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ABSTRACT. In this paper, our aim is to introduce an iterative algorithm for
solving split feasibility problems and prove the strong convergence of the sequence
generated by our iterative scheme in p-uniformly convex and uniformly smooth
Banach spaces. Our result complements many recent and important results in
this direction.

1. INTRODUCTION

Let Fy and Es be two p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C' and @) be nonempty, closed and convex subsets of E1 and
E5 respectively, A : E4 — E5 be a bounded linear operator and A* : E5 — E7 be
the adjoint of A. The split feasibility problem (SFP) is to find a point

(1.1) x € C such that Az € Q.

We assume that SFP (1.1) has a nonempty solution set Q := {y € C': Ay € Q} =
C N A~YQ). Then, we have that ) is a closed and convex subset of Fj.

The SFP in finite-dimensional Hilbert spaces was first introduced by Censor and
Elfving [5] for modeling inverse problems which arise from phase retrievals and in
medical image reconstruction [3]. The SFP attracts the attention of many authors
due to its application in signal processing. Various algorithms have been invented
to solve it (see, for example, [4,13,16,31-34] and references therein).

In solving SFP (1.1) in p-uniformly convex real Banach spaces which are also
uniformly smooth, Schépfer et al. [21] proposed the following algorithm: For x; € F;
and n > 1, set

(1.2) Tpy1 = HoJp, [JE, (2n) — th A" Jp, (Az, — Po(Axy))],

where Il denotes the Bregman projection and J the duality mapping. Clearly the
above algorithm covers the Byrne’s CQ algorithm [3]

Tnt1 = Po(xy, — yA* (I — Pg)Azy),n > 1,
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which is found to be a gradient-projection method (GPM) in convex minimization
as a special case. They established the weak convergence of algorithm (1.2) under
the condition that F7 is p-uniformly convex, uniformly smooth and the duality
mapping of F; is sequentially weak-to-weak-continuous.

We remark here that the condition that the duality mapping of E; is sequentially
weak-to-weak-continuous assumed in [21] excludes some important Banach spaces,
such as the classical L,(2 < p < 00) spaces.

Recently, Wang [29] modified the above algorithm (1.2) and proved strong conver-
gence for the following multiple-sets split feasibility problem (MSSFP): find z € E;
satisfying

T r+s
(1.3) re(Cidze () Q;

i=1 j=14r
where r, s are two given integers, C;,© = 1,...,r is a closed convex subset in Fy,
and Qj,j =r+1,...,7 + s, is a closed convex subset in E>. He defined for each

n €N,

T Hc’l(n)(x)a 1< Z(TL) <,
n(@) = i, B (%) — 6 A"y (Az — Py, () (A))], 7+ 1 <i(n) <7+,

where ¢ : N — [ is the cyclic control mapping
i(n) =n mod (r+s) + 1,

and t,, satisfies

1
q -1
(1.4) 0<t<t 3(7) ,
TG Al
with C; a constant defined as in Lemma 2.1 and proposed the following algorithm:
For any initial guess x; = Z, define {z,,} recursively by

Yn = Thxn

D, ={w € Ey : Ap(yn,w) < Ap(zp,w)}
E,={we€ Ey: (z, —w, J,(Z) — Jp(zn) > 0}
Zny1 = Up, e, (T).

(1.5)

Using the idea in the work of Nakajo and Takahashi [14], he proved the following
strong convergence theorem in p-uniformly convex Banach spaces which is also
uniformly smooth.

Theorem 1.1. Let F1 and Es be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and QQ be nonempty, closed and convex subsets of
E1 and Ey respectively, A : E1 — Es be a bounded linear operator and A* : E5 — EY
be the adjoint of A. Suppose that SFP (1.3) has a nonempty solution set Q2. Let
the sequence {x,}°° | be generated by (1.5). Then {z,}72, converges strongly to the
Bregman projection of  onto the solution set €.
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The main advantage of result of Wang [29] is that the weak-to-weak continuity of
the duality mapping, assumed in [21] is dispensed with and strong convergence result
was achieved. On the other hand, to implement the algorithm (1.5) of Wang [29],
one has to calculate, at each iteration, the Bregman projection onto the intersection
of two half spaces D,, and E,. Recently, some researchers have considered SFP in
Banach spaces (see, for example, [2,22-25,28]).

Our aim in this paper is to construct another iterative scheme for solving problem
(1.1) for which its implementation does not involve calculation of Bregman projec-
tion onto the intersection of two half spaces at each step of the iteration for which
strong convergence is achieved in p-uniformly convex real Banach spaces which are
also uniformly smooth.

2. PRELIMINARIES

Let E7 and Es be real Banach spaces and let A : E1 — E5 be a bounded linear
operator. The dual (adjoint) operator of A, denoted by A*, is a bounded linear
operator defined by A* : E5 — EY

(A*y,x) := (y, Ax), Yo € E1,y € E5

and the equalities ||A*|| = ||A|| and N'(A4*) = R(A)* are valid, where R(A)* :=
{z* € E5 : (x*,u) =0, Yu € R(A)}. For more details on bounded linear operators
and their duals, please see [8,26,27].

Let 1 < ¢ <2 < p with % + % = 1. Let E be a real Banach space. The modulus
of convezity ég : [0,2] — [0,1] is defined as
. r+y
dee) = it {1 - EUL g 1 — gy =yl 2 ).
E is called uniformly convez if 0g(€) > 0 for any € € (0,2]; p-uniformly convez if

there is a ¢, > 0 so that dg(€) > c,eP for any € € (0,2]. The modulus of smoothness
pE(7T) : [0,00) — [0, 00) is defined by

pi(r) = {
(1)

E is called uniformly smooth if lim p%
n—oo

Cq > 0 so that pg(1) < Cy79 for any 7 > 0. The L, space is 2-uniformly convex
for 1 < p < 2 and p-uniformly convex for p > 2. It is known that E is p-uniformly
convex if and only if its dual E* is g-uniformly smooth (see [12]).

le + 7yl +[lo —yll
5 :

2] = llyl| = 1}.

= 0; g-uniformly smooth if there is a

The g-uniformly smooth spaces have the following estimate [30].

Lemma 2.1 (Xu, [30]). Let z,y € E. If E is q-uniformly smooth, then there is a
Cq > 0 so that

|z = yll* < [lz]1? = q{y, T (2)) + Callyll?.

Here and hereafter, we assume that F is a p-uniformly convex and uniformly
smooth, which implies that its dual space, E*, is g-uniformly smooth and uniformly
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convex. In this situation, it is known that the duality mapping J% is one-to-one,
single-valued and satisfies J5 = (JL.)™!, where J}. is the duality mapping of E*
(see [1,7]). Here the duality mapping Jo : E — 2F" is defined by

Jp(x) = {z € B* : {z,7) = |[2||P, ||| = ||=[["~"}.
The duality mapping J%, is said to be weak-to-weak continuous if
Ty = = (Jhy,y) — (Jhx,y)
holds true for any y € E . It is worth noting that the £,(p > 1) space has such a
property, but the J%(p > 2) space does not share this property.

Given a Gateaux differentiable convex function f : E — R, the Bregman distance
with respect to f is defined as:

Af(l‘,y) = f(y) - f(ZL') - <f,($)7y - l’>, T,y € E
It is worth noting that the duality mapping J,, is in fact the derivative of the function
fplz) = (%)Hpr . Then the Bregman distance with respect to f, is given by

1 1
Ap(x,y) = ||l = (Jpz,y) + —[lylI”
q p
1
= ];(Hyl\p —l2P) + (Jgz,x = y)
1
= g(Hpr = lI") = (Jga — Jgy, ).
Given z,y, z € E, one can easily get
(21) Ap(.%‘, y) = Ap(LU, Z) + AP(Zvy) + <Z - Y Jz‘w - J§Z>a

Generally speaking, the Bregman distance is not a metric due to the absence of
symmetry, but it has some distance-like properties. For the p-uniformly convex
space, the metric and Bregman distance has the following relation (see [21]):

(2.3) Tz —yll” < Ap(w,y) < (z -y, Jga — Jpy),
where 7 > 0 is some fixed number.

It is easy to see that if {x,,} and {y,,} are bounded sequences of a p-uniformly con-
vex and uniformly smooth E, then x,, —y, — 0, n — oo implies that A,(xy, yn) —
0, n — 0.

Let C be a nonempty, closed and convex subset of E. The metric projection

Pox = argmingco||r —y||, © € E,

is the unique minimizer of the norm distance, which can be characterized by a
variational inequality:

(2.4) (Jho(x — Pox),z — Pex) <0, Vz € C.
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Likewise, one can define the Bregman projection:
Hex = argming oAy (z,y), © € E,

as the unique minimizer of the Bregman distance (see [20]). The Bregman projection
can also be characterized by a variational inequality:

(2.5) (Jh(z) — Jh(Ilex), z — IIex) <0, Vz € C,
from which one has
(2.6) Ap(Hex, z) < Ap(z, 2) — Ap(x, Hex), Vz € C.

In Hilbert spaces, the metric projection and the Bregman projection with respect
to fo are coincident, but in general they are different. More importantly, the metric
projection can not share the decent property (2.6) as the Bregman projection in
Banach spaces.

Following [1, 6], we make use of the function V, : E* x E — [0, +00) associated
with fp, which is defined by

1 1
Vol@a) = lE" — (&) + el Ve € B3 € B

Then V), is nonnegative and

(2.7) Vo(@,2) = Ap(J5(2), ) = Dp(JE(T), @)
for all x € E and & € E*. Moreover, by the subdifferential inequality,
(2.8) Vo(Z, ) + (7, Jp(T) — ) < V(T + 7, 2)

for all x € E and z,y € E* (see also [11], Lemmas 3.2 and 3.3; [15]). In addition,
V), is convex in the first variable. Thus, for all z € F,

09 AN wne)s) = A (L))
i=1 =1
N

< ZtiAp(xiaZ)a

i=1

where {z;}¥, € E and {t;}, € (0,1) with 3_Y #; = 1. For more details, please
see [22].

We next state the following lemma which will be used in the sequel.
Lemma 2.2. (Xu [30]) Let {an} be a sequence of nonnegative real numbers satis-
fying the following relation:

ap41 < (1 - an>an + apop + Yp,n > 1,
where, (i) {an} C [0,1], > ay = oo; (44) limsup o, < 05 (914) v, > 0; (n > 1),
> < 0o. Then, ap, — 0 as n — 0.
We shall adopt the following notations in this paper:

e 1, — x means that x,, — x strongly;
e 1, — x means that z,, — = weakly;
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o wy(zn) = {z: 3wy, — z} is the weak w-limit set of the sequence {z;, }7 ;.

In this paper, we assume that £; and Fs are p-uniformly convex real Banach spaces
which are also uniformly smooth, E7 is g-uniformly smooth real Banach space which
is also uniformly convex where 1 < ¢ < 2 < p < oo with % + % = 1. We further

assume that ng and ng represent the duality mappings of Fy and FEs respectively
and ng = (J%ik)_l, where J%i* is the duality mapping of E;*.

3. MAIN RESULTS

Theorem 3.1. Let F1 and Es be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C' and @ be nonempty, closed and convex subsets of
E1 and Ey respectively, A : E1 — Ej be a bounded linear operator and A* : E5 — EY
be the adjoint of A. Suppose that SFP (1.1) has a nonempty solution set ). Let
{an} be a sequence in (0,1). For a fized u € C, let sequences {yn}>2, and {zn}2,
be generated by x1 € C,
(3 1) Yn = ,]qik [J]gl (l‘n) — tnA*Jf% (A.%'n — PQ(Axn))]
. Tpil = chqf(anng (u) + (1 = an)Jp, (Yn)), n > 1.
Suppose the following conditions are satisfied:
(a) lim o, = 0;
n—oo
oo
(b) > ap =00 and
n=1 )

—1

q q
() 0<t<t,<k< (TIIAII")
Then the sequence {x,}22 | converges strongly to an element T € Q, where T = lqu.

Proof. Let z* € Q. Suppose wy, = Az, — Po(Ax,), Vn > 1. Then we have
Yn = Jgf [J5, (xn) — tn A*Jp, (wy)], Vn > 1. Tt follows from (2.4) that

(T, (wn), Az — Ax™) = ||Azn — Po(Awn)|[” + (g, (wn), Po(Azy) — Az™)
(3:2) > |[Azp — Po(Azn)[|P = [lwn|]?,
which, with Lemma 2.1, yields
Ap(Yn,z*) = Ap(*]%; [ng (zn) — tnA*J)gQ (wn)], ")

1 * *
= 5!|J§1(f€n) = tn A" T, (wa)||* = (JE;, (xn), 27)

1
+tn(Jp, (wn), Az™) + ];Hﬂ?*Hp
Cq(tnllAl])*
q
* * 1 *
—(JE, (@), &%) + tn(Jp, (wn), Az >+];||fv ¢

1 * 1 * *
= gllxnllp— (T, (xn), 2 >+};|\$ 17+ tn(JE, (wn), Az™ — Azy)

IN

1
gHng(:cn)Hq = ta{Azn, Jp, (wn)) + 1T, (wa)l|*
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C,(t,llAIN?
1 GaltnlADY) o 0

C,(tn]|Al])?
= Byl a®) + tul T (), Aa® — Ay + SallallAD

Cq(thAqu)Hw I3
q n

175, (wn) [

(3.3) < Ay(zn,a”) — (tn -

Using the condition (¢), we have
Ap(Yn, 7)) < Ap(my, 2%), Vn > 1.

Now, using (3.1), we have

(3.4) Ap(@ny1, ) < anAp(u,x®) + (1 — an)Ap(yn, =)
< anAp(u, %) + (1 — an) Ap(an, %)
< max{A,(u,z"), Ap(zp, z")}
< maX{AP(u7x*)aAP(x17x*)}'

Hence, {x,}5°; is bounded.
Let & = Ilqu. The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists ng € N such that {Aj(x,,Z)}52,,, is non-
increasing. Then {Ap(zy,, )}, converges and Ap(zp,T) — Ap(Tny1,Z) = 0, n —
oo. Then from (3.3) and (3.4), we obtain

Cy(tn]|Al])?
(10— B 1, — Pzl < Ay, ) - 8y 00,7)
< Ap(an,T) — A ($n+1, z)
(3.5) +an[Ap(u, Z) = Ap(yn, T)].
By condition (¢) and (3.5), we have
k9| Al
0 < t(1- ATy e, - pyan e
q
Cq(tnllAlD?
< B AL Lkl VA _ P
< (t p MIAzn — Po(Awy)|
< AP($naj) - Ap(anrla _)
o [Ap(u, Z) — Ap(Yn, z)] = 0,7 — oo.
Hence, we obtain
(3.6) li_}m ||Az, — Po(Axy)|| = 0.

Since y, = %T [T, (xn) — ta A*J, (Azy, — Po(Azy))], then we have
0 < [|JE, (yn) = T, (@)l <l A% T, (Azy — Po(Azy))|]

_1
(Figm) " A" Az, = Po(Azy)l| = 0,0 = .

3.7
(3.7) AV
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Therefore, we obtain
: P _ P —
i (|75, (4) — T8, (20| = 0.
Since Jf%f is also norm-to-norm uniformly continuous on bounded subsets of £}, we

have
lim ||y, — z,|| = 0.
n—oo

Furthermore, we have from (3.1) that

Ap(anrlv yn) < OénAp(uv yn) =+ (1 - an)Ap(yna yn)
= onAp(u,yn) = 0,n — 0.

Thus,
Jim 121 = 3| = 0
and this implies that
|znt1 = znll < llyn — 2all + [[nt1 — yall = 0,7 — oo
Similarly,

18175, (20) — ta AT, (A — Po(Aw))] = 2l = llyn — al| = 0,0 = o.
Since ng is norm-to-norm uniformly continuous on bounded sets, then
HIA" B, (Azy — Po(Aza))l| < tal| AT, (Az, — Po(Ax,))]

= [, (2n) — tn A", (Azy — Po(Azy)) — Jg, (2n)]]
— 0,n — o0.
Thus,
(3.8) nan;o|]A*Jg2(Axn — Pg(Azy))|| =0.

Since {x,} is bounded, there exists {z,,} of {z,} such that z,, — 2z € wy(zy).
From (2.2), (2.5) and (2.3) we have that

Ap(z,lez) < (g, (2) = Jp, (Ilc2), 2 — Tlcz)
= (Jp,(2) = Jp,(Wcz), 2 — wny) + (Jp, (2) — T, (He2), 20, — Hoay,)
+(Jg, (2) — J§ (Ilcz), Mex,, —cz)
< (I, (2) = Jp, (Hez), 2 — o)) + (T, (2) = T, (Hez), 2n; — Howy,).

As j — oo, we obtain that Ap(z,IIcz) = 0. Thus, z € C. Let us now fix x € C.
Then, Az € () and

I = Po) A, [P = (72, (Azy — Po(An,), Aty — Po(A,)
= <J§2 (Azy — Po(Azy,)), Azn; — Ax)
+(Jp, (Azy — Po(Azy))), Ax — Po(Axy,;))
(I, (Azy — Po(Azy,)), Azn, — Az)
M||A*Jg, (I — Pg)Azy,|| — 0,n — oo,

[VARVAN
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where M > 0 is sufficiently large number. It then follows from (2.4) that
(T = Po)AslP = (T8, (A2 — Po(Az2), Az — Po(A2))
= (Jp,(Az — Po(Az2)), Az — Axy,))
+(Jp, (Az = Po(Az)), Az, — Po(Azy,))
(3.9) F(TB, (Az — Po(A2), Pg(An,) — Po(A2))
< (I, (Az — Po(Az)), Az — Axy)
+(Jp, (Az — Po(Az)), Az, — Po(Azy,)).
Let w, = quk(oszg1 (w) + (1 = an)Jg, (yn)), n > 1. Then

By ) = Ap(TE (andh, (1) + (1= ) 75, (5): 1)
< anAp(u, yn) + (1 — ) Ap(Yn, yn)
= anAp(u,yn) — 0, n — 0.

Hence, by (2.3) we have lim ||wy, — y,|| = 0. Furthermore
n—oo

wn = x|l < [|2n = yull + [[wn = ynll = 0, n — 0.

Since ,,;, — z and ||wy, — 2, || — 0, we have that w,; — 2. Also, since Ax,, — Az,
we have from (3.9) that

(I — Pg)Az|| = 0.
Thus, Az € ). Furthermore, we observe that

limsup(wn — 2, Jp, (u) = J, (2)) = lim (wn, — &, Jp, (u) — Jp, (@)
(3.10) = (z—2,J5 (u) — J% (7)) < 0.

Furthermore, by (2.8) and (2.7) we have
Ap(Tpt1,7) < AP(J%T(aan (u) + (1 *Oén)J%l(yn))@)

= VplomJg, (u) + (1 — an)Jg, (yn), 7)
VolanJp, (u) + (1 = o) I3, (yn) — an(Jg, (uv) — J5, (7)), 7)
— (T (o i, (u) + (1 = an) JE, (yn)) — T, —om (5, (u) — JE, (7))
VolanJg, (2) + (1 — o) T, (yn), 2)

+an (wy, — T, Jp, (u) — Jp (7))

(3.11) = Ap(Jiy (T, (2) + (1 = an) Jp, (yn)), 7)
+an(wn, — 7, Jp, (u) — Jp, (2))
anDp(%,7) + (1 — an) Ap(yn, T)
+an(wn — 7, T, (u) — Jg, (2))

= (1= an)Bp(yn, @) + an(wn — 7, J3, (u) — Jg, (7))

< (1= on)Ap(xn, Z) + an(w, —z, ng (u) — ng (Z)).
Using Lemma 2.2 and (3.10) in (3.11), we obtain

i Ap(@n, @) = 0.

)+
1

IA

IN
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Thus, z, — Z,n — oo.

_Case 2
Assume that {Ap(z,,Z)}52

o, is not monotonically decreasing sequence. Set I'), =
Ap(xn,T), Vn > 1 and let 7 : N — N be a mapping for all n > ng (for some ng large
enough) by

7(n) :==max{k e N: k <n,T'y <Tpi1}.
Clearly, 7 is a non decreasing sequence such that 7(n) — oo as n — oo and
0 < FT(n) < FT(TL)—i—hvn > no.

After a similar conclusion from (3.6), it is easy to see that

HAx.,.(n) — PQxT(n)H — 0,n — o0.
By the similar argument as above in Case 1, we conclude immediately that

Jim || AT T, (Az-) = Po(Awz))l = 0,

nh_{glOHwT(n)-‘rl - wT(n)H =0

and
lim sup(w, () — 7, Jp, (u) — J5 (%)) < 0.

n—oo
Since {z,(,)} is bounded, there exists a subsequence of {Z,(,}, still denoted by
{#+(n)} which converges weakly to z € €' and Az € Q. From (3.11) we have that

Ap(xT(n)+17 f) < (1 - aT(n))AP(wT(n)? j) + X (n) <w7'(n) -, ng (U) - ng (‘%»
which implies that (noting that I'z(,y < T'z()41 and aq ;) > 0)
AP(xT(n)vj) < <wT(TL) -z, ng (u) - ‘]g'l (i‘»

This implies that
lim supA,(z7(n), ) < 0.

n—oo

Thus, lim Ap(z,(,,7) = 0. So,
n—oo

(3.12) HIL%\|xT(n) —Z|| = 0.
Since nlLH;O||$T(n)+1 — T7(n)l| = 0, we have that 7lli_>rrc>10||xT(n)+1 — Z|| = 0. Now, by

(2.3), we have that

0< Ap(xf(n)Jrl? z) <mT(n)+1 -z, ng (‘T‘r(n)Jrl) - ng ()

<
< N@rmyrr — 2R, (@rmy+1) — I, (@] = 0,n — oo,

Furthermore, for n > nyg, it is easy to see that I';(,) < I'z(p)4q if n # 7(n) (that is,
7(n) < n), because I'; > I'j11 for 7(n) +1 < j < n. As a consequence, we obtain
for all n > ny,
01, < maX{FT(n)ar‘r(n)+1} = I_‘7'(n)+1'
Hence limI',, = 0, that is, {z,,} converges strongly to . This completes the proof.
O
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Corollary 3.2. Let Ey and E3 be two L, spaces with 2 < p < 0o. Let C and @ be
nonempty, closed and convex subsets of E1 and Ey respectively, A : B4 — Es be a
bounded linear operator and A* : E5 — EY be the adjoint of A. Suppose that SFP
(1.1) has a nonempty solution set Q. Let {a,} be a sequence in (0,1). For a fized
u € C, let sequences {yn}>2, and {x,}5°, be generated by x1 € C,

Yn = J}f:f [T, (xn) = tn A* T, (Azy — Po(Axy,))]
Tpil = chqf(anjgl (u) + (1 — an)Jp, (Yn)), n > 1.

Suppose the following conditions are satisfied:

(a) nlL%an =0;

(b) > ay, =00 and
n=1

1

q a1
() 0<t<t,<k< (CqIIAIIQ>
Then the sequence {x,}22 | converges strongly to an element T € ), where & = lqu.

Corollary 3.3. Let Hi and Ho be two real Hilbert spaces. Let C' and Q) be nonempty,
closed and convex subsets of Hi and Hsy respectively, A : Hy — Hy be a bounded
linear operator and A* : Hy — Hy be the adjoint of A. Suppose that SFP (1.1) has
a nonempty solution set Q. Let {ca,} be a sequence in (0,1). For a fized u € C, let
sequences {yn 1521 and {z,}>2, be generated by x1 € C,

Yn = Ty — Lty A" (Axy, — Po(Axy))
Tnt1 = Po(apu + (1 — ap)yn), n > 1.
Suppose the following conditions are satisfied:
(a) lim o, = 0;
n—oQ

(b) i ay, = oo and

n=1

(c)0<t§tn§k<ﬁ.

Then the sequence {xy,}o° | converges strongly to an element T € Q, where T = Pqu.

4. AN APPLICATION

In this section, we give an application of Theorem 3.1 to the convexly constrained
linear inverse problem in p-uniformly convex real Banach spaces which are also
uniformly smooth.

Consider the convexly constrained linear inverse problem (cf [9])

Azx =,
(4.1) { reC

where E7 and FEs are two p-uniformly convex real Banach spaces which are also
uniformly smooth and A : £; — FEs is a bounded linear mapping and b € Fj.
It is well known that the projected Landweber method (see, [10]) given by

xr1 € C,
Tny1 = Polen — AA*(Az, — b)],n > 1,
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where A* is the adjoint of A and 0 < A < 2a with a = W, converges weakly to a

solution of (4.1). In what follows, we present an algorithm with strong convergence
for solving (4.1).

Corollary 4.1. Let Fy and E5 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and QQ be nonempty, closed and convex subsets of
E1 and Ey respectively, A : E1 — Es be a bounded linear operator and A* : E5 — EY
be the adjoint of A. Suppose that the convexly constrained linear inverse problem
(4.1) is consistent and let Q denote its solution set. Let {a,} be a sequence in (0,1).
For a fixed u € E, let sequences {yn}22 and {,}5°; be generated by x1 € Ey,

(42) Yn = ']quf (5, (xn) — tn A*Jp, (Azn — b)]
: xm4:H@ﬂ#%J£m}+ﬂ—awﬁﬂ%»,nZL

Suppose the following conditions are satisfied:

(a) nlglgoan =0;

(b) > ay =00 and
n=1
1

q q—1
(@0<t§%§k<(@mw) .
Then the sequence {xy,}72 converges strongly to an element T € S, where T = Ilgu.

Proof. For each n > 1, replacing b = Py(Axy,),xz, € E; implies that (3.1) reduces
to (4.2). Thus, by Theorem 3.1 we obtain the desired conclusion. O

Remark 4.2. We make the following remark concerning our contributions in this
paper.

1. The weak-to-weak continuity of the duality mapping assumed in [21] is dispensed
with in this paper and strong convergence is achieved.

2. In implementing the algorithm (1.5), one has to calculate, at each iteration, the
Bregman projection onto the intersection of two half spaces but in this our iterative
algorithm (3.1), one does not have to calculate, at each iteration, the Bregman
projection onto the intersection of two half spaces. Hence, our algorithm (3.1)
appears more efficient and implementable than the algorithm of Wang [29].

3. Our result in this paper complement the recent results of [2,22-25,28] on split
feasibility problems in Banach spaces.
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