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ABSTRACT. In this paper, we consider the split common null point problem in
Banach spaces. Then using the idea of Mann’s iteration, we prove a weak con-
vergence theorem for finding a solution of the split common null point problem
in Banach spaces. Furthermore, using the result, we get a new weak convergence
theorem which is connected with the split common null point problem and an
equilibrium problem in Banach spaces. It seems that these results are first in
Banach spaces.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset
of H. A mapping U : C — H is called inverse strongly monotone if there exists
k > 0 such that

(x —y,Ux —Uy) > k||Uzx — UyHQ, Ve,y € C.

Let H; and Ho be two real Hilbert spaces. Let D and () be nonempty, closed
and convex subsets of Hy and Hs, respectively. Let A : H;y — Hy be a bounded
linear operator. Then the split feasibility problem [8] is to find z € Hj such that
z € DN A'Q. Recently, Byrne, Censor, Gibali and Reich [7] considered the
following problem: Given set-valued mappings A; : H; — 271, 1 < i < m, and
Bj : Hy — 2H2 1 < j < n, respectively, and bounded linear operators T; : H —
Hy, 1 < j < n, the split common null point problem [7] is to find a point z € H;
such that
z € (Nt A710) N (M7, T (B 10)),

where A;lo and B;lo are null point sets of A; and Bj, respectively. Defining
U = A*(I — Pg)A in the split feasibility problem, we have that U : H; — H; is an
inverse strongly monotone operator [1], where A* is the adjoint operator of A and
Py is the metric projection of Hs onto Q. Furthermore, if D N A~1Q is nonempty,
then z € DN A~1Q is equivalent to

(1.1) v = Pp(I — MA*(I — Po)A)z,

where A > 0 and Pp is the metric projection of Hy onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
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feasibility peoblem and generalized split feasibility peoblems including the split
common null point problem in Hilbert spaces; see, for instance, [7, 9, 12, 21].

Very recently, using the idea of Mann’s iteration, Alsulami and Takahashi [2]
proved the following weak convergence theorem for finding a solution of the split
feasibility problem in Banach spaces.

Theorem 1.1. Let H be a Hilbert space and let F be a strictly conver, reflexive
and smooth Banach space. Let Jp be the duality mapping on F. Let C and D be
nonempty, closed and convexr subsets of H and F', respectively. Let Po and Pp be
the metric projections of H onto C and F' onto D, respectively. Let A: H — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that C N A™'D #£ (. For any x1 = x € H, define

Tnt1 = Pnn + (1 — 6n)PC(I —rA*Jp(A - PDA)):):n, Vn € N,
where {f,} C [0,1] and r € (0,00) satisfy the following:
0<a<pB,<b<1 and 0<7|A|> <2
for some a,b € R. Then x, — zg € C N A™'D, where zg = lim,,_,00 Pora-1pTn.

In this paper, motivated by these problems and results, we consider the split
common null point problem in Banach spaces. Then using the idea of Mann’s
iteration, we prove a weak convergence theorem for finding a solution of the split
common null point problem in Banach spaces. Furthermore, using the result, we
get a new weak convergence theorem which is connected with the split common null
point problem and an equilibrium problem in Banach spaces. It seems that these
results are first in Banach spaces.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (- -) and

norm || - ||, respectively. For z,y € H and A € R, we have from [19] that
(2.1) lz +yl* < [l + 20y, @ + )5
(2.2) Az + (1= Nyl* = Alz]]* + (1 = )lyl* = A1 = Nz -yl

Furthermore we have that for x,y,u,v € H,
(2.3) 2z —y,u—v) = [lz = of* + [ly — ul|* = [l — ul® = [ly — v|*,

Let C be a nonempty, closed and convex subset of a Hilbert space H. A mapping
T : C — C is called nonexpansive if |Tz — Ty|| < ||z — y| for all z,y € C.
Putting U = I — T, where T is nonexpansive, we have that U is %—inverse strongly
monotone; see [19]. For a mapping 7' : C — H, we denote by F(T) the set of
fixed points of T. The nearest point projection of H onto C' is denoted by Pg,
that is, || — Pez|| < |Jz —y| for all x € H and y € C. Such P¢ is called the
metric projection of H onto C'. We know that the metric projection P is firmly

nonexpansive, i.e.,

(2.4) |Pcx — Poy||* < (Pox — Py, — y)
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for all x,y € H. Furthermore (x — Pox,y — Pcx) < 0 holds for all x € H and y € C;
see [17].

Lemma 2.1 ([20]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let {x,} be a sequence in H. If ||xp+1 — x| < ||zn — 2| for all
n €N and x € C, then {Pcx,} converges strongly to some z € C, where Pc is the
metric projection on H onto C.

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at z € E by (z,y*). When {z,} is a sequence
in F, we denote the strong convergence of {z,,} to x € F by x,, — x and the weak
convergence by x, — z. The modulus § of convexity of E is defined by

: [z +y
o0 =int {1 2 <1l < 1o - 2 ¢
for every € with 0 < € < 2. A Banach space FE is said to be uniformly convex if
d(e) > 0 for every € > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {z,,} and {y,} in E such that

lim ||z,|| = lim |ly,|| =1 and lim |z, + y.| = 2,
n— 00 n— 00 n—00
limy,, 00 || Zn, — yn|| = 0 holds. A uniformly convex Banach space is strictly convex

and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., ,, = u and ||zy| — ||u| imply z,, — w.
The duality mapping J from E into 2F" is defined by

Ju={2" € E* : (z,a") = ||z|* = [|2*]*}

for every x € E. Let U = {x € E : ||z|]| = 1}. The norm of F is said to be Gateaux
differentiable if for each z,y € U, the limit

et tyl = e

(2'5> t—0 t

exists. In the case, F is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that F is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if F is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J. on E*. For more details, see [17] and [18]. We know the
following result.

Lemma 2.2 ([17]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x—y, Jx—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convex and (v —y, Jx — Jy) =0, then © = y.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x € E, there exists a unique element
z € C such that ||z — z|| < ||z — y|| for all y € C. Putting z = Pox, we call P the
metric projection of E onto C.
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Lemma 2.3 ([17]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E, and let x1 € E and z € C.
Then, the following conditions are equivalent

(1) z = Poxy;

(2) (z—y,J(x1—2)) >0, VyeC.

Let E be a Banach space and let A be a mapping of of F into 2F". The effective
domain of A is denoted by dom(A), that is, dom(A) = {x € F : Ax # 0}. A
multi-valued mapping A on E is said to be monotone if (x — y,u* — v*) > 0 for all
x,y € dom(A), u* € Az, and v* € Ay. A monotone operator A on F is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [6]; see also [18, Theorem
3.5.4].

Theorem 2.4 ([6]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let A be a monotone operator of E into
2F"  Then A is mazimal if and only if for any r > 0,

R(J + rA) = E,
where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm
and let A be a maximal monotone operator of E into 2¢". For all z € E and r > 0,
we consider the following equation

0€ J(x, —z)+rAx,.

This equation has a unique solution x,.. We define J, by z, = J.x. Such J.,r > 0
are called the metric resolvents of A. In a Hilbert space H, the metric resolvent .J,.
of A is simply called the resolvent of A. The set of null points of A is defined by
A7'0={2z€ E:0¢€ Az}. We know that A~10 is closed and convex; see [18].

3. MAIN RESULT

In this section, using the idea of Mann’s iteration, we prove a weak convergence
theorem for finding a solution of the split common null point problem in Banach
spaces.

Theorem 3.1. Let H be a Hilbert space and let F be a uniformly conver and
smooth Banach space. Let Jp be the duality mapping on F. Let A and B be
mazximal monotone operators of H into 22 and F into 28" such that A='0 # ()
and B710 # 0, respectively. Let Jy\ be the resolvent of A for X\ > 0 and let Q,
be the metric resolvent of B for w > 0. Let T : H — F be a bounded linear
operator such that T # 0 and let T* be the adjoint operator of T. Suppose that
ATt oNnT~Y(B710) # 0. For any x1 = x € H, define

Tnt1 = Bpan + (1= Bn)In, (I = MT*Jp(T = Qu,T))xn, VneN,
where {B,} C [0,1] and {\n}, {pn} C (0,00) satisfy the following conditions:
0<a<B,<b<1,0<c<N|T|?<d<2 and 0<k <, VneN
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for some a,b,c,d,k € R. Then {x,} converges weakly to zg € A~10NT~1(B~10),
where zp = limy 00 Pg-10n7-1(B-10)Tn-

Proof. Let z € A7'0NT~1(B~10). Then we have that z = J), z and Tz = Q,,, T
for all n € N. Put y, = Jj, (xn —MT*Jp(Txy — QunTa:n)) for all n € N. Since J,,,
is nonexpansive, we have that

lyn—2117 = || T, (20 = M A*Tp(T2n — Qp, Tx,)) — Ja, 2|
<N #n = AT Jp(Txn — Qu, Txy) — 2||°
= ||@n — 2 = \MT*Tr(Tzn — Qpu, Ty |)?
= ||zp — zH2 — 2zp — 2, \ T Jp(Txy, — Qu,Txy))
+ M T* Tp (T, — Qp, T ||
(3.1)  <llzn—z|* = 2M\ T2y — Tz, Jp(Tn, — Qpu, Ty))
+ AT T (Tan = Qu, Tl
= ||z, — zH2 =20 (Txp — Qu, Ty + Qu, Ty — Tz, Jp(Trn — Qu,Txrn))
+ NPT 20 — Qu Tl
< lwn = 2l1” = 20| T2 — Qpu, Tan||? + Mol TP T 20 — Qu, Tl
= [lzn = 21> + XAl TN? = 2)II T 20 — Qu, Tn .
From 0 < A\, ||T||? < 2 we have that ||y, — z|| < ||z, — 2|| and hence
[Zn+1 = 2]l = [Bpzn + (1 = Bn)yn — 2||
< Bnllzn — 2| + (1 = By) lyn — 2|l
< Bnllzn — 2l + (1 = Bn) llzn — 2|
< lzn — 2| -

Then lim, o ||@n — z|| exists. Thus {z,}, {Tx,} and {y,} are bounded. Using the
equality (2.2), we have that for n € N and z € A~lonT~1(B~10),

nt1 = 21° = l|Bnzn + (1 = Bu)yn — 2|
= Bn llzn — 2II” + (1 = Ba) lyn — 211% = Bu(1 = Bn) 20 — yall”
< B llen = 22 + (1 = Ba) llwn — 2|
+ (1= B) Al TN = 2)1 Tz — Qu Tanl® = Bu(1 = Bn) & — ynll?
= Jlzn — 2l + (1 = Bu) A AnlIT1* = 2)[I T2 — Qpu, T
— Ba(1 = Ba) Iz — yul® -
Therefore, we have that 8,(1 — ) [|n — ynll* < |20 — 2)|* = ||Zni1 — 2]|* and
(1= Ba) Al TN = 2 Twn = Qu Tnll* < flwn — 2% = l2ns1 — 2%
Thus we have from 0 < a < 8, <b < 1l and 0 < ¢ < \,||T||* < d < 2 that

(3.2) lim ||z, — yn||2 =0and lim [|[Tx, — QMTJSHH2 =0.
n—o00 n—0o0
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Since {x,} is bounded, there exists a subsequence {x,,} of {z,} converging weakly
to w. From (3.2), {yn,} converges weakly to w. Since T' is bounded and linear,
we also have that {T'z,,} converges weakly to Tw. Using this and lim, e |72, —
Qu,Txy[| = 0, we have that Q,, Tz,, — Tw. Since Q, is the metric resolvent of

B for p, > 0, we have that JF(T%”;?“”TI”) € BQ,, Tz, for all n € N. From the
monotonicity of B we have that

Ji (T, — Qu Tn,)
Hn; >
for all (u,v*) € B. Taking i — oo, we have from |Jr(Txy, — Qu, Tan,)| =
|Tzn;, — Qu,, Ton,|| — 0 and 0 < k < pp, that 0 < (u — Tw,v* — 0) for all
(u,v*) € B. Since B is maximal monotone, we have that Tw € B~10. This implies
that w € T~1(B~10). Since y, = Jy, (l‘n — M\ Jp(Txy, — Q“nTxn)), we have that
Yn = I, (@0 = MTTp(Txn — Qu,Txy))
Sy — N Jp(Trn — Qu, Tan) € Yn + MAyn
S Ty — Yn — NI Ip(Tay — Qu,Txyn) € M Ayn

0< <u — QuniTxni,v* —

1
23 —(:Bn —Yn — T Jp(Txy, — QunT:En)) € Ayp.

An
Since A is monotone, we have that for (u,v) € A,
1 *k
<yn —u, T(xn —Yn — T JF(Txn - Q,unTxn)) - U> >0
n

and hence

<yn —u, a;n>\— Yn _ T Jp(Txp — Qu,Tryn) — v> > 0.
n

Replacing n by n;, we have that
<ynz. —u, %A;y” — T*Jp(Tn, — Quy, Tn,) — v> > 0.
n;

Since p, — yn, — 0, 0 < ¢ < M\, | TN|?, Yo, — w and T*Jp(Txy, — Qpun, Tn;) — 0,
we have that (w—u, —v) > 0. Since A is maximal monotone, we have that 0 € Aw.
Therefore, w € A~10NT~1(B~10).

We next show that if z,, — w; and Tp; — Wa, then w; = ws. We know
wy,wy € A7T0NT~H(B710) and hence lim,, s |2, — w1]| and limy, o0 |77 — wo|
exist. Suppose w; # we. Since H satisfies Opial’s condition [14], we have that

lim [|z,—wi|| = lim ||z, —wi]] < lim ||z, — w2
n—oo 71— 00 71— 00
= lim ||z, —ws|| = lim ||z, —ws|
n—00 j—00
< lm ||zg, — w1 = lim |2, —wi|.
j—00 n—00

This is a contradiction. Then w; = wy. Therefore, x, — w € A0 N T~ B10).
Moreover, since for any z € A~'0NT~-1(B~10)

[#ns1 =2l < llwn —2[|, V€N,



ITERATIVE METHOD FOR THE SPLIT COMMON NULL POINT PROBLEM 2339

we have from Lemma 2.1 that {Ps-19np-1(p-10)%n} converges strongly to zp for
some 29 € A7'0NT~1(B~10). The property of metric projection implies that
(w — PA—lOnT—l(B—lo)xn, Ty — PA7100T71(3710)$n> <0.
Therefore, we have that
lw — 20]|* = (w — 20, w — 2) < 0.

This means that w = zg, i.e., x,, — 2. O

4. APPLICATION

In this section, using Theorem 3.1, we get a new weak convergence theorem which
is connected with the split common null point problem and an equilibrium problem
in Banach spaces.

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of
H. Let f: C x C — R be a bifunction. Then an equilibrium problem (with respect
to C) is to find & € C such that
(4.1) f(&,y) >0, VyeC.

The set of such solutions & is denoted by EP(f), i.e.,
EP(f)={2€C: f(z,y) >0, Vy € C}.

For solving the equilibrium problem, let us assume that the bifunction f : CxC — R
satisfies the following conditions:

(A1) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,x) <0 for all z,y € C;
(A3) for any x,y,z € C,

limsup f(tz + (1 — t)z,y) < f(x,y);
tl0

(A4) for any xz € C, f(x,-) is convex and lower semicontinuous.

We know the following lemma which appears in Blum and Oettli [5].

Lemma 4.1 ([5]). Let C be a nonempty, closed and convex subset of H and let f
be a bifunction of C x C into R satisfying (A1) — (A4). Letr >0 and x € H. Then
there exists z € C such that

1
f(z,y)—l—;(y—z,z—@Z(), VyEC

The following lemma was also given in Combettes and Hirstoaga [10].
Lemma 4.2 ([10]). Assume that f : C x C — R satisfies (A1) — (A4). Forr >0
and x € H, define a mapping T, : H — C' as follows:
1
Trx = {zEC:f(z,y)—|—<y—z,z—a:> >0, VyEC}.
r

Then the following hold:
(1) T, is single-valued;
(2) T, is a firmly nonexpansive mapping, i.e., for all x,y € H,

| Trx — Toyl* < (Tox — Ty, — y);
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(3) F(T,) = EP(f);
(4) EP(f) is closed and conver.

We call such T, the resolvent of f for r > 0. Using Lemmas 4.1 and 4.2, Takahashi,
Takahashi and Toyoda [16] obtained the following lemma. See [3] for a more general
result.

Lemma 4.3 ([16]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let f : C' x C — R satisfy (A1) — (A4). Let Ay be a set-valued
mapping of H into itself defined by

{{zEH:f(:c,y) >(y—uz,2), Yye C}, Vxel,
Arx =
0, V¢ C.

Then EP(f) = A;lO and Ay is a mazimal monotone operator with dom(Ay) C C.
Furthermore, for any x € H and r > 0, the resolvent T, of f coincides with the
resolvent of Ay, i.e.,

Trx =T +rAy) e

We obtain the following theorem from Theorem 3.1.

Theorem 4.4. Let H be a Hilbert space and let F' be a uniformly convex and smooth
Banach space. Let Jp be the duality mapping on F. Let C' be a nonempty, closed
and convex subset of H. Let f : C x C' — R satisfy the conditions (A1)-(A4) and
let B be a mazimal monotone operator of F into 2F". Let Ty denote the resolvent
of Ay (as defined in Lemma 4.3) for A > 0 and let Q,, be the metric resolvent of B
for uw > 0. Let T : H — F be a bounded linear operator such that T # 0 and let
T* be the adjoint operator of T. Suppose that EP(f) N T~Y(B~10) # (. For any
x1 =x € H, define

Tng1 = Bt + (1= Bu)Th, (I = MT Jp(T — Qu, T)xn), Vn €N,
where {Br} C (0,1) and {A\,},{pn} C (0,00) satisfy the following conditions:
0<a<Bp<b<l,0<c<\|T|?<d<2 and 0<k<p, VYneN

for some a,b,c,d,k € R. Then z, — z € EP(f) N T~ 1(B710), where z =
limp o0 Ppp(f)nr-1(B-10)%n-

Proof. For the bifunction f : C'x C'— R, we can define Ay in Lemma 4.3. Putting
A = Ay in Theorem 3.1, we obtain from Lemma 4.3 that Jy, =T, = (I+)\nAf)_1
for all A\, > 0. Thus we obtain the desired result by Theorem 3.1. 0
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