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which is found to be a gradient-projection method (GPM) in convex minimization
as a special case. They established the weak convergence of algorithm (1.2) under
the condition that E1 is p-uniformly convex, uniformly smooth and the duality
mapping of E1 is sequentially weak-to-weak-continuous.

We remark here that the condition that the duality mapping of E1 is sequentially
weak-to-weak-continuous assumed in [21] excludes some important Banach spaces,
such as the classical Lp(2 < p < ∞) spaces.

Recently, Wang [29] modified the above algorithm (1.2) and proved strong conver-
gence for the following multiple-sets split feasibility problem (MSSFP): find x ∈ E1

satisfying

(1.3) x ∈
r∩

i=1

Ci, Ax ∈
r+s∩

j=1+r

Qj ,

where r, s are two given integers, Ci, i = 1, . . . , r is a closed convex subset in E1,
and Qj , j = r + 1, . . . , r + s, is a closed convex subset in E2. He defined for each
n ∈ N,

Tn(x) =

{
ΠCi(n)(x), 1 ≤ i(n) ≤ r,
J∗
E1
[JE1(x)− tnA

∗JE2(Ax− PQj(n)(Ax))], r + 1 ≤ i(n) ≤ r + s,

where i : N → I is the cyclic control mapping

i(n) = n mod (r + s) + 1,

and tn satisfies

0 < t ≤ tn ≤
( q

Cq||A||q
) 1

q−1
,(1.4)

with Cq a constant defined as in Lemma 2.1 and proposed the following algorithm:
For any initial guess x1 = x̄, define {xn} recursively by

yn = Tnxn
Dn = {w ∈ E1 : ∆p(yn, w) ≤ ∆p(xn, w)}
En = {w ∈ E1 : ⟨xn − w, Jp(x̄)− Jp(xn) ≥ 0}
xn+1 = ΠDn∩En(x̄).

(1.5)

Using the idea in the work of Nakajo and Takahashi [14], he proved the following
strong convergence theorem in p-uniformly convex Banach spaces which is also
uniformly smooth.

Theorem 1.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex subsets of
E1 and E2 respectively, A : E1 → E2 be a bounded linear operator and A∗ : E∗

2 → E∗
1

be the adjoint of A. Suppose that SFP (1.3) has a nonempty solution set Ω. Let
the sequence {xn}∞n=1 be generated by (1.5). Then {xn}∞n=1 converges strongly to the
Bregman projection of x̄ onto the solution set Ω.
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The main advantage of result of Wang [29] is that the weak-to-weak continuity of
the duality mapping, assumed in [21] is dispensed with and strong convergence result
was achieved. On the other hand, to implement the algorithm (1.5) of Wang [29],
one has to calculate, at each iteration, the Bregman projection onto the intersection
of two half spaces Dn and En. Recently, some researchers have considered SFP in
Banach spaces (see, for example, [2, 22–25,28]).

Our aim in this paper is to construct another iterative scheme for solving problem
(1.1) for which its implementation does not involve calculation of Bregman projec-
tion onto the intersection of two half spaces at each step of the iteration for which
strong convergence is achieved in p-uniformly convex real Banach spaces which are
also uniformly smooth.

2. Preliminaries

Let E1 and E2 be real Banach spaces and let A : E1 → E2 be a bounded linear
operator. The dual (adjoint) operator of A, denoted by A∗, is a bounded linear
operator defined by A∗ : E∗

2 → E∗
1

⟨A∗ȳ, x⟩ := ⟨ȳ, Ax⟩, ∀x ∈ E1, ȳ ∈ E∗
2

and the equalities ||A∗|| = ||A|| and N (A∗) = R(A)⊥ are valid, where R(A)⊥ :=
{x∗ ∈ E∗

2 : ⟨x∗, u⟩ = 0, ∀u ∈ R(A)}. For more details on bounded linear operators
and their duals, please see [8, 26,27].

Let 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. Let E be a real Banach space. The modulus

of convexity δE : [0, 2] → [0, 1] is defined as

δE(ϵ) = inf
{
1− ||x+ y||

2
: ||x|| = 1 = ||y||, ||x− y|| ≥ ϵ

}
.

E is called uniformly convex if δE(ϵ) > 0 for any ϵ ∈ (0, 2]; p-uniformly convex if
there is a cp > 0 so that δE(ϵ) ≥ cpϵ

p for any ϵ ∈ (0, 2]. The modulus of smoothness
ρE(τ) : [0,∞) → [0,∞) is defined by

ρE(τ) =
{ ||x+ τy||+ ||x− τy||

2
− 1 : ||x|| = ||y|| = 1

}
.

E is called uniformly smooth if lim
n→∞

ρE(τ)
τ = 0; q-uniformly smooth if there is a

Cq > 0 so that ρE(τ) ≤ Cqτ
q for any τ > 0. The Lp space is 2-uniformly convex

for 1 < p ≤ 2 and p-uniformly convex for p ≥ 2. It is known that E is p-uniformly
convex if and only if its dual E∗ is q-uniformly smooth (see [12]).

The q-uniformly smooth spaces have the following estimate [30].

Lemma 2.1 (Xu, [30]). Let x, y ∈ E. If E is q-uniformly smooth, then there is a
Cq > 0 so that

||x− y||q ≤ ||x||q − q⟨y, Jq
E(x)⟩+ Cq||y||q.

Here and hereafter, we assume that E is a p-uniformly convex and uniformly
smooth, which implies that its dual space, E∗, is q-uniformly smooth and uniformly
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convex. In this situation, it is known that the duality mapping Jp
E is one-to-one,

single-valued and satisfies Jp
E = (Jq

E∗)−1, where Jq
E∗ is the duality mapping of E∗

(see [1, 7]). Here the duality mapping Jp
E : E → 2E

∗
is defined by

Jp
E(x) = {x̄ ∈ E∗ : ⟨x, x̄⟩ = ||x||p, ||x̄|| = ||x||p−1}.

The duality mapping Jp
E is said to be weak-to-weak continuous if

xn ⇀ x ⇒ ⟨Jp
Exn, y⟩ → ⟨Jp

Ex, y⟩

holds true for any y ∈ E . It is worth noting that the ℓp(p > 1) space has such a
property, but the Jp

E(p > 2) space does not share this property.

Given a Gâteaux differentiable convex function f : E → R, the Bregman distance
with respect to f is defined as:

∆f (x, y) = f(y)− f(x)− ⟨f ′(x), y − x⟩, x, y ∈ E

It is worth noting that the duality mapping Jp is in fact the derivative of the function
fp(x) = (1p)||x||

p. Then the Bregman distance with respect to fp is given by

∆p(x, y) =
1

q
||x||p − ⟨Jp

Ex, y⟩+
1

p
||y||p

=
1

p
(||y||p − ||x||p) + ⟨Jp

Ex, x− y⟩

=
1

q
(||x||p − ||y||p)− ⟨Jp

Ex− Jp
Ey, x⟩.

Given x, y, z ∈ E, one can easily get

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + ⟨z − y, Jp
Ex− Jp

Ez⟩,(2.1)

∆p(x, y) + ∆p(y, x) = ⟨x− y, Jp
Ex− Jp

Ey⟩.(2.2)

Generally speaking, the Bregman distance is not a metric due to the absence of
symmetry, but it has some distance-like properties. For the p-uniformly convex
space, the metric and Bregman distance has the following relation (see [21]):

τ ||x− y||p ≤ ∆p(x, y) ≤ ⟨x− y, Jp
Ex− Jp

Ey⟩,(2.3)

where τ > 0 is some fixed number.

It is easy to see that if {xn} and {yn} are bounded sequences of a p-uniformly con-
vex and uniformly smooth E, then xn− yn → 0, n → ∞ implies that ∆p(xn, yn) →
0, n → ∞.

Let C be a nonempty, closed and convex subset of E. The metric projection

PCx = argminy∈C ||x− y||, x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by a
variational inequality:

⟨Jp
E(x− PCx), z − PCx⟩ ≤ 0, ∀z ∈ C.(2.4)
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Likewise, one can define the Bregman projection:

ΠCx = argminy∈C∆p(x, y), x ∈ E,

as the unique minimizer of the Bregman distance (see [20]). The Bregman projection
can also be characterized by a variational inequality:

⟨Jp
E(x)− Jp

E(ΠCx), z −ΠCx⟩ ≤ 0, ∀z ∈ C,(2.5)

from which one has

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C.(2.6)

In Hilbert spaces, the metric projection and the Bregman projection with respect
to f2 are coincident, but in general they are different. More importantly, the metric
projection can not share the decent property (2.6) as the Bregman projection in
Banach spaces.

Following [1, 6], we make use of the function Vp : E∗ × E → [0,+∞) associated
with fp, which is defined by

Vp(x̄, x) =
1

q
||x̄||q − ⟨x̄, x⟩+ 1

p
||x||p,∀x ∈ E, x̄ ∈ E∗.

Then Vp is nonnegative and

Vp(x̄, x) = ∆p(J
∗
E(x̄), x) = ∆p(J

q
E(x̄), x)(2.7)

for all x ∈ E and x̄ ∈ E∗. Moreover, by the subdifferential inequality,

Vp(x̄, x) + ⟨ȳ, J∗
E(x̄)− x⟩ ≤ Vp(x̄+ ȳ, x)(2.8)

for all x ∈ E and x̄, ȳ ∈ E∗ (see also [11], Lemmas 3.2 and 3.3; [15]). In addition,
Vp is convex in the first variable. Thus, for all z ∈ E,

∆p

(
Jq
E

( N∑
i=1

tiJ
p
E(xi)

)
, z
)

= ∆p

(
J∗
E

( N∑
i=1

tiJ
p
E(xi)

)
, z
)

(2.9)

≤
N∑
i=1

ti∆p(xi, z),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N

i=1 ti = 1. For more details, please
see [22].

We next state the following lemma which will be used in the sequel.

Lemma 2.2. (Xu [30]) Let {an} be a sequence of nonnegative real numbers satis-
fying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where, (i) {αn} ⊂ [0, 1],
∑

αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 1),∑
γn < ∞. Then, an → 0 as n → ∞.

We shall adopt the following notations in this paper:

• xn → x means that xn → x strongly;
• xn ⇀ x means that xn → x weakly;
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• ωw(xn) := {x : ∃xnj ⇀ x} is the weak w-limit set of the sequence {xn}∞n=1.

In this paper, we assume that E1 and E2 are p-uniformly convex real Banach spaces
which are also uniformly smooth, E∗

1 is q-uniformly smooth real Banach space which
is also uniformly convex where 1 < q ≤ 2 ≤ p < ∞ with 1

p + 1
q = 1. We further

assume that Jp
E1

and Jp
E2

represent the duality mappings of E1 and E2 respectively

and Jp
E1

= (Jq
E∗

1
)−1, where Jq

E∗
1
is the duality mapping of E1

∗.

3. Main results

Theorem 3.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex subsets of
E1 and E2 respectively, A : E1 → E2 be a bounded linear operator and A∗ : E∗

2 → E∗
1

be the adjoint of A. Suppose that SFP (1.1) has a nonempty solution set Ω. Let
{αn} be a sequence in (0, 1). For a fixed u ∈ C, let sequences {yn}∞n=1 and {xn}∞n=1

be generated by x1 ∈ C,{
yn = Jq

E∗
1
[Jp

E1
(xn)− tnA

∗Jp
E2
(Axn − PQ(Axn))]

xn+1 = ΠCJ
q
E∗

1
(αnJ

p
E1
(u) + (1− αn)J

p
E1
(yn)), n ≥ 1.

(3.1)

Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞∑
n=1

αn = ∞ and

(c) 0 < t ≤ tn ≤ k <
(

q
Cq ||A||q

) 1
q−1

.

Then the sequence {xn}∞n=1 converges strongly to an element x̄ ∈ Ω, where x̄ = ΠΩu.

Proof. Let x∗ ∈ Ω. Suppose wn := Axn − PQ(Axn), ∀n ≥ 1. Then we have
yn = Jq

E∗
1
[Jp

E1
(xn)− tnA

∗Jp
E2
(wn)], ∀n ≥ 1. It follows from (2.4) that

⟨Jp
E2
(wn), Axn −Ax∗⟩ = ||Axn − PQ(Axn)||p + ⟨Jp

E2
(wn), PQ(Axn)−Ax∗⟩

≥ ||Axn − PQ(Axn)||p = ||wn||p,(3.2)

which, with Lemma 2.1, yields

∆p(yn, x
∗) = ∆p(J

q
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(wn)], x

∗)

=
1

q
||Jp

E1
(xn)− tnA

∗Jp
E2
(wn)||q − ⟨Jp

E1
(xn), x

∗⟩

+tn⟨Jp
E2
(wn), Ax∗⟩+ 1

p
||x∗||p

≤ 1

q
||Jp

E1
(xn)||q − tn⟨Axn, J

p
E2
(wn)⟩+

Cq(tn||A||)q

q
||Jp

E2
(wn)||q

−⟨Jp
E1
(xn), x

∗⟩+ tn⟨Jp
E2
(wn), Ax∗⟩+ 1

p
||x∗||p

=
1

q
||xn||p − ⟨Jp

E1
(xn), x

∗⟩+ 1

p
||x∗||p + tn⟨Jp

E2
(wn), Ax∗ −Axn⟩
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+
Cq(tn||A||)q

q
||Jp

E2
(wn)||q

= ∆p(xn, x
∗) + tn⟨Jp

E2
(wn), Ax∗ −Axn⟩+

Cq(tn||A||)q

q
||Jp

E2
(wn)||q

≤ ∆p(xn, x
∗)−

(
tn − Cq(tn||A||)q

q

)
||wn||p.(3.3)

Using the condition (c), we have

∆p(yn, x
∗) ≤ ∆p(xn, x

∗), ∀n ≥ 1.

Now, using (3.1), we have

∆p(xn+1, x
∗) ≤ αn∆p(u, x

∗) + (1− αn)∆p(yn, x
∗)(3.4)

≤ αn∆p(u, x
∗) + (1− αn)∆p(xn, x

∗)

≤ max{∆p(u, x
∗),∆p(xn, x

∗)}
...

≤ max{∆p(u, x
∗),∆p(x1, x

∗)}.
Hence, {xn}∞n=1 is bounded.

Let x̄ = ΠΩu. The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists n0 ∈ N such that {∆p(xn, x̄)}∞n=n0
is non-

increasing. Then {∆p(xn, x̄)}∞n=1 converges and ∆p(xn, x̄)−∆p(xn+1, x̄) → 0, n →
∞. Then from (3.3) and (3.4), we obtain(

tn − Cq(tn||A||)q

q

)
||Axn − PQ(Axn)||p ≤ ∆p(xn, x̄)−∆p(yn, x̄)

≤ ∆p(xn, x̄)−∆p(xn+1, x̄)

+αn[∆p(u, x̄)−∆p(yn, x̄)].(3.5)

By condition (c) and (3.5), we have

0 < t
(
1− Cqk

q−1||A||q

q

)
||Axn − PQ(Axn)||p

≤
(
tn − Cq(tn||A||)q

q

)
||Axn − PQ(Axn)||p

≤ ∆p(xn, x̄)−∆p(xn+1, x̄)

+αn[∆p(u, x̄)−∆p(yn, x̄)] → 0, n → ∞.

Hence, we obtain

lim
n→∞

||Axn − PQ(Axn)|| = 0.(3.6)

Since yn = Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(Axn − PQ(Axn))], then we have

0 ≤ ||Jp
E1
(yn)− Jp

E1
(xn)|| ≤ tn||A∗||||Jp

E2
(Axn − PQ(Axn))||

≤
( q

Cq||A||q
) 1

q−1 ||A∗||||Axn − PQ(Axn)|| → 0, n → ∞.(3.7)
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Therefore, we obtain

lim
n→∞

||Jp
E1
(yn)− Jp

E1
(xn)|| = 0.

Since Jq
E∗

1
is also norm-to-norm uniformly continuous on bounded subsets of E∗

1 , we

have

lim
n→∞

||yn − xn|| = 0.

Furthermore, we have from (3.1) that

∆p(xn+1, yn) ≤ αn∆p(u, yn) + (1− αn)∆p(yn, yn)

= αn∆p(u, yn) → 0, n → ∞.

Thus,

lim
n→∞

||xn+1 − yn|| = 0

and this implies that

||xn+1 − xn|| ≤ ||yn − xn||+ ||xn+1 − yn|| → 0, n → ∞.

Similarly,

||Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(Axn − PQ(Axn))]− xn|| = ||yn − xn|| → 0, n → ∞.

Since Jp
E1

is norm-to-norm uniformly continuous on bounded sets, then

t||A∗Jp
E2
(Axn − PQ(Axn))|| ≤ tn||A∗Jp

E2
(Axn − PQ(Axn))||

= ||Jp
E1
(xn)− tnA

∗Jp
E2
(Axn − PQ(Axn))− Jp

E1
(xn)||

→ 0, n → ∞.

Thus,

lim
n→∞

||A∗Jp
E2
(Axn − PQ(Axn))|| = 0.(3.8)

Since {xn} is bounded, there exists {xnj} of {xn} such that xnj ⇀ z ∈ ωw(xn).
From (2.2), (2.5) and (2.3), we have that

∆p(z,ΠCz) ≤ ⟨Jp
E1
(z)− Jp

E1
(ΠCz), z −ΠCz⟩

= ⟨Jp
E1
(z)− Jp

E1
(ΠCz), z − xnj ⟩+ ⟨Jp

E1
(z)− Jp

E1
(ΠCz), xnj −ΠCxnj ⟩

+⟨Jp
E1
(z)− Jp

E1
(ΠCz),ΠCxnj −ΠCz⟩

≤ ⟨Jp
E1
(z)− Jp

E1
(ΠCz), z − xnj ⟩+ ⟨Jp

E1
(z)− Jp

E1
(ΠCz), xnj −ΠCxnj ⟩.

As j → ∞, we obtain that ∆p(z,ΠCz) = 0. Thus, z ∈ C. Let us now fix x ∈ C.
Then, Ax ∈ Q and

||(I − PQ)Axnj ||p = ⟨Jp
E2
(Axn − PQ(Axnj )), Axn − PQ(Axnj )⟩

= ⟨Jp
E2
(Axn − PQ(Axnj )), Axnj −Ax⟩

+⟨Jp
E2
(Axn − PQ(Axnj )), Ax− PQ(Axnj )⟩

≤ ⟨Jp
E2
(Axn − PQ(Axnj )), Axnj −Ax⟩

≤ M ||A∗Jp
E2
(I − PQ)Axnj || → 0, n → ∞,
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where M > 0 is sufficiently large number. It then follows from (2.4) that

||(I − PQ)Az||p = ⟨Jp
E2
(Az − PQ(Az)), Az − PQ(Az)⟩

= ⟨Jp
E2
(Az − PQ(Az)), Az −Axnj ⟩

+⟨Jp
E2
(Az − PQ(Az)), Axnj − PQ(Axnj )⟩

+⟨Jp
E2
(Az − PQ(Az)), PQ(Axnj )− PQ(Az)⟩(3.9)

≤ ⟨Jp
E2
(Az − PQ(Az)), Az −Axnj ⟩

+⟨Jp
E2
(Az − PQ(Az)), Axnj − PQ(Axnj )⟩.

Let wn = Jq
E∗

1
(αnJ

p
E1
(u) + (1− αn)J

p
E1
(yn)), n ≥ 1. Then

∆p(wn, yn) = ∆p(J
q
E∗

1
(αnJ

p
E1
(u) + (1− αn)J

p
E1
(yn)), yn)

≤ αn∆p(u, yn) + (1− αn)∆p(yn, yn)

= αn∆p(u, yn) → 0, n → ∞.

Hence, by (2.3) we have lim
n→∞

||wn − yn|| = 0. Furthermore

||wn − xn|| ≤ ||xn − yn||+ ||wn − yn|| → 0, n → ∞.

Since xnj ⇀ z and ||wn − xn|| → 0, we have that wnj ⇀ z. Also, since Axnj ⇀ Az,
we have from (3.9) that

||(I − PQ)Az|| = 0.

Thus, Az ∈ Q. Furthermore, we observe that

lim sup
n→∞

⟨wn − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩ = lim

j→∞
⟨wnj − x̄, Jp

E1
(u)− Jp

E1
(x̄)⟩

= ⟨z − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩ ≤ 0.(3.10)

Furthermore, by (2.8) and (2.7) we have

∆p(xn+1, x̄) ≤ ∆p(J
q
E∗

1
(αnJ

p
E1
(u) + (1− αn)J

p
E1
(yn)), x̄)

= Vp(αnJ
p
E1
(u) + (1− αn)J

p
E1
(yn), x̄)

≤ Vp(αnJ
p
E1
(u) + (1− αn)J

p
E1
(yn)− αn(J

p
E1
(u)− Jp

E1
(x̄)), x̄)

−⟨Jq
E∗

1
(αnJ

p
E1
(u) + (1− αn)J

p
E1
(yn))− x̄,−αn(J

p
E1
(u)− Jp

E1
(x̄))⟩

= Vp(αnJ
p
E1
(x̄) + (1− αn)J

p
E1
(yn), x̄)

+αn⟨wn − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩

= ∆p(J
q
E∗

1
(αnJ

p
E1
(x̄) + (1− αn)J

p
E1
(yn)), x̄)(3.11)

+αn⟨wn − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩

≤ αn∆p(x̄, x̄) + (1− αn)∆p(yn, x̄)

+αn⟨wn − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩

= (1− αn)∆p(yn, x̄) + αn⟨wn − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩

≤ (1− αn)∆p(xn, x̄) + αn⟨wn − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩.

Using Lemma 2.2 and (3.10) in (3.11), we obtain

lim
n→∞

∆p(xn, x̄) = 0.
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Thus, xn → x̄, n → ∞.

Case 2
Assume that {∆p(xn, x̄)}∞n=1 is not monotonically decreasing sequence. Set Γn =
∆p(xn, x̄), ∀n ≥ 1 and let τ : N → N be a mapping for all n ≥ n0 (for some n0 large
enough) by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.
Clearly, τ is a non decreasing sequence such that τ(n) → ∞ as n → ∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0.

After a similar conclusion from (3.6), it is easy to see that

||Axτ(n) − PQxτ(n)|| → 0, n → ∞.

By the similar argument as above in Case 1, we conclude immediately that

lim
n→∞

||A∗Jp
E2
(Axτ(n) − PQ(Axτ(n)))|| = 0,

lim
n→∞

||xτ(n)+1 − xτ(n)|| = 0

and

lim sup
n→∞

⟨wτ(n) − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩ ≤ 0.

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by
{xτ(n)} which converges weakly to z ∈ C and Az ∈ Q. From (3.11) we have that

∆p(xτ(n)+1, x̄) ≤ (1− ατ(n))∆p(xτ(n), x̄) + ατ(n)⟨wτ(n) − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩

which implies that (noting that Γτ(n) ≤ Γτ(n)+1 and ατ(n) > 0)

∆p(xτ(n), x̄) ≤ ⟨wτ(n) − x̄, Jp
E1
(u)− Jp

E1
(x̄)⟩.

This implies that

lim sup
n→∞

∆p(xτ(n), x̄) ≤ 0.

Thus, lim
n→∞

∆p(xτ(n), x̄) = 0. So,

lim
n→∞

||xτ(n) − x̄|| = 0.(3.12)

Since lim
n→∞

||xτ(n)+1 − xτ(n)|| = 0, we have that lim
n→∞

||xτ(n)+1 − x̄|| = 0. Now, by

(2.3), we have that

0 ≤ ∆p(xτ(n)+1, x̄) ≤ ⟨xτ(n)+1 − x̄, Jp
E1
(xτ(n)+1)− Jp

E1
(x̄)⟩

≤ ||xτ(n)+1 − x̄||||Jp
E1
(xτ(n)+1)− Jp

E1
(x̄)|| → 0, n → ∞.

Furthermore, for n ≥ n0, it is easy to see that Γτ(n) ≤ Γτ(n)+1 if n ̸= τ(n) (that is,
τ(n) < n), because Γj ≥ Γj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain
for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Hence limΓn = 0, that is, {xn} converges strongly to x̄. This completes the proof.
□
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Corollary 3.2. Let E1 and E2 be two Lp spaces with 2 ≤ p < ∞. Let C and Q be
nonempty, closed and convex subsets of E1 and E2 respectively, A : E1 → E2 be a
bounded linear operator and A∗ : E∗

2 → E∗
1 be the adjoint of A. Suppose that SFP

(1.1) has a nonempty solution set Ω. Let {αn} be a sequence in (0, 1). For a fixed
u ∈ C, let sequences {yn}∞n=1 and {xn}∞n=1 be generated by x1 ∈ C,{

yn = Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(Axn − PQ(Axn))]

xn+1 = ΠCJ
q
E∗

1
(αnJ

p
E1
(u) + (1− αn)J

p
E1
(yn)), n ≥ 1.

Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞∑
n=1

αn = ∞ and

(c) 0 < t ≤ tn ≤ k <
(

q
Cq ||A||q

) 1
q−1

.

Then the sequence {xn}∞n=1 converges strongly to an element x̄ ∈ Ω, where x̄ = ΠΩu.

Corollary 3.3. Let H1 and H2 be two real Hilbert spaces. Let C and Q be nonempty,
closed and convex subsets of H1 and H2 respectively, A : H1 → H2 be a bounded
linear operator and A∗ : H2 → H1 be the adjoint of A. Suppose that SFP (1.1) has
a nonempty solution set Ω. Let {αn} be a sequence in (0, 1). For a fixed u ∈ C, let
sequences {yn}∞n=1 and {xn}∞n=1 be generated by x1 ∈ C,{

yn = xn − tnA
∗(Axn − PQ(Axn))

xn+1 = PC(αnu+ (1− αn)yn), n ≥ 1.

Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞∑
n=1

αn = ∞ and

(c) 0 < t ≤ tn ≤ k < 2
||A||2 .

Then the sequence {xn}∞n=1 converges strongly to an element x̄ ∈ Ω, where x̄ = PΩu.

4. An application

In this section, we give an application of Theorem 3.1 to the convexly constrained
linear inverse problem in p-uniformly convex real Banach spaces which are also
uniformly smooth.

Consider the convexly constrained linear inverse problem (cf [9]){
Ax = b,
x ∈ C,

(4.1)

where E1 and E2 are two p-uniformly convex real Banach spaces which are also
uniformly smooth and A : E1 → E2 is a bounded linear mapping and b ∈ E2.
It is well known that the projected Landweber method (see, [10]) given by{

x1 ∈ C,
xn+1 = PC [xn − λA∗(Axn − b)], n ≥ 1,
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where A∗ is the adjoint of A and 0 < λ < 2α with α = 1
||A||2 , converges weakly to a

solution of (4.1). In what follows, we present an algorithm with strong convergence
for solving (4.1).

Corollary 4.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C and Q be nonempty, closed and convex subsets of
E1 and E2 respectively, A : E1 → E2 be a bounded linear operator and A∗ : E∗

2 → E∗
1

be the adjoint of A. Suppose that the convexly constrained linear inverse problem
(4.1) is consistent and let Ω denote its solution set. Let {αn} be a sequence in (0, 1).
For a fixed u ∈ E1, let sequences {yn}∞n=1 and {xn}∞n=1 be generated by x1 ∈ E1,{

yn = Jq
E∗

1
[Jp

E1
(xn)− tnA

∗Jp
E2
(Axn − b)]

xn+1 = ΠCJ
q
E∗

1
(αnJ

p
E1
(u) + (1− αn)J

p
E1
(yn)), n ≥ 1.

(4.2)

Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞∑
n=1

αn = ∞ and

(c) 0 < t ≤ tn ≤ k <
(

q
Cq ||A||q

) 1
q−1

.

Then the sequence {xn}∞n=1 converges strongly to an element x̄ ∈ Ω, where x̄ = ΠΩu.

Proof. For each n ≥ 1, replacing b = PQ(Axn), xn ∈ E1 implies that (3.1) reduces
to (4.2). Thus, by Theorem 3.1 we obtain the desired conclusion. □

Remark 4.2. We make the following remark concerning our contributions in this
paper.
1. The weak-to-weak continuity of the duality mapping assumed in [21] is dispensed
with in this paper and strong convergence is achieved.
2. In implementing the algorithm (1.5), one has to calculate, at each iteration, the
Bregman projection onto the intersection of two half spaces but in this our iterative
algorithm (3.1), one does not have to calculate, at each iteration, the Bregman
projection onto the intersection of two half spaces. Hence, our algorithm (3.1)
appears more efficient and implementable than the algorithm of Wang [29].
3. Our result in this paper complement the recent results of [2, 22–25, 28] on split
feasibility problems in Banach spaces.
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[21] F. Schöpfer, T. Schuster and A. K. Louis, An iterative regularization method for the solution
of the split feasibility problem in Banach spaces, Inverse Problems 24 (2008), 055008.

[22] Y. Shehu, F. U. Ogbuisi and O. S. Iyiola, Convergence Analysis of an iterative algorithm for
fixed point problems and split feasibility problems in certain Banach spaces, Optimization DOI:
10.1080/02331934.2015.1039533.

[23] Y. Shehu, O. S. Iyiola and C. D. Enyi, Iterative algorithm for split feasibility problems and
fixed point problems in Banach spaces, Numer. Algor. DOI: 10.1007/s11075-015-0069-4.

[24] Y. Shehu and O. S. Iyiola, A cyclic iterative method for solving multiple sets split feasibility
problems in Banach spaces, Quaestiones Mathematicae submitted.

[25] Y. Shehu and F. U. Ogbuisi, Further investigation into approximation of a common solution
of fixed point problems and split feasibility problems, Acta Mathematica Scientia Accepted.

[26] W. Takahashi, Convex Analysis and Approximation of Fixed Point, Yokohama Publishers,
Yokohama, 2000 (in Japanese).

[27] W. Takahashi, Nonlinear Functional Analysis, -Fixed Point Theory and its Applications-,
Yokohama Publishers, Yokohama, 2000

[28] W. Takahashi, The split feasibility problem in Banach spaces, J. Nonlinear Convex Anal. 15
(2014), 1349–1355.

[29] F. Wang, A new algorithm for solving the multiple-sets split feasibility problem in Banach
spaces, Numerical Functional Anal. Optim. 35 (2014), 99–110.

[30] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–
1138.



2364 YEKINI SHEHU

[31] H.-K. Xu, A variable Krasnosel 痴 kii-Mann algorithm and the multiple-set split feasibility
problem, Inverse Problems 22 (2006), 2021–2034.

[32] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems 20
(2004), 1261–1266.

[33] Q. Yang and J. Zhao, Generalized KM theorems and their applications, Inverse Problems 22
(2006), 833–844.

[34] Y. Yao, W. Jigang and Y.-C. Liou, Regularized methods for the split feasibility problem, Abstr.
Appl Anal. vol. 2012, Article ID 140679, 13 pages, 2012.

Manuscript received July 24, 2014

revised December 3, 2014

Yekini Shehu
Department of Mathematics, University of Nigeria, Nsukka, Nigeria

E-mail address: yekini.shehu@unn.edu.ng


