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THE SPLIT COMMON NULL POINT PROBLEM
IN TWO BANACH SPACES

WATARU TAKAHASHI

ABSTRACT. In this paper, we consider the split common null point problem in
two Banach spaces. Then using the metric resolvents of maximal monotone
operators and the metric projections, we prove a strong convergence theorem for
finding a solution of the split common null point problem in two Banach spaces.

1. INTRODUCTION

Let Hy and Hs be two real Hilbert spaces. Let D and @) be nonempty, closed
and convex subsets of Hy and Hs, respectively. Let T': H; — Hy be a bounded
linear operator. Then the split feasibility problem [5] is to find z € H; such that
z € DNT'Q. Byrne, Censor, Gibali and Reich [4] also considered the following
problem: Given set-valued mappings A : Hy — 271 and B : Hy — 22 and a
bounded linear operator T' : Hy — Ha, the split common null point problem [4] is
to find a point z € H; such that

ze A tonTY(B10),

where A7'0 and B~'0 are null point sets of A and B, respectively. Defining U =
T*(I—Pg)T in the split feasibility problem, we have that U : H; — H; is an inverse
strongly monotone operator [1], where 7™ is the adjoint operator of T and Py is
the metric projection of Hy onto Q. Furthermore, if D N T~'Q is nonempty, then
2z € DNT™!Q is equivalent to

(1.1) 2= Pp(I — \T*(I — Po)T)z,

where A > 0 and Pp is the metric projection of H; onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem and the split common null point problem; see, for instance,
[1,4,6,10,11,22].

Recently, using the methods of [12,13,15], Takahashi [20] proved the following
theorem; see also [19].

Theorem 1.1. Let E and F be uniformly convexr and smooth Banach spaces and
let Jg and Jg be the duality mappings on E and F', respectively. Let A and B be
mazimal monotone operators of E into 2F" and F into 2 such that A='0 # ()
and B710 # 0, respectively. Let Q. be the metric resolvent of B for > 0. Let
T : FE — F be a bounded linear operator such that T # 0 and let T be the adjoint
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operator of T. Suppose that A~10NT~1(B~10) # 0. Let x1 € E and let {x,} be a
sequence generated by

Zp = Ty — /,LnngT*JF(Txn — Qu.Txy),
Cpn=1{2€A70: (2, — 2z, Jp(xn — 2,)) > 0},
Qn=1{2€A710: (x,, — 2z, Jp(z1 — z,)) > 0},
Tnt1 = Po,ng, 1, YneN,

where {pn,} C (0,00) satisfies that for some a,b € R,

0<a<pu, <b< Vn € N.

1
ks
Then the sequence {x,} converges strongly to a point wy € A~10 N T~1(B10),
where w1 = Pp-19nr-1(B-10)21-

In this paper, motivated by Takahashi’s theorem (Theorem 1.1), we consider
the split common null point problem with metric resolvents of maximal monotone
operators in two Banach spaces. Then using the metric resolvents of maximal
monotone operators and the metric projections, we prove a strong convergence
theorem for finding a solution of the split null point problem in two Banach spaces.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at x € E by (z,y*). When {z,} is a sequence
in E, we denote the strong convergence of {z,,} to x € FE by z,, — = and the weak
convergence by x,, — x. The modulus ¢ of convexity of F is defined by

. -+ yl
o0 =int {1 - L2 < 1l < 1o - 2 6

for every € with 0 < € < 2. A Banach space FE is said to be uniformly convex if
d(e) > 0 for every € > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {z,,} and {y,} in E such that

lim Joal = lim ya = 1
n—o0o n—oo
and
lim ||z, + ynl| = 2,
n—o0
limy,, 00 || Zn, — yn|| = 0 holds. A uniformly convex Banach space is strictly convex

and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, that is, x,, = u and ||z,| — ||u|| imply =, — u; see [7,14].
The duality mapping J from E into 2F" is defined by

Ju={2" € B : (z,a") = ||z|* = [|2"|*}

for every x € E. Let U = {x € E : ||z]| = 1}. The norm of F is said to be Gateaux
differentiable if for each x,y € U, the limit

e

2.1
( ) t—0 t
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exists. In the case, F is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that F is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J. on E*. For more details, see [16] and [17]. We know the
following result:

Lemma 2.1. Let E be a smooth Banach space and let J be the duality mapping on
E. Then, (x —y,Jx— Jy) > 0 for all x,y € E. Furthermore, if E is strictly convex
and (x —y, Jx — Jy) =0, then z = y.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any « € E, there exists a unique element
z € C such that ||z — z|| < ||z — y|| for all y € C. Putting z = Pox, we call Po the
metric projection of E onto C.

Lemma 2.2 ([16]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x1 € E and z € C.
Then, the following conditions are equivalent:

(1) 2= Pewy;
(2) (z—y,J(z1—2)) >0, VyeC.

Let E be a Banach space and let A be a mapping of F into 2F". The effective
domain of A is denoted by dom(A), that is, dom(A) = {z € F : Az # 0}. A
multi-valued mapping A on F is said to be monotone if (x — y, u* — v*) > 0 for all
x,y € dom(A), u* € Az, and v* € Ay. A monotone operator A on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [3]; see also [17, Theorem
3.5.4].

Theorem 2.3 ([3]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let A be a monotone operator of E into
2E"  Then A is maximal if and only if for any r > 0,

R(J+rA)=FE",
where R(J +rA) is the range of J 4+ rA.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm
and let A be a maximal monotone operator of E into 2F". For all z € E and r > 0,
we consider the following equation

0€ J(zy — ) +rAz,.

This equation has a unique solution x,.. We define J, by z, = J.x. Such J.,r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A710={z€ E:0 € Az}. We know that A710 is closed and convex; see [17].
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3. MAIN RESULT

In this section, using the metric resolvents of maximal monotone operators and
the metric projections, we prove a strong convergence theorem for finding a solution
of the split common null point problem in two Banach spaces. We follow [20] for
the proof.

Theorem 3.1. Let E and F be uniformly conver and smooth Banach spaces and
let Jg and Jp be the duality mappings on E and F, respectively. Let A and B be
mazimal monotone operators of E into 2F" and F into 2F" such that A=10 # 0 and
B710 # 0, respectively. Let Jy and Qu be the metric resolvents of A for A > 0 and
B for i > 0, respectively. Let T : E — F be a bounded linear operator such that
T # 0 and let T* be the adjoint operator of T. Suppose that A~'0NT~1(B~10) # 0.
Let 1 € E and let {x,} be a sequence generated by

Zn = Ty — ,unngT*JF(T:L’n - Qu,Try),
Yn = JAan
Chn={z€FE:(zn—2z,Jpg(xn—2)) >
D,={z2€ E:(yn— 2, Jeg(zn —yn)) >
Qn={z€E:(x,—2zJp(x1 —x,)) >
Tpntl = Pcanannfﬁl, Vn € N,
where { A}, {pn} C (0,00) satisfy that for some a,b,c € R,
O<a§un§b<”T1”2and0<c§)\n, Vn € N.

Then the sequence {x,} converges strongly to a point wy € A~10 N T~1(B10),
where w1 = Pp-19nr-1(B-10)21-

Proof. 1t is obvious that C), N D, N Q) is closed and convex for all n € N. To show
that A=0NT~Y(B~10) C C, for all n € N, let us show that (z,—2, Jg(z,—2,)) > 0
for all z € T71(B710) and n € N. In fact, we have that for all z € T~1(B~10) and
n €N,

(zn — 2,Jp(Tn — 2n)) = (zn — Tp + Tn — 2, JE(Tn — 2n))
= (—pn I ' T* Jp(Txy, — Qp, Ty,
+ 3y — 2, Jp(pn I g T* Jp (T2, — Qp, T1)))
= (—pnd 5 T*Jp(Txn — Qu, Txn) + T — 2, T* Jp (T, — Qpu,, Tx1,))
= _M%HT*JF(T@"H - QunTwn)HQ + (T — 2, pn T Jp (T, — QMT%”»
(1) = I (T a0 — QuuTwn) P + jin (T — T2, Jp(Tn — Qp, Tn)
= — |1 T*Jp(Tn — Qu, Tzn)|®
+ pin(Tan — Qu, Ty + Qu,Txy — Tz, Jp(Tay — Qu,Txy))
= — T Tp(Tan — Qu,Txn) | + pin|| Tn — Qpu, Tn |
+ 1 (Qu,Txy — Tz, Jp(Txy — Qu,Txy))
_,U«iHTHZHTxn - QunTxn”Q + pin || Ty, — QunTxnuz

v
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= pin(1 = pn I T T20 — Qp, Tul|* > 0.

Then we have that A=10 N T-1(B~10) C C, for all n € N. Next, to show that
A7LoNnT=YB710) C D, for all n € N, let us show that (y, — 2, Jg(zn — yn)) >0
for all z € A710 and n € N. In fact, we have that for all z € A~10 and n € N,
(3.2) (Yn — 2, JE(2n — Yn)) = (I, 2n — 2, JE(2n — I, 2n)) > 0.
Then we have that A~'0 N T~Y(B~'0) C D, for all n € N. We shall show that
Al on T YB7'0) ¢ @, for all n € N. Since (x; — 2z, Je(x; — 21)) > 0 for
all z € E, it is obvious that A~'0 N 7T~1(B~10) € Q. Suppose that, for some
kEeN, A~'0NnT-1(B710) € Qx. Then A~'0NT~Y(B~10) C Cr N Dy N Qg. From
ZTi+1 = Poynping, 1, we have that
(Tpp1 — 2, Je(x1 — 2p41)) 20, Vze CrNDLNQy

and hence

(41 — 2, Jp(x1 — Tp41)) >0, Vze AlonT B 10).
Then we get that A~'0NT~1(B~'0) C Qx,1. By mathematical induction, we have
that A=10NT~Y(B~10) C Q, for all n € N. Thus, we have that

AlonT Y B0)c C,N D, NQ,

for all n € N. This implies that {z,} is well defined.

Since A~'0 N T~1(B~'0) is a nonempty, closed and convex subset of E, there
exists w; € A7'0NT~1(B~10) such that wy = Pa-19nr-1(p-10)71. We have from
Tn4+1 = PCanannfB]_ that

1 = Zppall < [lo1 =yl

for all y € C, N Dy, N Q. Since wy € A~L0NT~H(B710) C C, N D, N Q,, we have
that

(3.3) |21 = Znga || < [lzr — wa.
This means that {z,} is bounded.
Next we show that lim,, ||z, — Zp+1|| = 0. From z,41 = Pc,np,nQ,T1 We

have that x,+1 € @, and hence
(X — Tpy1, JE(T1 — 20)) > 0.
From this, we have that
(X — 21+ 21 — Tpt1, Je(x1 — ) > 0.
This implies that (r1 — zp11, Jg(z1 — 7)) > ||2n — 21| and hence
[n — @1 < [lznir — 2.

Therefore, {||z1 — z,||} is bounded and nondecreasing. Then there exists the limit
of {||x1 — xn||}. Put lim,, o0 ||z, —x1]] = ¢. If ¢ = 0, then limy, o0 ||Tr, — Zpy1|| = 0.
Assume that ¢ > 0. Since x,, € Qn, Tpy1 € Q, and % € Qn, we have that

Tn + Tpt1 H
2

b
1
2

[21 = @n]] <

IA

(1 = znll + lz1 = 2nall)
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and hence n
. X Tn+1
lim Hxl _ MH —
n—oo 2
Since E is uniformly convex, we get that lim, . |2, — znt1]] = 0.

We have from z,1 € C, that
<Zn — Tn+1, JE($7’L - Zn)> >0

and hence

(zn — Ty + Ty — Tpt1, Jp(Tn — 2)) > 0.
This implies that

[#n = znl| < (20 — Tnga |-

From lim, o ||y, — Zp+1|| = 0 we have that lim,,_, ||z, — 25| = 0. On the other
hand, we know that

|2n — 20|l = [ JE(Tn — 22) ||

= HMTLT*JF(Tl'n - QunTxn)H

Since 0 < a < puy, <b< W for all n € N and lim,,—, ||y, — 2n|| = 0, we have that
limy, o0 |T*Jp(Txp — Qu,Txy)| = 0. Then we get from (3.1) that

(3.4) lim ||Tx, — Qu,Txy| = 0.

n—oo

Furthermore, We have from z,.1 € D,, that

(Un — Tny1, JE(Zn — yn)) 20
and hence
(Yn — 2n + 2n — Tn + T — Tny1, JE(2n — yn)> > 0.
This implies that

<Zn — Ty + Ty — Tn+1, JE(Zn - yn)> > Hzn - yn||2

From ||z, — Znt1|| — 0 and ||z, — z,|| — 0, we have that lim, o0 ||yn — 20| = 0.
Then we get that
(3.5) lim ||z, — Jx,za|| = 0.

n—o0

Since {z,} is bounded, there exists a subsequence {z,,} of {z,} converging
weakly to w. We have from lim,, o ||z, — 2zn|| = 0 that {z,,} converges weakly
to w. We also have from (3.5) that {J), z»,} converges weakly to w. Since J), is

the metric resolvent of A, we have that ‘]’5(2”;77?"2”) € AJy, zp for all n € N. From
the monotonicity of A we have that

JE(ZW - J)\ni’zni)
)

for all (s,t*) € A. We have from ||Jg(2n, — Jx,, 2n,)|| = l2n; — Jx,, 20, = 0 and
0 <c< Ay, that 0 < (s—w, t*—0) for all (s,t*) € A. Since A is maximal monotone,
we have that w € A~'0. Furthermore, since T is bounded and linear, we also
have that {T'z,,} converges weakly to Tw. From (3.4) we have that {Q, Ty, }
converges weakly to Tw. Since @, is the metric resolvent of B, we have that

0 S <S - J)\nizni,t* -
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Jp(Ten—Qu,TTn
Hn

) € BQ,,Tx, for all n € N. From the monotonicity of B we have
that

0< <U _ Q,u,n.Txnia v — JF(TJ“"H Qﬂnsznz)>
‘ Hong
for all (u,v*) € B. From || Jp(Txn, — Qu, Trn,)|l = |T2n, — Qu, Ty, || — 0 and
0 < a < pp,, we have that 0 < (u — Tw,v* — 0) for all (u,v*) € B. Since B is
maximal monotone, we have that Tw € B~!0. Therefore, w € A='0NT~1(B~10).
From wy = Py-19n7-1(-10)21 and w € A7'0NT~H(B710), we have from (3.3)
that

a1 = will < ller — w] < liminf [l — 2,
1—> 00

< limsup [|z1 — @y, |

12— 00
< flzr —wal.
Then we get that
B 2y — a2 || = [lz1 — wl]
= [lz1 — wil]-

From the Kadec-Klee property of E, we have that 1 — x,,, = 1 — w and hence
Ty, — W = Wi.

Therefore, we have x,, — w = wy. This completes the proof. O
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