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feasibility peoblem and generalized split feasibility peoblems including the split
common null point problem in Hilbert spaces; see, for instance, [7, 9, 12, 21].

Very recently, using the idea of Mann’s iteration, Alsulami and Takahashi [2]
proved the following weak convergence theorem for finding a solution of the split
feasibility problem in Banach spaces.

Theorem 1.1. Let H be a Hilbert space and let F be a strictly convex, reflexive
and smooth Banach space. Let JF be the duality mapping on F . Let C and D be
nonempty, closed and convex subsets of H and F , respectively. Let PC and PD be
the metric projections of H onto C and F onto D, respectively. Let A : H → F be
a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A.
Suppose that C ∩A−1D ̸= ∅. For any x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)PC

(
I − rA∗JF (A− PDA)

)
xn, ∀n ∈ N,

where {βn} ⊂ [0, 1] and r ∈ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < r∥A∥2 < 2

for some a, b ∈ R. Then xn ⇀ z0 ∈ C ∩A−1D, where z0 = limn→∞ PC∩A−1Dxn.

In this paper, motivated by these problems and results, we consider the split
common null point problem in Banach spaces. Then using the idea of Mann’s
iteration, we prove a weak convergence theorem for finding a solution of the split
common null point problem in Banach spaces. Furthermore, using the result, we
get a new weak convergence theorem which is connected with the split common null
point problem and an equilibrium problem in Banach spaces. It seems that these
results are first in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨ · · ⟩ and
norm ∥ · ∥, respectively. For x, y ∈ H and λ ∈ R, we have from [19] that

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Furthermore we have that for x, y, u, v ∈ H,

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.
Let C be a nonempty, closed and convex subset of a Hilbert space H. A mapping
T : C → C is called nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C.
Putting U = I − T , where T is nonexpansive, we have that U is 1

2 -inverse strongly
monotone; see [19]. For a mapping T : C → H, we denote by F (T ) the set of
fixed points of T . The nearest point projection of H onto C is denoted by PC ,
that is, ∥x− PCx∥ ≤ ∥x− y∥ for all x ∈ H and y ∈ C. Such PC is called the
metric projection of H onto C. We know that the metric projection PC is firmly
nonexpansive, i.e.,

(2.4) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩
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for all x, y ∈ H. Furthermore ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [17].

Lemma 2.1 ([20]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let {xn} be a sequence in H. If ∥xn+1 − x∥ ≤ ∥xn − x∥ for all
n ∈ N and x ∈ C, then {PCxn} converges strongly to some z ∈ C, where PC is the
metric projection on H onto C.

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u.

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.5) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. For more details, see [17] and [18]. We know the
following result.

Lemma 2.2 ([17]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call PC the
metric projection of E onto C.
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Lemma 2.3 ([17]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E, and let x1 ∈ E and z ∈ C.
Then, the following conditions are equivalent

(1) z = PCx1;
(2) ⟨z − y, J(x1 − z)⟩ ≥ 0, ∀y ∈ C.

Let E be a Banach space and let A be a mapping of of E into 2E
∗
. The effective

domain of A is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax ̸= ∅}. A
multi-valued mapping A on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all
x, y ∈ dom(A), u∗ ∈ Ax, and v∗ ∈ Ay. A monotone operator A on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [6]; see also [18, Theorem
3.5.4].

Theorem 2.4 ([6]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E∗. Let A be a monotone operator of E into
2E

∗
. Then A is maximal if and only if for any r > 0,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let A be a maximal monotone operator of E into 2E

∗
. For all x ∈ E and r > 0,

we consider the following equation

0 ∈ J(xr − x) + rAxr.

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr, r > 0
are called the metric resolvents of A. In a Hilbert space H, the metric resolvent Jr
of A is simply called the resolvent of A. The set of null points of A is defined by
A−10 = {z ∈ E : 0 ∈ Az}. We know that A−10 is closed and convex; see [18].

3. Main result

In this section, using the idea of Mann’s iteration, we prove a weak convergence
theorem for finding a solution of the split common null point problem in Banach
spaces.

Theorem 3.1. Let H be a Hilbert space and let F be a uniformly convex and
smooth Banach space. Let JF be the duality mapping on F . Let A and B be
maximal monotone operators of H into 2H and F into 2F

∗
such that A−10 ̸= ∅

and B−10 ̸= ∅, respectively. Let Jλ be the resolvent of A for λ > 0 and let Qµ

be the metric resolvent of B for µ > 0. Let T : H → F be a bounded linear
operator such that T ̸= 0 and let T ∗ be the adjoint operator of T . Suppose that
A−10 ∩ T−1(B−10) ̸= ∅. For any x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)Jλn

(
I − λnT

∗JF (T −QµnT )
)
xn, ∀n ∈ N,

where {βn} ⊂ [0, 1] and {λn}, {µn} ⊂ (0,∞) satisfy the following conditions:

0 < a ≤ βn ≤ b < 1, 0 < c ≤ λn∥T∥2 ≤ d < 2 and 0 < k ≤ µn, ∀n ∈ N



ITERATIVE METHOD FOR THE SPLIT COMMON NULL POINT PROBLEM 2337

for some a, b, c, d, k ∈ R. Then {xn} converges weakly to z0 ∈ A−10 ∩ T−1(B−10),
where z0 = limn→∞ PA−10∩T−1(B−10)xn.

Proof. Let z ∈ A−10 ∩ T−1(B−10). Then we have that z = Jλnz and Tz = QµnTz
for all n ∈ N. Put yn = Jλn

(
xn−λnT

∗JF (Txn−QµnTxn)
)
for all n ∈ N. Since Jλn

is nonexpansive, we have that

∥yn−z∥2 =
∥∥Jλn

(
xn − λnA

∗JF (Txn −QµnTxn)
)
− Jλnz

∥∥2
≤ ∥xn − λnT

∗JF (Txn −QµnTxn)− z∥2

= ∥xn − z − λnT
∗JF (Txn −QµnTxn)∥2

= ∥xn − z∥2 − 2⟨xn − z, λnT
∗JF (Txn −QµnTxn)⟩

+ ∥λnT
∗JF (Txn −QµnTxn)∥2

≤ ∥xn − z∥2 − 2λn⟨Txn − Tz, JF (Txn −QµnTxn)⟩(3.1)

+ λ2
n∥T∥2∥JF (Txn −QµnTxn)∥2

= ∥xn − z∥2 − 2λn⟨Txn −QµnTxn +QµnTxn − Tz, JF (Txn −QµnTxn)⟩
+ λ2

n∥T∥2∥Txn −QµnTxn∥2

≤ ∥xn − z∥2 − 2λn∥Txn −QµnTxn∥2 + λ2
n∥T∥2∥Txn −QµnTxn∥2

= ∥xn − z∥2 + λn(λn∥T∥2 − 2)∥Txn −QµnTxn∥2.

From 0 < λn∥T∥2 < 2 we have that ∥yn − z∥ ≤ ∥xn − z∥ and hence

∥xn+1 − z∥ = ∥βnxn + (1− βn)yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥xn − z∥
≤ ∥xn − z∥ .

Then limn→∞ ∥xn − z∥ exists. Thus {xn}, {Txn} and {yn} are bounded. Using the
equality (2.2), we have that for n ∈ N and z ∈ A−10 ∩ T−1(B−10),

∥xn+1 − z∥2 = ∥βnxn + (1− βn)yn − z∥2

= βn ∥xn − z∥2 + (1− βn) ∥yn − z∥2 − βn(1− βn) ∥xn − yn∥2

≤ βn ∥xn − z∥2 + (1− βn) ∥xn − z∥2

+ (1− βn)λn(λn∥T∥2 − 2)∥Txn −QµnTxn∥2 − βn(1− βn) ∥xn − yn∥2

= ∥xn − z∥2 + (1− βn)λn(λn∥T∥2 − 2)∥Txn −QµnTxn∥2

− βn(1− βn) ∥xn − yn∥2 .

Therefore, we have that βn(1− βn) ∥xn − yn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 and

(1− βn)λn(λn∥T∥2 − 2)∥Txn −QµnTxn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 .

Thus we have from 0 < a ≤ βn ≤ b < 1 and 0 < c ≤ λn∥T∥2 ≤ d < 2 that

(3.2) lim
n→∞

∥xn − yn∥2 = 0 and lim
n→∞

∥Txn −QµnTxn∥2 = 0.
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Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging weakly
to w. From (3.2), {yni} converges weakly to w. Since T is bounded and linear,
we also have that {Txni} converges weakly to Tw. Using this and limn→∞ ∥Txn −
QµnTxn∥ = 0, we have that Qµni

Txni ⇀ Tw. Since Qµn is the metric resolvent of

B for µn > 0, we have that
JF (Txn−QµnTxn)

µn
∈ BQµnTxn for all n ∈ N. From the

monotonicity of B we have that

0 ≤
⟨
u−Qµni

Txni , v
∗ −

JF (Txni −Qµni
Txni)

µni

⟩
for all (u, v∗) ∈ B. Taking i → ∞, we have from ∥JF (Txni − Qµni

Txni)∥ =

∥Txni − Qµni
Txni∥ → 0 and 0 < k ≤ µni that 0 ≤ ⟨u − Tw, v∗ − 0⟩ for all

(u, v∗) ∈ B. Since B is maximal monotone, we have that Tw ∈ B−10. This implies
that w ∈ T−1(B−10). Since yn = Jλn

(
xn−λnT

∗JF (Txn−QµnTxn)
)
, we have that

yn = Jλn

(
xn − λnT

∗JF (Txn −QµnTxn)
)

⇔ xn − λnT
∗JF (Txn −QµnTxn) ∈ yn + λnAyn

⇔ xn − yn − λnT
∗JF (Txn −QµnTxn) ∈ λnAyn

⇔ 1

λn

(
xn − yn − λnT

∗JF (Txn −QµnTxn)
)
∈ Ayn.

Since A is monotone, we have that for (u, v) ∈ A,⟨
yn − u,

1

λn

(
xn − yn − λnT

∗JF (Txn −QµnTxn)
)
− v

⟩
≥ 0

and hence ⟨
yn − u,

xn − yn
λn

− T ∗JF (Txn −QµnTxn)− v
⟩
≥ 0.

Replacing n by ni, we have that⟨
yni − u,

xni − yni

λni

− T ∗JF (Txni −Qµni
Txni)− v

⟩
≥ 0.

Since xni − yni → 0, 0 < c ≤ λni∥T∥2, yni ⇀ w and T ∗JF (Txn − Qµni
Txni) → 0,

we have that ⟨w−u,−v⟩ ≥ 0. Since A is maximal monotone, we have that 0 ∈ Aw.
Therefore, w ∈ A−10 ∩ T−1(B−10).

We next show that if xni ⇀ w1 and xnj ⇀ w2, then w1 = w2. We know

w1, w2 ∈ A−10 ∩ T−1(B−10) and hence limn→∞ ∥xn − w1∥ and limn→∞ ∥xn − w2∥
exist. Suppose w1 ̸= w2. Since H satisfies Opial’s condition [14], we have that

lim
n→∞

∥xn−w1∥ = lim
i→∞

∥xni − w1∥ < lim
i→∞

∥xni − w2∥

= lim
n→∞

∥xn − w2∥ = lim
j→∞

∥xnj − w2∥

< lim
j→∞

∥xnj − w1∥ = lim
n→∞

∥xn − w1∥.

This is a contradiction. Then w1 = w2. Therefore, xn ⇀ w ∈ A−10 ∩ T−1(B−10).
Moreover, since for any z ∈ A−10 ∩ T−1(B−10)

∥xn+1 − z∥ ≤ ∥xn − z∥ , ∀n ∈ N,
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we have from Lemma 2.1 that {PA−10∩T−1(B−10)xn} converges strongly to z0 for

some z0 ∈ A−10 ∩ T−1(B−10). The property of metric projection implies that

⟨w − PA−10∩T−1(B−10)xn, xn − PA−10∩T−1(B−10)xn⟩ ≤ 0.

Therefore, we have that

∥w − z0∥2 = ⟨w − z0, w − z0⟩ ≤ 0.

This means that w = z0, i.e., xn ⇀ z0. □

4. Application

In this section, using Theorem 3.1, we get a new weak convergence theorem which
is connected with the split common null point problem and an equilibrium problem
in Banach spaces.

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. Let f : C ×C → R be a bifunction. Then an equilibrium problem (with respect
to C) is to find x̂ ∈ C such that

f(x̂, y) ≥ 0, ∀y ∈ C.(4.1)

The set of such solutions x̂ is denoted by EP (f), i.e.,

EP (f) = {x̂ ∈ C : f(x̂, y) ≥ 0, ∀y ∈ C}.
For solving the equilibrium problem, let us assume that the bifunction f : C×C → R
satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for any x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for any x ∈ C, f(x, ·) is convex and lower semicontinuous.

We know the following lemma which appears in Blum and Oettli [5].

Lemma 4.1 ([5]). Let C be a nonempty, closed and convex subset of H and let f
be a bifunction of C×C into R satisfying (A1)− (A4). Let r > 0 and x ∈ H. Then
there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

The following lemma was also given in Combettes and Hirstoaga [10].

Lemma 4.2 ([10]). Assume that f : C × C → R satisfies (A1) − (A4). For r > 0
and x ∈ H, define a mapping Tr : H → C as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then the following hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;
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(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

We call such Tr the resolvent of f for r > 0. Using Lemmas 4.1 and 4.2, Takahashi,
Takahashi and Toyoda [16] obtained the following lemma. See [3] for a more general
result.

Lemma 4.3 ([16]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let f : C ×C → R satisfy (A1)− (A4). Let Af be a set-valued
mapping of H into itself defined by

Afx =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then EP (f) = A−1
f 0 and Af is a maximal monotone operator with dom(Af ) ⊂ C.

Furthermore, for any x ∈ H and r > 0, the resolvent Tr of f coincides with the
resolvent of Af , i.e.,

Trx = (I + rAf )
−1x.

We obtain the following theorem from Theorem 3.1.

Theorem 4.4. Let H be a Hilbert space and let F be a uniformly convex and smooth
Banach space. Let JF be the duality mapping on F . Let C be a nonempty, closed
and convex subset of H. Let f : C × C → R satisfy the conditions (A1)-(A4) and
let B be a maximal monotone operator of F into 2F

∗
. Let Tλ denote the resolvent

of Af (as defined in Lemma 4.3) for λ > 0 and let Qµ be the metric resolvent of B
for µ > 0. Let T : H → F be a bounded linear operator such that T ̸= 0 and let
T ∗ be the adjoint operator of T . Suppose that EP (f) ∩ T−1(B−10) ̸= ∅. For any
x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)Tλn

(
I − λnT

∗JF (T −QµnT )xn
)
, ∀n ∈ N,

where {βn} ⊂ (0, 1) and {λn}, {µn} ⊂ (0,∞) satisfy the following conditions:

0 < a ≤ βn ≤ b < 1, 0 < c ≤ λn∥T∥2 ≤ d < 2 and 0 < k ≤ µn, ∀n ∈ N
for some a, b, c, d, k ∈ R. Then xn ⇀ z0 ∈ EP (f) ∩ T−1(B−10), where z0 =
limn→∞ PEP (f)∩T−1(B−10)xn.

Proof. For the bifunction f : C ×C → R, we can define Af in Lemma 4.3. Putting
A = Af in Theorem 3.1, we obtain from Lemma 4.3 that Jλn = Tλn = (I+λnAf )

−1

for all λn > 0. Thus we obtain the desired result by Theorem 3.1. □
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