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operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let x1 ∈ E and let {xn} be a
sequence generated by

zn = xn − µnJ
−1
E T ∗JF (Txn −QµnTxn),

Cn = {z ∈ A−10 : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Qn = {z ∈ A−10 : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where {µn} ⊂ (0,∞) satisfies that for some a, b ∈ R,

0 < a ≤ µn ≤ b <
1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ A−10 ∩ T−1(B−10),
where w1 = PA−10∩T−1(B−10)x1.

In this paper, motivated by Takahashi’s theorem (Theorem 1.1), we consider
the split common null point problem with metric resolvents of maximal monotone
operators in two Banach spaces. Then using the metric resolvents of maximal
monotone operators and the metric projections, we prove a strong convergence
theorem for finding a solution of the split null point problem in two Banach spaces.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1

and

lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, that is, xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u; see [7, 14].

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t
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exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. For more details, see [16] and [17]. We know the
following result:

Lemma 2.1. Let E be a smooth Banach space and let J be the duality mapping on
E. Then, ⟨x− y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly convex
and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call PC the
metric projection of E onto C.

Lemma 2.2 ([16]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x1 ∈ E and z ∈ C.
Then, the following conditions are equivalent:

(1) z = PCx1 ;
(2) ⟨z − y, J(x1 − z)⟩ ≥ 0, ∀y ∈ C.

Let E be a Banach space and let A be a mapping of E into 2E
∗
. The effective

domain of A is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax ̸= ∅}. A
multi-valued mapping A on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all
x, y ∈ dom(A), u∗ ∈ Ax, and v∗ ∈ Ay. A monotone operator A on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [3]; see also [17, Theorem
3.5.4].

Theorem 2.3 ([3]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E∗. Let A be a monotone operator of E into
2E

∗
. Then A is maximal if and only if for any r > 0,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let A be a maximal monotone operator of E into 2E

∗
. For all x ∈ E and r > 0,

we consider the following equation

0 ∈ J(xr − x) + rAxr.

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr, r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A−10 = {z ∈ E : 0 ∈ Az}. We know that A−10 is closed and convex; see [17].
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3. Main result

In this section, using the metric resolvents of maximal monotone operators and
the metric projections, we prove a strong convergence theorem for finding a solution
of the split common null point problem in two Banach spaces. We follow [20] for
the proof.

Theorem 3.1. Let E and F be uniformly convex and smooth Banach spaces and
let JE and JF be the duality mappings on E and F , respectively. Let A and B be
maximal monotone operators of E into 2E

∗
and F into 2F

∗
such that A−10 ̸= ∅ and

B−10 ̸= ∅, respectively. Let Jλ and Qµ be the metric resolvents of A for λ > 0 and
B for µ > 0, respectively. Let T : E → F be a bounded linear operator such that
T ̸= 0 and let T ∗ be the adjoint operator of T . Suppose that A−10∩T−1(B−10) ̸= ∅.
Let x1 ∈ E and let {xn} be a sequence generated by

zn = xn − µnJ
−1
E T ∗JF (Txn −QµnTxn),

yn = Jλnzn,

Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Dn = {z ∈ E : ⟨yn − z, JE(zn − yn)⟩ ≥ 0},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PCn∩Dn∩Qnx1, ∀n ∈ N,

where {λn}, {µn} ⊂ (0,∞) satisfy that for some a, b, c ∈ R,

0 < a ≤ µn ≤ b <
1

∥T∥2
and 0 < c ≤ λn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ A−10 ∩ T−1(B−10),
where w1 = PA−10∩T−1(B−10)x1.

Proof. It is obvious that Cn ∩Dn ∩Qn is closed and convex for all n ∈ N. To show
that A−10∩T−1(B−10) ⊂ Cn for all n ∈ N, let us show that ⟨zn−z, JE(xn−zn)⟩ ≥ 0
for all z ∈ T−1(B−10) and n ∈ N. In fact, we have that for all z ∈ T−1(B−10) and
n ∈ N,
⟨zn − z,JE(xn − zn)⟩ = ⟨zn − xn + xn − z, JE(xn − zn)⟩

= ⟨−µnJ
−1
E T ∗JF (Txn −QµnTxn)

+ xn − z, JE(µnJ
−1
E T ∗JF (Txn −QµnTxn))⟩

= ⟨−µnJ
−1
E T ∗JF (Txn −QµnTxn) + xn − z, µnT

∗JF (Txn −QµnTxn)⟩
= −µ2

n∥T ∗JF (Txn −QµnTxn)∥2 + ⟨xn − z, µnT
∗JF (Txn −QµnTxn)⟩

= −µ2
n∥T ∗JF (Txn −QµnTxn)∥2 + µn⟨Txn − Tz, JF (Txn −QµnTxn)⟩(3.1)

= −µ2
n∥T ∗JF (Txn −QµnTxn)∥2

+ µn⟨Txn −QµnTxn +QµnTxn − Tz, JF (Txn −QµnTxn)⟩
= −µ2

n∥T ∗JF (Txn −QµnTxn)∥2 + µn∥Txn −QµnTxn∥2

+ µn⟨QµnTxn − Tz, JF (Txn −QµnTxn)⟩
≥ −µ2

n∥T∥2∥Txn −QµnTxn∥2 + µn∥Txn −QµnTxn∥2
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= µn(1− µn∥T∥2)∥Txn −QµnTxn∥2 ≥ 0.

Then we have that A−10 ∩ T−1(B−10) ⊂ Cn for all n ∈ N. Next, to show that
A−10 ∩ T−1(B−10) ⊂ Dn for all n ∈ N, let us show that ⟨yn − z, JE(zn − yn)⟩ ≥ 0
for all z ∈ A−10 and n ∈ N. In fact, we have that for all z ∈ A−10 and n ∈ N,
(3.2) ⟨yn − z, JE(zn − yn)⟩ = ⟨Jλnzn − z, JE(zn − Jλnzn)⟩ ≥ 0.

Then we have that A−10 ∩ T−1(B−10) ⊂ Dn for all n ∈ N. We shall show that
A−10 ∩ T−1(B−10) ⊂ Qn for all n ∈ N. Since ⟨x1 − z, JE(x1 − x1)⟩ ≥ 0 for
all z ∈ E, it is obvious that A−10 ∩ T−1(B−10) ⊂ Q1. Suppose that, for some
k ∈ N, A−10 ∩ T−1(B−10) ⊂ Qk. Then A−10 ∩ T−1(B−10) ⊂ Ck ∩Dk ∩Qk. From
xk+1 = PCk∩Dk∩Qk

x1, we have that

⟨xk+1 − z, JE(x1 − xk+1)⟩ ≥ 0, ∀z ∈ Ck ∩Dk ∩Qk

and hence

⟨xk+1 − z, JE(x1 − xk+1)⟩ ≥ 0, ∀z ∈ A−10 ∩ T−1(B−10).

Then we get that A−10∩T−1(B−10) ⊂ Qk+1. By mathematical induction, we have
that A−10 ∩ T−1(B−10) ⊂ Qn for all n ∈ N. Thus, we have that

A−10 ∩ T−1(B−10) ⊂ Cn ∩Dn ∩Qn

for all n ∈ N. This implies that {xn} is well defined.
Since A−10 ∩ T−1(B−10) is a nonempty, closed and convex subset of E, there

exists w1 ∈ A−10 ∩ T−1(B−10) such that w1 = PA−10∩T−1(B−10)x1. We have from
xn+1 = PCn∩Dn∩Qnx1 that

∥x1 − xn+1∥ ≤ ∥x1 − y∥
for all y ∈ Cn ∩Dn ∩Qn. Since w1 ∈ A−10 ∩ T−1(B−10) ⊂ Cn ∩Dn ∩Qn, we have
that

(3.3) ∥x1 − xn+1∥ ≤ ∥x1 − w1∥.
This means that {xn} is bounded.

Next we show that limn→∞ ∥xn − xn+1∥ = 0. From xn+1 = PCn∩Dn∩Qnx1 we
have that xn+1 ∈ Qn and hence

⟨xn − xn+1, JE(x1 − xn)⟩ ≥ 0.

From this, we have that

⟨xn − x1 + x1 − xn+1, JE(x1 − xn)⟩ ≥ 0.

This implies that ⟨x1 − xn+1, JE(x1 − xn)⟩ ≥ ∥xn − x1∥2 and hence

∥xn − x1∥ ≤ ∥xn+1 − x1∥.
Therefore, {∥x1 − xn∥} is bounded and nondecreasing. Then there exists the limit
of {∥x1−xn∥}. Put limn→∞ ∥xn−x1∥ = c. If c = 0, then limn→∞ ∥xn−xn+1∥ = 0.

Assume that c > 0. Since xn ∈ Qn, xn+1 ∈ Qn and xn+xn+1

2 ∈ Qn, we have that

∥x1 − xn∥ ≤
∥∥∥x1 − xn + xn+1

2

∥∥
≤ 1

2
(∥x1 − xn∥+ ∥x1 − xn+1∥)
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and hence

lim
n→∞

∥∥∥x1 − xn + xn+1

2

∥∥∥ = c.

Since E is uniformly convex, we get that limn→∞ ∥xn − xn+1∥ = 0.
We have from xn+1 ∈ Cn that

⟨zn − xn+1, JE(xn − zn)⟩ ≥ 0

and hence

⟨zn − xn + xn − xn+1, JE(xn − zn)⟩ ≥ 0.

This implies that

∥xn − zn∥ ≤ ∥xn − xn+1∥.
From limn→∞ ∥xn − xn+1∥ = 0 we have that limn→∞ ∥xn − zn∥ = 0. On the other
hand, we know that

∥xn − zn∥ = ∥JE(xn − zn)∥
= ∥µnT

∗JF (Txn −QµnTxn)∥.

Since 0 < a ≤ µn ≤ b < 1
∥T∥2 for all n ∈ N and limn→∞ ∥xn− zn∥ = 0, we have that

limn→∞ ∥T ∗JF (Txn −QµnTxn)∥ = 0. Then we get from (3.1) that

(3.4) lim
n→∞

∥Txn −QµnTxn∥ = 0.

Furthermore, We have from xn+1 ∈ Dn that

⟨yn − xn+1, JE(zn − yn)⟩ ≥ 0

and hence

⟨yn − zn + zn − xn + xn − xn+1, JE(zn − yn)⟩ ≥ 0.

This implies that

⟨zn − xn + xn − xn+1, JE(zn − yn)⟩ ≥ ∥zn − yn∥2.
From ∥xn − xn+1∥ → 0 and ∥xn − zn∥ → 0, we have that limn→∞ ∥yn − zn∥ = 0.
Then we get that

(3.5) lim
n→∞

∥zn − Jλnzn∥ = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging
weakly to w. We have from limn→∞ ∥xn − zn∥ = 0 that {zni} converges weakly
to w. We also have from (3.5) that {Jλni

zni} converges weakly to w. Since Jλn is

the metric resolvent of A, we have that
JE(zn−Jλnzn)

λn
∈ AJλnzn for all n ∈ N. From

the monotonicity of A we have that

0 ≤
⟨
s− Jλni

zni , t
∗ −

JE(zni − Jλni
zni)

λni

⟩
for all (s, t∗) ∈ A. We have from ∥JE(zni − Jλni

zni)∥ = ∥zni − Jλni
zni∥ → 0 and

0 < c ≤ λni that 0 ≤ ⟨s−w, t∗−0⟩ for all (s, t∗) ∈ A. Since A is maximal monotone,
we have that w ∈ A−10. Furthermore, since T is bounded and linear, we also
have that {Txni} converges weakly to Tw. From (3.4) we have that {Qµni

Txni}
converges weakly to Tw. Since Qµn is the metric resolvent of B, we have that
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JF (Txn−QµnTxn)
µn

∈ BQµnTxn for all n ∈ N. From the monotonicity of B we have

that

0 ≤
⟨
u−Qµni

Txni , v
∗ −

JF (Txni −Qµni
Txni)

µni

⟩
for all (u, v∗) ∈ B. From ∥JF (Txni − Qµni

Txni)∥ = ∥Txni − Qµni
Txni∥ → 0 and

0 < a ≤ µni , we have that 0 ≤ ⟨u − Tw, v∗ − 0⟩ for all (u, v∗) ∈ B. Since B is
maximal monotone, we have that Tw ∈ B−10. Therefore, w ∈ A−10 ∩ T−1(B−10).

From w1 = PA−10∩T−1(B−10)x1 and w ∈ A−10 ∩ T−1(B−10), we have from (3.3)
that

∥x1 − w1∥ ≤ ∥x1 − w∥ ≤ lim inf
i→∞

∥x1 − xni∥

≤ lim sup
i→∞

∥x1 − xni∥

≤ ∥x1 − w1∥.

Then we get that

lim
i→∞

∥x1 − xni∥ = ∥x1 − w∥

= ∥x1 − w1∥.

From the Kadec-Klee property of E, we have that x1 − xni → x1 − w and hence

xni → w = w1.

Therefore, we have xn → w = w1. This completes the proof. □
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