and (3.2), we obtain
⟨ai00
ri0

, w0

⟩
≥

⟨f0
r
, w0

⟩
≥

⟨
y0, w0

⟩
+ ∥w0∥2,

for all y0 ∈ conv{ai0
ri

: i ∈ I∗}, which turns out to be a contradiction if we select

y0 =
ai00
ri0

. Hence f0
r ∈ conv{ai0

ri
: i ∈ I∗}, implying (f0r ,−1) ∈ conv{(a

i
0
ri
,−1) : i ∈

I∗}. In other words, there exists α belonging to conv{φ′
i(x

∗) : i ∈ I∗} such that
F = {x ∈ H : ⟨α, x− x∗⟩ = 0}.

The sufficiency part is trivial. □

Theorem 3.2. Consider VI(C,P ) and assume its solution set S ̸= ∅. Let x∗ ∈ C be
given. Then we have the following alternative to the solution of VI(C,P ). Namely,
x∗ ∈ S if and only if there holds either:

• Px∗ = 0, or
• x∗ ∈ ∂C and ∃ t > 0, ∃ v ∈ conv{φ′

i(x
∗) : i ∈ I∗}, such that Px∗ = −tv.

Proof. (The proof of this theorem is similar to that of [18, Theorem 4.1].)
(⇒): Suppose x∗ ∈ S. If Px∗ ̸= 0, we shall prove x∗ ∈ ∂C. Suppose to the contrary
that x∗ is an interior point of C. Let r > 0 be such that the open ball B(x∗, r) ⊂ C.
Then

⟨Px∗, x− x∗⟩ ≥ 0 ∀x ∈ B(x∗, r).

Take y = x∗ − rPx∗

2∥Px∗∥ to get y ∈ B(x∗, r) and 0 ≤ ⟨Px∗, y − x∗⟩ = − r∥Px∗∥
2 .

Consequently, Px∗ = 0, which is a contradiction to the assumption that Px∗ ̸= 0.
Hence x∗ ∈ ∂C.

It remains to show that there exist t > 0 and v ∈ conv{φ′
i(x

∗) : i ∈ I∗} such that
Px∗ = −tv. Let F be a hyperplane with normal vector Px∗ and contain the point
x∗; then F is a supporting plane to C at x∗.

Thanks to Theorem 3.1, there exists s ̸= 0 such that sPx∗ ∈ conv{φ′
i(x

∗) : i ∈
I∗}. On the other hand, C ⊂ C∗ = {x ∈ H : ⟨φ′

i(x
∗), x − x∗⟩ ≤ 0, i ∈ I∗}. Thus,

⟨sPx∗, x − x∗⟩ ≤ 0 for all x ∈ C; consequently, s < 0, setting t = −s then proves
the the necessity part.
(⇐): It is trivial that the conclusion of the theorem holds if Px∗ = 0. We
next consider the case where we assume that x∗ ∈ ∂C and there exist t > 0
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and v ∈ conv{φ′
i(x

∗) : i ∈ I∗} such that Px∗ = −tv =
∑

i∈I∗ λiφ
′
i(x

∗) with
λi ≥ 0,

∑
i∈I∗ λi = 1. It follows from (2.1)that ⟨Px∗, x− x∗⟩ ≥ 0 for all x ∈ C. □

Remark 3.3. Although we always assume C is a closed convex set, it is true that
if C is not convex, VI(C,P ) can still be resolved by using the same arguments in
Lemma 2.3, Lemma 2.4, and Theorems 3.1 and 3.2. We will illuminate this by an
example in Section 4.

4. Applications

Example 4.1. Let H = R2, φ1(x, y) = x2−y; φ2(x, y) = x2+y2−2; φ3(x, y) = −x
and P (x, y) = (3ex, 2x+ y). Set Ci = {x ∈ H : φi(x) ≤ 0}, i = 1, 2, 3. Let S be the

solution set of the associating VI. It is easy to see that P (x, y) ̸= 0 on C =
∩3

i=1Ci.
Hence, the solutions must occur in ∂C. By Theorem 3.2:

• X = (0, 0) ∈ S ⇔ P (X) = sφ′
1(X) + tφ3(X), t ≥ 0, s ≥ 0, s + t ̸= 0 ⇔

(3, 0) = −s(0,−1) − t(−1, 0), t ≥ 0, s ≥ 0, s + t ̸= 0 ⇔ {t = 0, s = 3}, so
(0, 0) ∈ S.

• X = (1, 1) ∈ S ⇔ P (X) = −sφ
′
1(X) − tφ2(X), t ≥ 0, s ≥ 0, s + t ̸= 0 ⇔

(3e, 3) = −s(2,−1) − t(2, 2), t ≥ 0, s ≥ 0, s + t ̸= 0 ⇒ 3e = −2s − 2t, t ≥
0, s ≥ 0, so (1, 1) ̸∈ S.

• X = (0,
√
2) ∈ S ⇔ P (X) = −sφ′

2(X) − tφ2(X), t ≥ 0, s ≥ 0, s + t ̸= 0 ⇔
(3,

√
2) = −s(0, 2

√
2)− t(−1, 0), t ≥ 0, s ≥ 0, s+ t ̸= 0 ⇒ −2s = 1, s ≥ 0, so

(0,
√
2) ̸∈ S.

• X = (x, y) ∈ ∂C1,with x ∈ (0, 1), X ∈ S ⇔ P (x, y) = −tφ′
1(x, y), t > 0

which is equivalently rewritten as{
(3ex, 2x+ y) = −t(2x,−1)

y = x2, x ∈ (0, 1), t > 0

⇔

{
3ex = −2tx, 2x+ y = t

y = x2, x ∈ (0, 1), t > 0

⇔

{
3ex + 2x3 + 4x = 0

t = 2x+ y, y = x2, x ∈ (0, 1), t > 0

for f(x) = 3ex+2x3+4x is an increasing function on (0, 1) and f(0) = 3 > 0;
so the above system has no solution.

• X = (x, y) ∈ ∂C2,with x ∈ (0, 1), X ∈ S ⇔ P (x, y) = −tφ′
2(x, y), t > 0

which is equivalently rewritten as{
(3ex, 2x+ y) = −t(2x, 2y)

x =
√
2 cos z, y =

√
2 sin z, z ∈ (π/4, π/2), t > 0

⇒

{
3e

√
2 cos z = −t.2

√
2 cos z

z ∈ (π/4, π/2), t > 0

since cos z > 0 on (π/4, π/2); hence, X ̸∈ S.



SUPPORTING HYPERPLANE AND VARIATIONAL INEQUALITIES 2329

• X = (0, y) ∈ ∂C3,with y ∈ (0,
√
2), X ∈ S ⇔ P (0, y) = −tφ′

3(0, y), t > 0
which is equivalently rewritten as{

(3, y) = −t(0, 2y)

y ∈ (0,
√
2), t > 0

⇒ 3 = 0 impossible. Therefore, X ̸∈ S, and X = (0, 0) is the unique
solution of VI(C,P ).

Example 4.2. LetH = R2, φ1(x, y) = 6x2+4x−3y+2, φ2(x, y) = 4x−y, P (x, y) =
(48x2 − 8, 9y), and C = {(x, y) ∈ R2 : φ1(x, y) ≤ 0, φ2(x, y) ≥ 0}. Again let S
denote the solution set of the VI VI(C,P ). Note that this C is not a convex set.
However, by making use of the arguments in Section 3, we can resolve the above
problem.

Indeed, it is easy to see that P (x, y) = 0 ⇔ (x, y) = (± 1√
6
, 0). Now, (− 1√

6
, 0) ∈ C

and ( 1√
6
, 0) ̸∈ C. It turns out that (− 1√

6
, 0) ∈ S. Let X ̸= (− 1√

6
, 0). Then X ∈ S

implies X ∈ ∂C. We have φ1(x, y) = φ2(x, y) = 0 if and only if (x, y) = A(−1
2 ,

1
2) or

(x, y) = B(1, 4). Thus, ∂C = {A,B}∪{(x, y) : φ1(x, y) = 0, x ∈ (−1
2 , 1)}∪{(x, y) :

φ2(x, y) = 0, x ∈ (−1
2 , 1)}. Set φ3(x, y) = −7x+ 3y − 5, (φ3(A) = φ3(B) = 0). By

the same arguments as Lemam 2.3, Lemma 2.4, Theorem 3.1 and Theorem 3.2, it
is easy to see that:

• X∗ = (x, y) ∈ C1 = {(x, y) : φ1(x, y) = 0, x ∈ (−1
2 , 1)}, X∗ ∈ S ⇔

P (X∗) = −tφ′
1(X

∗), where t > 0.
which is equivalently rewritten as{

(48x2 − 8, 9y) = −t(12x+ 4,−3), t > 0

3y = 6x2 + 4x+ 2, x ∈ (−1
2 , 1)

⇔

{
48x2 − 8 = −t(12x+ 4), t > 0

t = 3y = 6x2 + 4x+ 2, x ∈ (−1
2 , 1)

⇔

{
x = 0, y = 2

3 , t = 2

x = −5+
√
5

6 , y = 11−3
√
5

9 , t = 11−3
√
5

3 .

• X∗ = (x, y) ∈ C2 = {(x, y) : φ2(x, y) = 0, x ∈ (−1
2 , 1)}, X∗ ∈ S ⇔

P (X∗) = 0. Thus, P (X) = 0 ⇔ X = (− 1√
6
, 0). We find that VI(C, P) has

no solution in C2.
• X∗ = A(−1

2 ,
1
2) ∈ S ⇔ P (A) = −tφ′

1(A) − sφ′
3(A), t ≥ 0, s ≥ 0, s + t > 0.

These are equivalent to:{
(4, 92) = −t(−2,−3)− s(−7, 3)

t ≥ 0, s ≥ 0, s+ t > 0
⇔ t =

29

18
, s =

1

9
.

• X∗ = B(1, 4) ∈ S ⇔ P (B) = −tφ′
1(B) − sφ′

3(B), t ≥ 0, s ≥ 0, s + t > 0.
These are equivalently rewritten as the system:{

(40, 36) = −t(16,−3)− s(−7, 3)

t ≥ 0, s ≥ 0, s+ t > 0.
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It is easy to find that this system has no solution. Hence,

S =
{(

− 1√
6
, 0
)
,
(
0,

2

3

)
,
(−5 +

√
5

6
,
11− 3

√
5

9

)
,
(
− 1

2
,
1

2

)}
.
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