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ABSTRACT. In this paper, we introduce two iterative algorithms for finding a
common element of the set of solutions of finite generalized mixed equilibrium
problems, the set of solutions of finite variational inequalities for inverse strong
monotone mappings and the set of common fixed points of infinite nonexpan-
sive mappings and an asymptotically x-strict pseudocontractive mapping in the
intermediate sense in a real Hilbert space. We prove some strong and weak
convergence theorems for the proposed iterative algorithms under suitable con-
ditions.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm | - ||, C be a
nonempty closed convex subset of H and Po be the metric projection of H onto
C. Let S : C — C be a self-mapping on C. We denote by Fix(S) the set of fixed
points of S and by R the set of all real numbers. A mapping A : C' — H is called
L-Lipschitz continuous if there exists a constant L > 0 such that

[Az — Ay|| < Lllz —yl, Va,yeC.

In particular, if L = 1 then A is called a nonexpansive mapping [1]; if L € [0,1)
then A is called a contraction.

Let A : C — H be a nonlinear mapping on C. We consider the following
variational inequality problem (VIP): find a point x € C such that

(1.1) (Az,y —z) >0, VyeC.

The solution set of VIP (1.1) is denoted by VI(C, A).

The VIP (1.1) was first discussed by Lions [25] and has many applications in com-
putational mathematics, mathematical physics, operations research, mathematical
economics, optimization theory, and other fields; see, e.g., [21,30,38,45].
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In 1976, Korpelevich [24] proposed an iterative algorithm for solving the VIP
(1.1) in Euclidean space R™:

yn = Po(x, — TAzy),
Tnt1 = Po(zy, — TAy,), Yn >0,

with 7 > 0 a given number, which is known as the extragradient method (see
also [17]). The literature on the VIP is vast and Korpelevich’s extragradient method
has received great attention given by many authors, who improved it in various ways;
see e.g., [3-5,7,9,11,12,14, 15,20, 28,29, 34] and references therein, to name but a
few. In particular, motivated by the idea of Korpelevich’s extragradient method [24],
Nadezhkina and Takahashi [28] introduced an extragradient iterative scheme:

xg = x € C chosen arbitrary,
Yn = PC(xn - )\nAxn)a
Tp4l = QnTp + (1 - an)SPC’(xn - )\nAyn)7 Vn >0,

where A : C' — H is a monotone, L-Lipschitz continuous mapping, S : C — C is a
nonexpansive mapping and {\,} C [a,b] for some a,b € (0,1/L) and {«a,} C [c,d]
for some ¢,d € (0,1). They proved the weak convergence of {x,} to an element
of Fix(S) N VI(C, A). Recently, inspired by Nadezhkina and Takahashi’s iterative
scheme [28], Zeng and Yao [11] introduced another iterative scheme for finding an
element of Fix(S)NVI(C, A) and derived the weak convergence result. Furthermore,
by combining the CQ method and extragradient method, Nadezhkina and Takahashi
[29] introduced an iterative process:

xp = x € C chosen arbitrary,

Yn = PC(xn - AnAxn)a

Zn = apy + (1 — an) Po(xn — M Ayn),
Co= {2 € C 20— 2I| < llwn — 21T
Qn={z€C:{(xy—z,x—x,) >0},
Tn4+1 = PCnﬁQnIa Vn > 0.

They proved the strong convergence of {x,} to an element of Fix(S)NVI(C, A) under
appropriate conditions. Later on, Ceng and Yao [12] introduced an extragradient-
like approximation method which is based on the above extragradient method and
viscosity approximation method, and derived a strong convergence result as well.

Let ¢ : C' — R be a real-valued function, A : H — H be a nonlinear mapping
and @ : C x C — R be a bifunction. In 2008, Peng and Yao [34] introduced the
following generalized mixed equilibrium problem (GMEP) of finding z € C such
that

(1.2) O(z,y) + ¢(y) —p(x) + (Az,y —x) 20, VyeC.

We denote the set of solutions of GMEP (1.2) by GMEP(O, ¢, A). The GMEP
(1.2) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, Nash equilibrium problems
in noncooperative games and others. The GMEP is further considered and studied;
see e.g., [3,4,6,8,9].

We present some special cases of GMEP (1.2) as follows.



GME, VI AND COMMON FIXED POINT PROBLEMS 2367

If ¢ =0, then GMEP (1.2) reduces to the generalized equilibrium problem (GEP)
which is to find x € C such that

It is introduced and studied by Takahashi and Takahashi [37]. The set of solutions
of GEP is denoted by GEP(6, A).

If A =0, then GMEP (1.2) reduces to the mixed equilibrium problem (MEP)
which is to find x € C' such that

O(z,y) +¢(y) —p(x) 20, Vyel.
It is considered and studied in [13]. The set of solutions of MEP is denoted by
MEP(6O, p).

If p =0, A =0, then GMEP (1.2) reduces to the equilibrium problem (EP)
which is to find x € C' such that

O(z,y) >0, VyeC.

It is considered and studied in [10]. The set of solutions of EP is denoted by
EP(©). It is worth to mention that the EP is an unified model of several problems,
namely, variational inequality problems, optimization problems, saddle point prob-
lems, complementarity problems, fixed point problems, Nash equilibrium problems,
etc.

Throughout this paper, it is assumed as in [34] that © : C'xC — R is a bifunction
satisfying conditions (A1)-(A4) and ¢ : C' — R is a lower semicontinuous and convex
function with restriction (B1) or (B2), where

(A1) O(z,x) =0 for all x € C;

(A2) O is monotone, i.e., O(x,y) + O(y,z) <0 for any z,y € C;

(A3) © is upper-hemicontinuous, i.e., for each x,y,z € C,

limsup O(tz + (1 — t)z,y) < O(z,y);
t—0t

(A4) O(z,-) is convex and lower semicontinuous for each z € C;

(B1) for each x € H and r > 0, there exists a bounded subset D, C C and
Yz € C such that for any z € C'\ D,,

Oz, ) + 9(ua) — 9(2) + ~ (s — 2,7 — z) < 0;

,
(B2) C' is a bounded set.

Next we list some elementary conclusions for the MEP.

Proposition 1.1 (see [13]). Assume that © : C x C — R satisfies (A1)-(A4) and
let ¢ : C'— R be a proper lower semicontinuous and conver function. Assume that

either (B1) or (B2) holds. Forr >0 and x € H, define a mapping 7% H > C
as follows:

T(O9(r) = {z € C: O(2,) +ply) — 9(z) + 1y — 2,2 —2) > 0%y € O}

for all x € H. Then the following hold:
(i) for each x € H, T,f@“p)(ac) #0;



2368 L.-C. CENG, C.-M. CHEN, AND C.-F. WEN

(ii) T s single-valued;
(iii) Trﬁ@#’) is firmly nonexpansive, that is, for any x,y € H,

{09z — TLODY|2 < (T{OP — TPy, 0 — y);

(iv) Fix(T.?¥)) = MEP(6, ¢);
(v) MEP(6, ) is closed and conver.

Let A1, An2,---sAnn € (0,1], n > 1. Given the nonexpansive self-mappings
S1,52,...,Snv on C, for each n > 1, the mappings U, 1,Uy 2, ..., Uy N are defined
by

Un,l = An,lsl + (1 - )\n,l)I7
Un,2 = )\n,QSnUn,l + (1 - )\n,2)Ia
Un,nfl — )\nflTnflUn,n + (1 - Anfl)la

Upn-1 =M N-1SN-1UpNn—2+ (1 = Ay n-1)],
Wy :=Upn = A NSNUpn—1+ (1 = Ay N)I.

The W, is called the W-mapping generated by S1,..., Sy and Ay 1, A2, .., Ap N-
Note that the nonexpansivity of .S; implies the nonexpansivity of W,,.

In 2012, combining the hybrid steepest-descent method in [42] and hybrid viscos-
ity approximation method in [16], Ceng, Guu and Yao [6] proposed and analyzed
the following hybrid iterative method for finding a common element of the set of so-
lutions of GMEP (1.2) and the set of fixed points of a finite family of nonexpansive

mappings {S;}Y;.

Theorem 1.2 (see [6, Theorem 3.1]). Let C' be a nonempty closed convexr subset
of a real Hilbert space H. Let © : C'x C — R be a bifunction satisfying assump-
tions (A1)-(A4) and ¢ : C — R be a lower semicontinuous and convez function
with restriction (B1) or (B2). Let the mapping A : H — H be d-inverse strongly
monotone, and {Si}ﬁl be a finite family of nonexpansive mappings on H such
that NN, Fix(S;) N GMEP(O, ¢, A) # 0. Let F : H — H be a k-Lipschitzian and
n-strongly monotone operator with positive constants k,n >0 and f: H — H al-
Lipschitzian mapping with constant 1 > 0. Let 0 < p < 2n/k% and 0 < 4l < T,
where 7 = 1 — /1 —pu(2n — pk?).  Suppose {an} and {B,} are two sequences
n (0,1), {ya} is a sequence in (0,26] and {\.i}Y, is a sequence in [a,b] with
0<a<b<l. Foreveryn > 1, let W, be the W-mapping generated by S1,...,Sn
and Ap 1, n2,- .., g . Giwven x1 € H arbitrarily, suppose the sequences {z,} and
{un} are generated iteratively by

O(un,y) + o(y) — o(un) + (Azp,y — un)
(1.4) +%(y — Up, Uy — Tp) >0, YyeC,
Tnt1 = Y f(xn) + Bnxn + (1 — Bp)I — anuF)Whuy,, Vn>1,

where the sequences {an}, {Bn}, {rn} and the finite family of sequences {\ni}Y,
satisfy the conditions:

(i) limy oo o =0 and >°07 | oy = 00;
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(ii) 0 < liminf, o B < limsup,,_,. Bn < 1;

(iii) 0 < liminf, oo 7, < limsup,, o 7 < 20 and limy, oo (71 — 1) = 0;

(iv) limp—o0(Ant1, — Ani) =0 foralli=1,2,...,N.
Then both {z,} and {u,} converge strongly to x* € N Fix(S;) N GMEP(6O, ¢, A),
where x* = ﬂzNleiX(Si)ﬂGMEP(@,cp,A)(I — uF + vf)x* is a unique solution of the
variational inequality problem (VIP):

(1.5) (uF —yV)z* 2" —z) <0, Vo e N, Fix(S;) NGMEP(0, ¢, A).

Next, recall some concepts. Let C be a nonempty subset of a normed space X
and S : C — C be a self-mapping on C.

(i) S is asymptotically nonexpansive (see [18]) if there exists a sequence {k,}
of positive numbers satisfying the property lim,, ., &k, = 1 and

|1S"x — S"™y|| < kpllx —yl|l, Vn>1, Vao,y € C;

(ii) S is asymptotically nonexpansive in the intermediate sense (see [2]) provided
S is uniformly continuous and

limsup sup (||S"z — 5"yl - [lz — yl}) <0;

n—oo  x,ye
(iii) S is uniformly Lipschitzian if there exists a constant £ > 0 such that

It is clear that every nonexpansive mapping is asymptotically nonexpansive and
every asymptotically nonexpansive mapping is uniformly Lipschitzian. The class of
asymptotically nonexpansive mappings was introduced by Goebel and Kirk [18] as
an important generalization of the class of nonexpansive mappings. The class of
asymptotically nonexpansive mappings in the intermediate sense was introduced by
Bruck, Kuczumow and Reich [2]. Recently, Kim and Xu [23] introduced the concept
of asymptotically k-strict pseudocontractive mappings in a Hilbert space as below:

Definition 1.3. Let C be a nonempty subset of a Hilbert space H. A mapping
S : C'— C is said to be an asymptotically k-strict pseudocontractive mapping with
sequence {7,} if there exists a constant k£ € [0,1) and a sequence {v,} in [0, c0)
with lim,,_, o 7, = 0 such that

(1.6) [1S"z = S™y|I> < (1 +w)llz =yl + kllz — Sz — (y — S"y)||?,
Vn>1, Vx,y € C.

They studied weak and strong convergence theorems for this class of mappings. It
is important to note that every asymptotically k-strict pseudocontractive
mapping with sequence {7,} is a uniformly £-Lipschitzian mapping with £ =

sup{ W :n > 1}
Recently, Sahu, Xu and Yao [36] considered the concept of asymptotically k-strict
pseudocontractive mappings in the intermediate sense, which are not necessarily

Lipschitzian.
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Definition 1.4. Let C be a nonempty subset of a Hilbert space H. A mapping
S : C — C is said to be an asymptotically k-strict pseudocontractive mapping in
the intermediate sense with sequence {7, } if there exist a constant k € [0,1) and a
sequence {7, } in [0,00) with lim,,_, v, = 0 such that

(1.7) limsup sup ([|S"z—S"y|* = (L+7) e —yl* —klz—S"z—(y—S"y)|I*) < 0.

n—oo  z,yeC

Put ¢, := max{0, sup, ,cc(|S"z — S™y|? — (1 + )z — y|* — kllz — S™z — (y —
S ||12)}. Then ¢, >0 (Vn > 1), ¢, — 0 (n — oo) and (1.4) reduces to the relation

(1.8) [[5™x = S"y|I> < (1 +ym)llz = yl* + klla — S™z — (y — S™y)||* + cn,
Vn>1, Vx,y € C.

Whenever ¢, = 0 for all n > 1 in (1.5) then S is an asymptotically k-strict
pseudocontractive mapping with sequence {v,}. In 2009, Sahu, Xu and Yao [36]
derived the weak and strong convergence of the modified Mann iteration processes
for an asymptotically k-strict pseudocontractive mapping in the intermediate sense
with sequence {v,}. More precisely, they first established one weak convergence
theorem for the following iterative scheme

x1 = x € C chosen arbitrary,
Tnt1 = (1 —ap)zp + apS™zy, Yn>1,

where 0 < §d < o, <1—Fk =9, D7 ancy, < 0o and Y 2 v, < 0o; and then
obtained another strong convergence theorem for the following iterative scheme

x1 = x € C chosen arbitrary,

Yn = (1 — ap)xy + apS™xy,
Cp={2€C:|lyn — 2|1 < |ln — 2[|* + 6},
Qn={z€C:{(xy—z,x—x,) >0},

Tn+1 = Po,ng,.x, Vn > 1,

where 0 < § < a, < 1—k, 0, = ¢, +v,4, and A,, = sup{||z, —2||? : z € Fix(9)} <
00. Subsequently, the above iterative schemes are extended to develop new iterative
algorithms for finding a common solution of the VIP and the fixed point problem of

an asymptotically strict pseudocontractive mapping in the intermediate sense; see,
e.g., [8, 22, 35,44].

Motivated and inspired by the above facts, we in this paper introduce two it-
erative algorithms for finding a common element of the set of solutions of finite
generalized mixed equilibrium problems, the set of solutions of finite variational in-
equalities for inverse strong monotone mappings and the set of common fixed points
of infinite nonexpansive mappings and an asymptotically k-strict pseudocontractive
mapping in the intermediate sense in a real Hilbert space. We prove some strong
and weak convergence theorems for the proposed iterative algorithms under mild
conditions. Our results improve and extend the corresponding results announced
by many others.
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2. PRELIMINARIES

Throughout this paper, we assume that H is a real Hilbert space whose inner
product and norm are denoted by (-,-) and || - ||, respectively. Let C' be a nonempty
closed convex subset of H. We write x,, — = to indicate that the sequence {z,}
converges weakly to x and x,, — x to indicate that the sequence {x,} converges
strongly to z. Moreover, we use wy(zy,) to denote the weak w-limit set of the
sequence {x,}, i.e.,

wy(2n) = {x € H : x,, — x for some subsequence {x,,} of {x,}}.

Recall that a mapping A : C' — H is called
(i) monotone if
(ii) n-strongly monotone if there exists a constant > 0 such that
(Az — Ay, —y) > nllz —y|?, Vo,yeC;
(iii) a-inverse-strongly monotone if there exists a constant o > 0 such that
(Az — Ay,z —y) > ol| Az — Ay|]?, Vz,yeC.

It is obvious that if A is a-inverse-strongly monotone, then A is monotone and
é—LipSChitZ continuous.

The metric (or nearest point) projection from H onto C' is the mapping Pc :
H — C which assigns to each point x € H the unique point Pox € C satisfying the
property

|z — Poz|| = inf ||z —y|| =: d(z, C).
yeC

Some important properties of projections are gathered in the following proposi-
tion.

Proposition 2.1. For given x € H and z € C:
(i) z=Pox & (rt—2z,y—2) <0, VyeC;
(i) 2= Pox & |[lz— 2| < [z —yl* — lly — 2|*, Vy € C;
(iii) (Pox — Poy,x —y) > ||[Pox — Poyl*, Yy € H.

Consequently, P¢ is nonexpansive and monotone.

If A is an a-inverse-strongly monotone mapping of C into H, then it is obvious
that A is é—Lipschitz continuous. We also have that, for all u,v € C and A > 0,

I = AA)u— (I = AA)|* = [[(u—v) = AM(Au — Av)||?
(2.1) = |ju—||* = 2M(Au — Av,u — v) + \?||Au — Av|?
<l —o]]2 + AN = 2a)||Au — Av||>.

So, if A < 2a, then I — AA is a nonexpansive mapping from C' to H. It is easy
to see that the projection P is 1-ism. Inverse strongly monotone (also referred to
as co-coercive) operators have been applied widely in solving practical problems in
various fields.
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We need some facts and tools in a real Hilbert space H which are listed as lemmas
below.

Lemma 2.2. Let X be a real inner product space. Then there holds the following
inequality
o +yll? < lz)* +2{y, x + ), Va,y € X.

Lemma 2.3. Let H be a real Hilbert space. Then the following hold:

(a) |z -yl = ] ~ !?JH2 — 2w —y,y) for all z,y € H;

(b) [[Az + pyl|* = Miz|® + pllyll® = Aullz —yl|* for all x,y € H and A, pu € [0, 1]

with A\ +p=1;
(c¢) If {zn} is a sequence in H such that x, — x, it follows that

limsup ||z, — y||* = limsup [z, — x| + [lz — y|*, vy € H.
n—00 n—00

Lemma 2.4 ([36, Lemma 2.5]). Let H be a real Hilbert space. Given a nonempty
closed convez subset of H and points x,y,z € H and given also a real number a € R,
the set

{veC:lly—vl® <llz —v|* + (2,v) +a}
is convez (and closed).

Lemma 2.5 ([36, Lemma 2.6]). Let C' be a nonempty subset of a Hilbert space
H and S : C — C be an asymptotically k-strict pseudocontractive mapping in the
intermediate sense with sequence {y,}. Then

n n 1
1572 = §™yll < = (klle = yll + V(1 + (1 = B)y)llz — yl? + (1 = k)en)
forallz,y € C andn > 1.

Lemma 2.6 ([36, Lemma 2.7]). Let C' be a nonempty subset of a Hilbert space H
and S : C' — C be a uniformly continuous asymptotically k-strict pseudocontractive
mapping in the intermediate sense with sequence {vn}. Let {xn} be a sequence in C
such that ||zn — Tpt1]| = 0 and ||zn, — S™2zp|| = 0 as n — co. Then ||z, —Sxy| — 0
as n — oo.

Lemma 2.7 (Demiclosedness principle [36, Proposition 3.1]). Let C' be a nonempty
closed convex subset of a Hilbert space H and S : C' — C' be a continuous asymp-
totically k-strict pseudocontractive mapping in the intermediate sense with sequence
{"}. Then I — S is demiclosed at zero in the sense that if {x,} is a sequence
in C' such that x,, — = € C' and limsup,,_, ., limsup,,_, ||zn — S™xzy,|| = 0, then
(I —S)x=0.

Lemma 2.8 ([36, Proposition 3.2]). . Let C' be a nonempty closed convex sub-
set of a Hilbert space H and S : C — C be a continuous asymptotically k-strict
pseudocontractive mapping in the intermediate sense with sequence {v,} such that

Fix(S) # (0. Then Fix(S) is closed and convex.

Remark 2.9. Lemmas 2.7 and 2.8 give some basic properties of an asymptoti-
cally k-strict pseudocontractive mapping in the intermediate sense with sequence
{7 }. Moreover, Lemma 2.7 extends the demiclosedness principles studied for cer-
tain classes of nonlinear mappings in Kim and Xu [23], Gornicki [22], Marino and
Xu [26] and Xu [40].
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Lemma 2.10 ([33, p.80]). Let {an}5>;, {bn}o2, and {0,}02, be sequences of non-
negative real numbers satisfying the inequality

ant1 < (14 0n)an + by, VYn > 1.
If Y0 0p <00 and Y o2 by < 00, then lim, o0 ay, exists. If, in addition, {an}7o

has a subsequence which converges to zero, then limy, . a, = 0.

Corollary 2.11 ([39, p. 303]). Let {an}32, and {b,}32, be two sequences of
nonnegative real numbers satisfying the inequality
nt+1 < ap + by, Vn >0.
If ZZO:O b, converges, then lim, oo a, exists.
Recall that a Banach space X is said to satisfy the Opial condition [32] if for any

given sequence {x,} C X which converges weakly to an element x € X, there holds
the inequality

limsup ||z, — x| < limsup ||z, —y|, Yy e X, y#ux.

n—oo n—oo

It is well known in [32] that every Hilbert space H satisfies the Opial condition.

Lemma 2.12 (see [20, Proposition 3.1]). Let C be a nonempty closed convex subset
of a real Hilbert space H and let {x,,} be a sequence in H. Suppose that

Hxn+1 _p||2 < (1+>\n)||l'n_p”2+5n, Vpel, n>1,
where {\,} and {0, } are sequences of nonnegative real numbers such that > > | A, <

oo and Y7 0, < 00. Then {Poxy} converges strongly in C.

Lemma 2.13 (see [27]). Let C' be a closed convexr subset of a real Hilbert space
H. Let {x,} be a sequence in H and w € H. Let ¢ = Pou. If {xn} is such that
ww(zy) C C and satisfies the condition

[2n —ull < [lu—gq||, for all n,
then x, — q as n — o0.

Let {T},}>2, be an infinite family of nonexpansive self-mappings on C and {\,, }72
be a sequence of nonnegative numbers in [0, 1]. For any n > 1, define a self-mapping
W,, on C as follows:

Un,n+1 = I,
Un,n — AnTnUn,nJrl + (1 - )\n)Ia
Un,n—l = )\n—lTn—lUn,n + (1 - An—l)-[p

(2.2) Unk = MTkUn g1 + (1= )1,
Unji—1 = Me—1Th—1Up s + (1 — Mg—1) 1,

Un2 = XTUy3+ (1 — X)I,
W, = Un,l = )\1T1Un72 + (1 — )\1)].

Such a mapping W,, is called the W-mapping generated by T,,T,_1,...,71 and
)\na )‘n—la s 7)‘1-

\
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Lemma 2.14 (see [31, Lemma 3.2]). Let C' be a nonempty closed convex subset of
a real Hilbert space H. Let {T,,}5° ; be a sequence of nonexpansive self-mappings on
C' such that N2 Fix(T,,) # 0 and let {\,} be a sequence in (0,b] for some b € (0,1).
Then, for every x € C and k > 1 the limit lim,, o, Uy, px exists.

Lemma 2.15 (see [31, Lemma 3.3]). Let C be a nonempty closed convex subset of
a real Hilbert space H. Let {T,}5°, be a sequence of nonexpansive self-mappings
on C such that N0 Fix(T,,) # 0, and let {\,} be a sequence in (0,b] for some
be (0,1). Then, Fix(W) =N Fix(T},).

Lemma 2.16 (see [19, Demiclosedness principle]). Let C' be a nonempty closed
convez subset of a real Hilbert space H. Let T be a nonexpansive self-mapping on C
with Fix(T) # 0. Then I —T is demiclosed. That is, whenever {x,} is a sequence in
C weakly converging to some x € C' and the sequence {(I —T)xzy} strongly converges
to some vy, it follows that (I —T)x =y. Here I is the identity operator of H.

Lemma 2.17. Let A : C — H be a monotone mapping. In the context of the
variational inequality problem the characterization of the projection (see Proposition

2.1 (i)) implies
ueVI(C,A) & u=PFPo(u—NAu), VA>0.
The following lemma can be easily proven, and therefore, we omit the proof.

Lemma 2.18. Let f : H — H be an l-Lipschitzian mapping with constant | > 0,
and F : H — H be a k-Lipschitzian and n-strongly monotone operator with positive
constants k,n > 0. Then for 0 < vl < un,

(WF =7 f)e = (uF = f)y,x —y) > (un =)z —yl*, Va,y € H.
That is, uF' — ~vf is strongly monotone with constant un — .

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce
some notations. Let A be a number in (0,1] and let © > 0. Associating with a
nonexpansive mapping T : C — C, we define the mapping 7% : C — H by

Tz := Tx — \uF(Tx), Yz eC,

where F': H — H is an operator such that, for some positive constants x,n > 0, F
is k-Lipschitzian and n-strongly monotone on H; that is, F' satisfies the conditions:

IFz — Fy|| < 6lla —yll and (Fz - Fy,z—y) > nla -yl
for all x,y € H.

Lemma 2.19 (see [41, Lemma 3.1]). T is a contraction provided 0 < yu < i—;?,- that
18,
1Tz — Ty < (1= A7)llz —yll, Va,yeC,

where 7 =1 — /1 — p(2n — ux2) € (0, 1].

Remark 2.20. (i) Since F' is k-Lipschitzian and n-strongly monotone on H,
we get 0 < n < k. Hence, whenever 0 < pu < %, we have 7 = 1 —

V1= pu(2n— pr?) € (0,1].
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(ii) In Lemma 2.19, put F' = %I and p = 2. Then we know that Kk =n = %, 0<
u:2<i—gz4and7':1.

Finally, recall that a set-valued mapping T : D(T) € H — 2¥ is called monotone
if for all z,y € D(T'), f € Tx and g € Ty imply

A set-valued mapping 7T is called maximal monotone if 7" is monotone and (I +
AT)D(T) = H for each A > 0, where I is the identity mapping of H. We denote
by G(T') the graph of T. It is known that a monotone mapping 7' is maximal if
and only if, for (z, f) € H x H, (f — g,z —y) > 0 for every (y,g) € G(T') implies
f€Tx. Let A: C — H be a monotone, k-Lipschitz-continuous mapping and let
Ncwv be the normal cone to C at v € C| i.e.,

Nev={we€ H : (v—u,w) >0, Vue C}.
Define
- Av+ Neov, ifveC(,
Tv= { 0, itvdC
Then, T' is maximal monotone and 0 € T'v if and only if v € VI(C, A); see [5].

3. STRONG CONVERGENCE THEOREM

In this section, we will prove a strong convergence theorem for an iterative algo-
rithm for finding a common element of the set of solutions of the set of solutions
of finite generalized mixed equilibrium problems, the set of solutions of finite vari-
ational inequalities for inverse strong monotone mappings and the set of common
fixed points of infinite nonexpansive mappings and asymptotically x-strict pseudo-
contractive mapping S : C — C in the intermediate sense in a real Hilbert space.
This iterative algorithm is based on the extragradient method, viscosity approxima-
tion method, Mann-type iterative method, shrinking projection method and hybrid
steepest-descent method.

Theorem 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let M, N be two integers. Let O be a bifunction from C x C to R satis-
fying (A1)-(A4) and ¢y, : C — R U {400} be a proper lower semicontinuous and
convez function, where k € {1,2,...,M}. Let By : H — H and A; : C — H be
wr-inverse strongly monotone and n;-inverse-strongly monotone, respectively, where
ke {1,2,...,M}, i € {1,2,...,N}. Let S : C — C be a uniformly contin-
wous asymptotically k-strict pseudocontractive mapping in the intermediate sense
for some 0 < k < 1 with sequence {v,} C [0,00) such that lim, oo vyn, = 0 and
{en} C [0,00) such that limy,_oo ¢, = 0. Let {T,,}32, be a sequence of nonexpan-
sive self-mappings on C' and {\,} be a sequence in (0,b] for some b € (0,1). Let
F : H — H be a k-Lipschitzian and n-strongly monotone operator with positive
constants k,m > 0. Let f : H — H be an [-Lipschitzian mapping with constant
[ >0. Let 0 < p < i—g and 0 < vl < 7, where 7 = 1 — /1 — pu(2n — pk?). As-
sume that 2 := N2, Fix(T,) N NIL, GMEP( 6y, ¢k, Br) N NY,VI(C, 4;) N Fix(9)
is nonempty and bounded and that either (B1) or (B2) holds. Let Wy, be the W -
mapping defined by (2.2), and {an},{Bn} and {6,} be sequences in (0,1) such that
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an+ 6Bp <1 (Vn > 1), limyyeoan, =0 and k < 9, < d < 1. Pick any xg € H
and set C; = H, x1 = Po,xo. Let {x,} be a sequence generated by the following
algorithm.:

(

Uy = T£5g7¢M)(I T(@M 1LPM— 1)

, - TMJZBM) TM—1,n ( - 74M—1,nBM—1)
TP = B,

z2n = Po(l — ANnAN)Po(I — AN—10AN-1)
. Pc(I - )\QmAQ)Pc(I - )\LnAl)un,

kn = 0nzn + (1 — 6,)S"2p,

Yn = anVf(@n) + Brkn + [(1 = Bp) ] — anpuFIWyky,

Cri1 = {2 € Cn : |lyn — 2|” < [lzn — 2[1* + 0.},

Tnt+1 = Po, 100, YN >0,

where 0, = (an+7n) [no+cno, Tn = sup{||lzn —pl> +[|(vf —nF)pl* : p € 2} < o0,
and o = m < 00. Assume that the following conditions are satisfied:

(i) 0 <liminf,, o By < limsup,,_,. Bn < 1;
(ii) {Nin} Clas, bi) € (0,2m;), Vie {1,2,...,N};
(iii) {Tk,n} C lek, fx] € (0,2ug), VE € {1,2,...,M}.
Then the following statements hold:
(I) {zn} converges strongly to v = Poxo;
(IT) {zn} converges strongly to v = Pgxo, which is a unique solution in 2 to the
VIP

<(1UJF_’7f)U7U_U>ZO’ VUEQ,

provided vy, + ¢n, = 0(an) and ||zy, — yn|| = o(am).

Proof. We divide the proof into four steps.

Step 1. We show that {z,} is well defined. It is obvious that C,, is closed and
convex. As the defining inequality in C), is equivalent to the inequality
(2(@n = yn), 2) < llzal® = ynll? + n,

by Lemma 2.4 we know that C,, is convex for every n > 1.
First of all, we show that 2 C C,, for all n > 1. Put

O _ _
A% = T =i BT = iy nBi) -+ T = v By
forall k € {1,2,...,M} and n > 1,
Al = Po(I = NinAi)Po(I — Ni—1nAi_1) - Po(I — Mo A2)Po(I — A nAy)

for all i € {1,2,...,N} and n > 1, and A2 = A% = I, where I is the identity
mapping on H. Then we have that u, = AMxz, and 2z, = ANu,. Suppose that
2 C C, for some n > 1. Take p € 2 arbitrarily. Then from (2.1) and Proposition
1.1 (iii) we have

lun = pll = TSP = rag Bar) Ay ey — TP = ragn Bar) Ay

TM,n TM,n

< U = raraBan) AY " — (I = s Ba) AN p)
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< 1Ay e — AN |
(3.2) < e

< HAgxn - A?LPH

= [lzn —pl-

Similarly, we have

lzn =Pl = [IPc(l - /\N,nAN)AnN Y — Po(I = AvnAn) 477l
< I = AvpAn) 47 (I AN AN)AY ]
< At — A
(3.3) < ..
< Apan — Anp|
= |lun —p.
Combining (3.2) and (3.3), we have
(3-4) 1z = pll < llzn —pl|-
By Lemma 2.3 (b), we deduce from (3.1) and (3.4) that
lkn = 2l* = [10n(zn = p) + (1 = 8a)(S"20 — p)|I?
= Onllzn _pH2 + (1= 6,)[15"2n _pH2 = 0n(1 = dn)llzn — S"zn||2
< nllzn = plI* + (1= 82)[(1 + 7n)llzn =PI + kll2n — Sz + €]
(3.5) (1 = 60|20 — S"2n|?
= [L4+ (1 —=6dn)lllzn — p”2 + (1= 6n)(k = dn)llzn — SnanZ
+(1 —dpn)cn

(L + )20 = plI* + (1 = 00) (k — bn)l|2n — S™2nl|* + cn
(L+7n)llzn = pII* + cn.
Taking into account that {a,,} and {f,} are sequences in (0,1) and o, + B, < 1,
we get ap /(1 — Bn) < 1 for all n > 1. Then by Lemmas 2.2 and 2.19 we deduce
from (3.4), (3.5) and 0 < I < 7 that
lyn =plI* = llany(f(z0) = uFp) + Balkn — p) + (L = Ba) I — cnptF)Wiky
—((1 = Bu)I — anMF)WanQ

= llany(f(zn) = f(p)) + Bn(kn — p) + (1 = Bu)] — cnppF) Wk,

—((1 = Bo)I = anpF)Wop + an(1f (p) — uFp)|?

IN A

< Nlewy(f(@n) = f(p)) + Bn(kn —p) + (1 = Bu) I — anpuF)Wiky,
_((1 - /Bn)l - O‘nNF)Wnp”2 + 2an<7f( ) — uEp,yn _p>
Oln,
< ot en) = FO 4 Bullbn =l (1= 8| (I = 25 1F ) Wk
(1= 725 ) Wl + 20001 = nE )l o]
< fanlllzn = pll + Ballkn = pll + (1 = B) (1 = 75 )l = pI?

— B
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+oun([|(vf = nE)pl* + llyn — pI?)

< anTl|@n = pll + Bullkn — pll + (1 = B — an) ||y _pH]2
+an(|(vf = wF)pl* + [lyn — pII*)

= [anTllzn — pll + (1 = an7)||kn — pl|]
+an(|(vf = wF)pll* + llyn — pl?)

< ontllzn — pl* + (1= anT)|[kn — pl1?
+an(|(vf = wF)pll* + llyn — pl1?)

< anTlan = pl* + (1 — ant) (1 + yn)llzn — plI* + cn)
+on(|(vf = nF)pl* + llyn — pII?)

< apTllTn — pH2 + (1 = anm) (1 + ) 20 — p”2 + ¢n)

+an(|(vf = wF)pll* + llyn — pl1*)

= |lzn — p||2 + (1 = anT)vnllrn — p||2 + (1 —anT)en
+an(|(vf = wF)pl* + llyn — pl?)

< (L+)llen = plI* + o + an(l(vf = nF)pl* + [lyn — pI?),

which hence yields

147 «
a2 < n 2 n — LF)pl2
I =2l < T o = 9l + T = Pl + e
an""}’n) 9 7% 2
(1 T e = ol + T2 0f = wF)plP + = e
Oén—l-’}’n) 0 Qn+In 2
1+ 22T gy, — T (yf — pF
< (1T e = ol + TG = eF)pl + e
Qy + 7,
(3.6) = len =1+ F——"(llzn — plI* + |(v.f — nF)pl*) + Cn
l1—a, 1—ay,
< lzn = plI? + (an + w)olllzn — pI* + | (vf = uF)pl?) + ocn
< Hxn_p||2+(an+7n)FnQ+ch

|zn — p||2 + On,

where 0, = (i +vn) Ino+cno, In = sup{[lan —p|*+[|(vf —pF)p|* : p € 2} < oo,
and o = 1 < oo (due to {a,} C (0,1) and lim, oo o, = 0). Hence

1—sup,>; an

p € Cpy1. This implies that 2 C C, for all n > 1. Therefore, {x,} is well defined.

Step 2. We prove that ||z, — k,|| = 0 as n — oo.
Indeed, let v = Ppzg. From x, = Pc,z¢ and v € 2 C C),, we obtain

(3.7) [0 = zol| < [lv — zo-

This implies that {x,} is bounded and hence {u,},{z,},{kn} and {y,} are also
bounded. Since x4 € Cpy1 C C,, and x,, = Pg, xo, we have

[2n = zoll < l|#nt1 —2oll, Vn =1
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Therefore lim,, o0 [Ty — 20| exists. From =z, = Po,xo, Tny1 € Chy1 C Cy, by
Proposition 2.1 (ii) we obtain

2041 = 2]|* < |20 — Zpal|” = 20 — znlf?,

which implies
(3.8) Tim o1 — ] = 0.
It follows from @41 € Cpy1 that ||yn — zns1]|? < ||z — nt1|* + 65, and hence
< 2(|len = Taga P + 2041 — yall?)
< 2(||n - $n+1H2 + lzn — xn+1”2 + 0n)
= 2(2[|zn — wn-ﬁ-lHZ + On).
From (3.8) and lim,,—0, 6, = 0, we have

(3.9) nh—>Holo |z — ynl = 0.

20 — ynll?

Also, utilizing Lemmas 2.2 and 2.3 (b) we obtain from (3.1), (3.4) and (3.5) that

[y _pH2 = |lan(vf(zn) — pFEWykn) + Bn(kn — p) + (1 = Bn) (Wikn — p)||2
< 1Bulkn = p) + (1= Ba) (Wakn — )|
+2an (v f(zn) — pEWpkn, yn — p)
Bnllkn — p”2 + (1 = Bu) Wik, *p||2 = Bn(1 = Bn)llkn — Wnkn||2
+2an |7 f(2n) — pEWakn||[|yn — pl|
Bnllkn — pH2 + (1 = Bu)llkn — p”2 = Bn(1 = Bn)lkn — Wnkn”2
+200 |7 f(2n) — pE Wk |||y — pl|
= llkn = pI* = Bu(1 = Bu)[kn = Wakn|?
+2an || f (zn) — pEWnknl|llyn — pl|
(1 +n)ll2n — p”2 + cn — Bn(l — Bn)llkn — Wnan2
+2an|[vf (@n) = pEWnka|l[|lyn — pl|
< (I +)lzn _PH2 +¢n = Bn(1 = Bn)llkn — WnanQ
+2a0||v f(2n) — pEWnkn|[|lyn — pl,
which leads to
Bl = Ba)llkn = Waknl> <z = plI” = llyn — plI* +nllzn — oI
+en + 20m 7 f (@n) — pEWnknll||yn — pl
20 = yall (120 = oIl + lyn = 2ID) + allzn — Pl
+en + 2an |V f (20) — pEWnkn||[lyn — p-

Since limy, 00 @ = 0, limy, 00 v = 0 and lim,,—, o ¢, = 0, it follows from (3.9) and
condition (i) that

(3.10) lim ||y — Wik = 0.
n—oo

IN

IN

N

IN

Note that
Yn — kn = an(vf(2n) — MFWnkn) + (1 = Bn) Whkn — kn)a
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which yields

|zn — ynH + ”yn — k|l

|Zn = Ynll + llan(vf(zn) — nFEWikpn) + (1 = Bn) (Wakn — ku) ||

|zn — ynll + anllvf(2n) — pEWnkp|| + (1 = B)|Whkn — kn|
|Zn = ynll + anllVf(2n) — pEWykn|l + [[Wnkn — En|.

|zn — kn”

VAN VANRVANN VAN

So, from (3.9), (3.10) and lim,_,cc oy, = 0, we get
(3.11) nh_}n;o |zn — kn|| = 0.

Step 3. We prove that ||z, — uy| = 0, ||un — zn|| = 0, ||zn — Wz,|| — 0 and
|zn — S"zn|| = 0 as n — oo.
Indeed, from (3.4) and (3.5) it follows that
lkn —2l* < (L4701 =)z — 2l
(3.12) +(1 = 6)(k = 60|20 — S"zn|* + (1 — 8,)en
< ||Zn_p||2+7n||zn_p“2+cn
< ”zn_pH2+7nH$n_pH2+Cn-

Next we prove that

(3.13) lim ||AFz, — AF g =0, k=1,2,..., M.

n—o0

For p € F, it follows from (2.1) that

Az, —pl® = TP = rpn Be) Ay — TP (T — 1y By )|
< (I = rrnBr) Ay ey — (I = i n Bi)pl|?
(3.14) < lAE = plI® + k(e — 20) | Be Ay 2 — Bpl?
< lwn = plI® + o (P — 20) | Br AL 2 — Bipl®.

By (3.2), (3.3), (3.12) and (3.14), we obtain

Hkn_sz Hzn_pHQ‘i"Yonn _p”z"“cn
|t — pH2 + Yol Tn — pH2 +Cn

1Ak 2, — pl? + yullzn — pl|® + cn

IA N INIA

|Zn — p||2 + Tkﬂ"b(rk,n - Z,Uk)HBkAZ_lxn - Bk:pH2
+7n||$n - pH2 + cn,
which implies that

Thon (20 = Thon) | BRAY 20 — Bipl® < ln = pl* = [[kn — pI|?
+7n||«77n - p”2 + Cn
< Nan = kall(lzn = pll + 1k — pll)

Yalln — B + cn.
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Since {rgn} C [ex, fi] C (0,2u%),k € {1,2,..., M}, limp_yo0 7 = 0, limy, 00 ¢ =0
and (3.11), we have

(3.15) lim ||BrAF 'z, — Bip| =0, k=1,2,..., M.
n—oo
By Proposition 1.1 (iii) and Lemma 2.3 (a) we have
1Ak e, = pl* = (TP = g Br) AL g = TAOW (I = 1y By )|

< (I = rinBi) Ab Yoy — (I = 13,0 Bi)p, Al z, — p)

1 _

5(”(1 — 1 Be) ANz, — (I = 7y, Bi)pl|* + || Ak 2y, — p?
_H(I - rk,an)AzilgUn - - Tk,an)p - (Alrixn - p)”Q)
1 _

5(“4‘2 Yo, = p|? + | Ak 2, — p|?

_"Aﬁilxn - Afﬂfn - Tk,n(BkAﬁilxn - ka)Hz),

IN

which implies that
1A%z, —pl* < (AN 20— pl
_HAqlfLilxn - Afzxn - rk,n(BkAﬁilxn - ka)H2
= (1A% = pl® 1A% 2 — Ajaal® = 17| Be AN w0 — Bl

(3.16) +27‘k7n<Aﬁ_lxn — AFz, B ARy, — Byp)

< | AE e, = plf? — | AF e, — Al P
+2rp | A, — AR, ||| Be AR e, — By
< lon —pl? = |4 2y, — Al |2

427 || AR, — AR, ||| Br AR 2, — Bypl|.
Combining (3.12) and (3.16), we have

||kn_pH2 Hzn_p||2+7n||xn_pH2+cn

[un = plI* + Ynllzn — plI* + cn

||Aol§xn _pH2 + Ynllzn — p||2 +cn

lzn = pl> = | AR 2 — Ay
2l AN 2y — Al ||| BeA ™ 2, — Bp|

+’7n”xn - p||2 + cp,

IN AN AN IA

which implies

[AF 2 — Afan|? < o — 2l = kn = pII* + 27kl AF
_AﬁwnHHBkAﬁ_lxn — Bypl| + vallzn — pH2 +cn
< Nz = Eall(|zn = pll + ke = 2l)

+2rp | A e, — AR, ||| Be AR e, — By
+'7onn - pH2 + cn.
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From lim,, 00 7, = 0, lim;, o0 ¢, = 0, (3.11) and (3.15), we know that (3.13) holds.
Hence we obtain

zn —unll = HAngﬁn - AnMan
< HA?an - Aiﬂjnn + HAilxn - Aixnn
(3.17) 4o | AM Ay, — AM g |

— 0 asn — oo.

Next we show that lim,, oo || A;A%u, — Aip|| =0, i =1,2,..., N. It follows from
(2.1) that

145 un — pI?

| Po(I — NinAi) AS Yy, — Po(I — N Ad)p||?

(T = XinAi) A5 un = (I = Xin Ad)pl|?

A5 = plI* 4+ Nin(Nin — 2m0) [ Ai Ay, — Agpl|®

[tn = pII* 4+ i (Ao — 200)[| Ai A}, — Aip]?

20 = PII* 4 Ain(Nin — 2m0) [|Ai ALy — A,
3.18), we have

(3.18)

IN N CIA A

Combining (3.12) and
[k — IUH2

—~

|25 _pH2 + Ynllzn _pHZ +Cn

||/1§1un _pH2 + Ynllzn — p||2 +cn

l2n = pI* + X Nign = 200) | Ai Ay i — Agp|?
+ynllzn — plI” + cn,

ININA A

which implies

X (20 = Ni) | Ai Ay — Aipl|? 2 = pI* = [[kn = pII* + yallzn — 2l + e
[n = Enll(lzn — pIl + kn — plI)

+nllzn — p”2 + Cn.

From {\;,} C [a;,b;] C (0,2m;),i € {1,2,...,N}, limy 300y, = 0, limy,_yo0¢p, =0
and (3.11), we obtain

(3.19) lim |A; A5y, — Agpl| =0, i=1,2,...,N.

<
<

By Proposition 2.1 (iii) and Lemma 2.3 (a), we obtain
AL = pl? = [[Pe(I = Xipndi) A un = Po(I = AinAi)pl|?
< (T = Xin A A — (T = Xin Ai)p, Ayun — p)
ST = N A AL — (T = N A+ | A —
(T = A A Ay gy — (I = Xin Ai)p — (Aun — D)%)

1. . .

< U un = pl* + (1450 = pII?
— 1A — A tn = Nin (Ai T — Aip)[?)
1 ,

< 5 llun =PI + [ 45 un — pl?

|| AL My — Ay — Ni (A AL u, — Aip) [|7)
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e R
_HAiL_lun - Afmun - )‘i,n(AiAiz_lun - A,-p)||2),
which implies
[Aun = pl* < New = plI? = 47w — Ajun = N (A un — Aip)|®
2 = pII* = 14 un = Al = A2 Ai A — Aip|?
(3.20) F2 0 (A gy, — Al gy, A AL My, — Aip)
< an = pl? = 145 i — A
+2)‘i,n||/1;iz_1un - A;LUHH HAiAiz_lun — Aip||.
Combining (3.12) and (3.20) we get

1kn —pII> < llza =21 + Ynllzn — plI* + cn
< H/lﬁlun—pHQ—i—’ynHa:n—sz—i—cn
<l = plP = (145 — Afyun?

F2N [l AL gy, — Al ||| As AL, — Ap|
+Yallzn = pl* + cn,
which implies
145 un = Al < 2w = pl* = [|kn = pl|?
F2Xi 0145 g — Ajunl[[| A A7 un — Aspl|
+ynllzn = plI* + cn
20 — Enll(lzn — Il + [[kn — plI)
+2>\i,n\|/1il_1un — AL ||| A AL, — Asp|
+nllZn _pH2 + ¢n-

IN

From (3.11), (3.19), limy, 00 ¥ = 0 and lim,, o ¢, = 0, we have

(3.21) lim Ay, — Abug|| =0, i=1,2,...,N.
From (3.21) we get
[tn = 20l = ”A?zun_/lﬁ[unu
(3.22) < ||A9L“n - A}z“nH + HA}zun - Aiun” t+-t HAnN_lun - Ag“nn

— 0 asn— oo.
By (3.17) and (3.22), we have

|20 — 2ol < 20 — unll + [Jun — 20|

(3.23) — 0 asn— oo.
From (3.8) and (3.23), we have

lzn+1 — 2ol < llznt1 — Tnpall + |01 — ol + |70 — 20|
(3.24) —0 asn— oo.
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By (3.11), (3.17) and (3.22), we get
Ikn = 2l < Nk — 2nll + |20 — unll + [lun — 2|
(3.25) — 0 asn — oo.

We observe that

kpn—zn=(1—=06,)(S"2n — 2n)-
From 6,, < d < 1 and (3.25), we have
(3.26) lim ||S"z, — z,|| = 0.

n—oo

We note that
18" 2 — A I Zn|l + ll2n — zn41l]
Hlznir = 8" zppall + 15" 21 — 8" ).
From (3.24), (3.26) and Lemma 2.5, we obtain
(3.27) lim |87z — Stz = 0.
On the other hand, we note that
120 — Szall < |20 — S"2nl| + 1720 — S Lz || + 1S 2, — Sz
From (3.26), (3.27) and the uniform continuity of S, we have
(3.28) lim ||z, — Sz, =0.

n—oo

In addition, note that
l2n = Wanll < lzn = Kall + |k — Wakn || + [[Wikn — Wy || + [[Wkp, — W, ||
< 2llzn = knll + |k — Waknl|| + ([Wakn — Wky||.
So, from (3.10), (3.25) and [43, Remark 3.2] it follows that
(3.29) lim ||z, — Wz,| =0.

n—oo

Step 4. We prove that x, = v = Poxg as n — .

Indeed, since {x,} is bounded, there exists a subsequence {z,,} which con-
verges weakly to some w. From (3.13) and (3.21)-(3.23), we have that Aﬁiajni —
w, Ay u,, — w and z,, — w, where k € {1,2,..., M} and m € {1,2,..., N}. Since
S is uniformly continuous, by (3.28) we get lim,_, ||z, — S 2, || = 0 for any m > 1.
Hence from Lemma 2.7, we obtain w € Fix(S). In the meantime, utilizing Lemma
2.16, we deduce from (3.29) and z,, — w that w € Fix(W) = N Fix(T},). Next,
we prove that w € NN_, VI(C, A,,). Let

~ A, v+ Nov, veC,
va_{ @, U¢C7

where m € {1,2,...,N}. Let (v,u) € G(T},). Since u—Amv € Nov and A™u, € C,
we have

(v — AT Up,u — Apv) > 0.
On the other hand, from AM'u,, = Po(I — )\m,nAm)A%”_lun and v € C, we have

(v — A7 Un, A, — (Ag_lun - )‘m,nAmAnm_lun» > 0,
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and hence .
Ay, — A Ly, _
ntn = Tn U0y g, Am 1un)> > 0.

>\m,n

m
<v — A U,

Therefore we have

(v — AU, u) > (v — AT U, Apv)
> (v — A U, Av)
Ay, — (A7 Ly,
—<U _ Anmiuni, n; i ( n; M + Am/lnm;luni>
)\m,ni
= (v— Anmiuni, Anv — Am/lnmium)
(v — A U, A AT, — Am/lz_lun)
Moy — (A Ly,
—<v — Ay, S "’>
>\m,ni
-1
> (v— Aty A A, — A A3 Un, )

m m—1
—(v = A up,, .

)\m,ni

From (3.20) and since A,, is uniformly continuous, we obtain that
limy, o0 || Am AT Uy — Ay AT Ly, || = 0. From A U, — w, {Ama} C [@m,bm] C
(0,21m,), Vm € {1,2,..., N} and (3.20), we have

(v—w,u) > 0.
Since Tvm is maximal monotone, we have w € T,;lo and hence w € VI(C, A,),
m = 1,2,..., N, which implies w € NN_,VI(C, A,,). Next we prove that w €

MM GMEP( 6, ¢k, Bx). Since Arg, = Tﬁgf’@k)(l - rk,an)Afl_lxn,n > 1,k €
{1,2,..., M}, we have

Ok(ALan, y) + ¢r(y) — pr(Aray)
1
+ <BkAﬁ_1$n7y - Alrixn> + 7,7<y - Aﬁxm A,k;.%'n - Aﬁ_lxn> 2 0.
k,n
By (A2), we have
_ Ak B Ak—l _ Ak
1
+ K<y - Aﬁxm Aﬁxn - Aﬁ_lxn> > Qk(y, Aﬁxn)
N
Let 2z =ty + (1 — t)w for all t € (0,1] and y € C. This implies that z; € C. Then,
we have
(2t — AFzp, Brz) > on(AFz,) — o)
+<Zt — Aﬁxn, Bkzt> — <Zt — Aﬁmn,BkAﬁ_lmn>
_<Zt — Ak gy, Ann = Ayl
Tkn
(3.30) = cpk(AlfL:cn) — @i (2zt) + (2 — Aﬁxn, Bz — BkAfon>

> + O(zt, Aﬁxn)
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k k k—1
+(zt — Afxy, B Ay xy, — B Ay xy)
k
—<zt — Al xp,

+ O (21, AF zy,).

By (3.13), we have ||ByAFz, — BLA¥'z,|| — 0 as n — co. Furthermore, by the
monotonicity of By, we obtain (z; — AFz,,, Bpz; — By AFz,) > 0. Then, by (A4) we
obtain

Af;xn — Aﬁ_lxn>

Tkn

(3.31) (2t — w, Brzt) > pr(w) — ¢r(2t) + Ok(zt, w).
Utilizing (A1), (A4) and (3.31), we obtain
0 = Olat, 2t) + prlzt) — pr(2t)
< Ok(z,y) + (1= 1) Oz, w) + tor(y) + (1 — t)op(w) — @r(z)
< t[Ok(2t,y) + r(y) — pr(z)] + (1 = t){2t — w, Brzt)
= t[O(zt,y) + oY) — pr(z)] + (1 = )ty — w, Brzy),
and hence

0 < O(2t,y) + r(y) — r(z) + (1 = 1)(y — w, Bze).
Letting t — 0, we have, for each y € C,

0 < Op(w,y) + ¢r(y) — ¢r(w) + (y — w, Byw).

This implies that w € GMEP(6y, ¢k, By) and hence w € N GMEP( 6, px, By).
Consequently, w € 2 = N>, Fix(T,,) NNM GMEP( O, ¢k, Br) NN _, VI(C, Ap) N
Fix(S). This shows that wy(z,) C 2. From (3.7) and Lemma 2.13 we infer that
T, — v = Ppxg as n — oo.

Finally, assume additionally that ~, + ¢, = o(a,,) and ||z, — yn| = o(ay,). Note
that

i >1 & pn>1—+/1— p(2n — ps?)
& V1—p@2n—ps?) >1—
& 1—2un+pPk® > 1 —2un + pPn?
o k2>
& K>

It is clear that

(WF =)z = (uF —vfy,x —y) = (un — )|z — y||*, Va,y € H.

Hence by Lemma 2.18 we deduce from 0 < vl < 7 < un that uF —~f is (un — ~l)-
strongly monotone. In the meantime, it is easy to see that puF — v f is (ux + l)-
Lipschitzian with constant px 4yl > 0. Thus, there exists a unique solution p in 2
to the VIP

(uF =~f)pu—p) 20, Vuel.
Consequently, we deduce from (3.9) and x,, = v = Poxg (n — o0) that

limsup((vf — uF)p, yn — p)
n—oo
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limsup(((v.f — uF)p, v — p) + {(vf — pF)p, Yn — Tn))

n—0o0

limsup((vf — uF)p, zn, — p)

n—o0

((vf = pF)p,v —p) <0.

Furthermore, by Lemmas 2.2 and 2.19 we conclude from (3.1), (3.4) and (3.5) that

”yn - pH2 = Han'Y(f(xn) - qu) + ﬁn(kn —p) + ((1 - 5%)1 - O‘n/‘F)Wnkn
((1 - 671)[ - Oén,UF)Wanz
= Han’Y(f(mn) - f(p)) + 671( n — ) ((1 Bn) - anﬂF)Wnkn
—((1 = Ba)I = aqpuF)Wop + an(vf(p) — nFp)||?
< “O‘HV(f(xn) - f(p)) + Bn( n — ) (( - ﬁn) - an/JF)Wnkn
—((1 = Ba)I = anpFYWop||? + 200 (v f = pF)p, yn — p)
Qp
< [0l @) = @I+ Bullb =2l + (1= )| (1 = 2 ) Wk
o, 2
—(I— . Bn:UJF)Wnp H + 2an((vf = pF)p, yn — p)
_ 2
< Jowrtllan =l 4 allhn =l + (1= ) (1= 125 ) Ik =l
+2an<(7f pE)p, yn — p)
_ 2
= JantZzn — pll + Bullkn — Pl + (1~ B )l — ]
+2an<(7f pE)p, yn — p)
- 2
= _anT?”l'n _pH + (1 - anT)Hkn _pH + 2an<(’7f - MF)pvyn - p>
O e I
< ant g llzn = plI" + (1 = anT)|[kn — p|
20, ((vf — pF)p, yn — p)
2
< a0 o — plP + (1= aur) (14 ) ln = Bl + €2)
200 ((Vf — 1F)p, yn — )
(71)2 2 _ 2
< an—llzn = plI" + (1 = an7)lzn —p|
+(1 - OénT)('Vn”xn _pH2 + Cn)
20 ((Vf — F)p, yn — )
2 2
= (1= a0 — ol vl — ol + e
20, ((vf = pF)p, yn — p),
and hence
= (y1)° e —pl? < lzn =PI = llyn = pI* | dnllen = pII* + co
T O, Qy,

+2((vf = uF)p, yn — p)
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[#n — ynll
< "l = pll + lyn — pl)
n
+c
+ 2 (o — I + 1)
o
+2((vf = nF)p,yn — p).
Since v, + ¢, = o(an), ||Tn — ynl| = o(ay,) and z,, — v = Pgxy, we infer from (3.32)
and 0 < vl < 7 that as n — oo
2 2
75— (7l
=00, e <0
That is, p = v = Ppxg. This completes the proof. O

Corollary 3.2. Let C' be a nonempty closed convexr subset of a real Hilbert space
H. Let © be a bifunction from C x C to R satisfying (A1)-(A4) and ¢ : C —
R U {400} be a proper lower semicontinuous and convex function. Let B : H — H
and A; : C — H be (-inverse strongly monotone and n;-inverse-strongly monotone,
respectively, for v =1,2. Let S : C' — C be a uniformly continuous asymptotically
k-strict pseudocontractive mapping in the intermediate sense for some 0 < k < 1
with sequence {y,} C [0,00) such that lim, 00y = 0 and {c,} C [0,00) such
that limy,_yoo ¢, = 0. Let {T,,}52, be a sequence of nonexpansive self-mappings
on C and {\,} be a sequence in (0,b] for some b € (0,1). Let F : H — H be
a k-Lipschitzian and n-strongly monotone operator with positive constants k,n >
0. Let f: H — H be an l-Lipschitzian mapping with constant | > 0. Let 0 <
u < 2—727 and 0 < vl < 7, where 7 = 1 — \/1—u(217—,u/£2). Assume that (2 =
N>, Fix(T,,) " GMEP(6O, ¢, B) N VI(C, A2) N VI(C, A1) N Fix(S) is nonempty and
bounded and that either (B1) or (B2) holds. Let W,, be the W-mapping defined by
(2.2), and {an},{Bn} and {0y} be sequences in (0,1) such that oy, + By, <1 (Vn >
1), limy, ooty =0 and k < 6, < d < 1. Pick any xo € H and set C1 = H, x1 =
Po,xo. Let {z,} be a sequence generated by the following algorithm:

O(un, y) + ©(y) — ¢(un) + (Bxn,y — un)

(Y = tn, up — 20) >0, VyeC,
2n = Po(l — Ao nA2)Po(I — A nAv)un,
kn = 6pzn + (1 — 0,)S™2p,
Yn = an Y f(@n) + Bukn + [(1 = Bp)] — anpF Wik,
Cos1 = {2 € Cn: |lyn — 2| < lzn — 2[* + 60},
(Tn+1 = P, 120, V>0,

where 0, = (tn+Yn) Tno+cno, Tn = sup{||z,—pl>+||(vf —pF)p|? : p € 2} < o0,
and o = Tosup, =y an < O° Assume that the following conditions are satisfied:
(i) 0 < liminf,, o By < limsup,,_,. Bn < 1;
(i) {Nin} Clas, bi] € (0,2m;) fori=1,2;
(i) {ra} C [, f] C (0,20).
Then the following statements hold:

(I) {zn} converges strongly to v = Poxo;
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(IT) {xn} converges strongly to v = Pqxq, which is a unique solution in 2 to the
VIP
(WF =vflo,u—v) 20, Vue £,

provided v, + ¢, = o(ay,) and ||xy, — yn|| = o(am).

Corollary 3.3. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let © be a bifunction from C x C to R satisfying (A1)-(A4) and ¢ : C —
R U {+00} be a proper lower semicontinuous and convez function. Let B : H — H
and A : C — H be (-inverse strongly monotone and &-inverse-strongly monotone,
respectively. Let S : C — C be a uniformly continuous asymptotically k-strict
pseudocontractive mapping in the intermediate sense for some 0 < k < 1 with
sequence {y,} C [0,00) such that lim, oc¥, = 0 and {c,} C [0,00) such that
limy, oo ¢ = 0. Let {T,,}5°, be a sequence of nonexpansive self-mappings on C
and {\,} be a sequence in (0,b] for some b € (0,1). Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with positive constants k,n > 0. Let
f: H— H be an l-Lipschitzian mapping with constant | > 0. Let 0 < pu < i—g and
0 <Al <7, where 7 = 1 — /1 — p(2n — pk?). Assume that 2 = N, Fix(T,) N
GMEP(0, ¢, B)NVI(C, A) NFix(S) is nonempty and bounded and that either (B1)
or (B2) holds. Let Wy, be the W-mapping defined by (2.2), and {a,},{Bn} and
{0n} be sequences in (0,1) such that a,, + By, <1 (Vn > 1), lim, 00 a = 0 and
k<6, <d<1. Pickany xo € H and set C1 = H, x1 = Po,x9. Let {z,} be a
sequence generated by the following algorithm.:
f@(umy) +(y) — p(un) + (Bn,y — un)

+%<y_unaun_xn> 203 vyGC,
kn = 0nPo(I — pnA)un + (1 — 0,)S"Po(I — prnA)uy,
Yn = Oén')/f(xn) + Brkn + [(1 - /Bn)l - anﬂF]Wnkm
Cnt1={2€Cn: llyn — 21> < ||z — 2| + 6},
Tn+1 = £Cpyp 170, Vn > 0,

(3.33)

where 0, = (0 +vn) o+ cno, I = sup{||zn—p||* +[|(vf —pF)pl* : p € 2} < o0,

and o = m < 00. Assume that the following conditions are satisfied:

(i) 0 < liminf,, o Bn < limsup,,_,o OBn < 1;
(i) {pn} C la,b] C (0,2¢);
(iii) {rn} C [e, f] < (0,2¢).
Then the following statements hold:
(I) {zn} converges strongly to v = Poxo;
(I1) {zn} converges strongly to v = Pgxo, which is a unique solution in 2 to the
vIiP

(WE =~vflv,u—v) >0, Vue 2,
provided v, + ¢n, = 0(an) and ||zy, — yn|| = o(am).
4. WEAK CONVERGENCE THEOREM

In this section, we will prove a weak convergence theorem for another iterative
algorithm for finding a common element of the set of solutions of the set of solutions
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of finite generalized mixed equilibrium problems, the set of solutions of finite vari-
ational inequalities for inverse strong monotone mappings and the set of common
fixed points of infinite nonexpansive mappings and asymptotically x-strict pseudo-
contractive mapping S : C — C in the intermediate sense in a real Hilbert space.
This iterative algorithm is based on the extragradient method, viscosity approxi-
mation method, Mann-type iterative method and hybrid steepest-descent method.

Theorem 4.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let M, N be two integers. Let O be a bifunction from C x C to R satis-
fying (A1)-(A4) and ¢y, : C — R U {400} be a proper lower semicontinuous and
convex function, where k € {1,2,...,M}. Let By : H— H and A; : C — H be py-
inverse strongly monotone and n;-inverse-strongly monotone, respectively, where k €
{1,2,...,M}, i €{1,2,...,N}. Let S : C — C be a uniformly continuous asymp-
totically k-strict pseudocontractive mapping in the intermediate sense for some
0 < k < 1 with sequence {y,} C [0,00) and {cp} C [0,00). Let {T,}5°, be a se-
quence of nonexpansive self-mappings on C and {\,} be a sequence in (0,b] for some
be (0,1). Let F: H— H be a k-Lipschitzian and n-strongly monotone operator
with positive constants k,n > 0. Let f : H — H be an [-Lipschitzian mapping with
constant 1 > 0. Let 0 < p < i—g and 0 < vl <7, where =1 — \/1 — 1(2n — pK?).
Assume that 2 = ﬂleFiX(Tn)ﬂﬁlﬁ/leGMEP(Qk, Ok, Bk)ﬂﬁiJLVI(C, A;)NFix(S) is
nonempty and that either (B1) or (B2) holds. Let W,, be the W -mapping defined by
(2.2), and {an},{Bn} and {0, } be sequences in (0, 1) such that a,+ B, < 1 (¥n > 1)
and 0 < k+e€ <9, <d<1. Pick any x1 € H and let {x,} be a sequence generated
by the following algorithm:

Up = r(SfZ’@M)(I — TM,nBM)T7“(]§¥1Ti7@M71)(I —rM-1,nBr-1)
TP — ) By ),
n="PFPo(l = ANnANn)Pc(I — AN—1nAN—-1)
te Pc(I — )\27nA2)Pc(I — )\17nA1)’LLn,
K = Gnzn + (1 — 0,)S" 20,
(Znt1 = anVf(Tn) + Bnkn + [(1 = Bu)] — anuF|Wyky, Vn >0,

where {Xin} C [ai, b)) C (0,2m5), {rkn} C ler, fr] C (0,2u), i € {1,2,...,N}, k€
{1,2,...,M}. Assume that the following conditions are satisfied:

(i) 2opiqan <00, 3071 n <00 and 3507 ¢y < 00;
(ii) 0 < liminf, o Bn < limsup,, . fn < 1.

(4.1)

Then {z,} converges weakly to w = lim,_,o Poxy,.
Proof. First, let us show that lim,,_, ||z, — p|| exists for any p € 2. Put

Ak =T &#9(T — Tk,an)Tr(k@_k{ﬁ’%_l)(I — 11 Bro1) - TP — 1y, By ),
forall k € {1,2,...,M},n>1,
Al = Po(I — Xy A))Po(I — Ni—1nAi1) - Po(I — A\ A1)

foralli € {1,2,...,N},n > 1, A2 = A% = I, where I is the identity mapping on H.
Then we have that u,, = Aﬁ/f T, and z, = AﬁLV uy. Take p € §2 arbitrarily. Similarly
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to the proof of Theorem 3.1, we obtain that

(4.2) flup —pl < |lzn —pl,
(4.3) llzn —pl < lun —pll,
Abp —pl2 < 2 B B A1y _ Bl
[Anzn —plI" < lzn = plI" + ren(Then — 20) | Be Ay 20 — Bipll?,
(4.4) ke{l2,...
ANz —plI> < o —plI® — | A5 2 — Ay |?
+2rk,n||Ai€z_1xn - AZIEnHHBk:Ag_lxn — Byp||,
(4.5) k=1,2,...
A un = plI* <l — plI® + Nin(Nin — 2m) [ Ai Al — Apl|?,
(4.6) ie{l,2,...
A un —pl* <l = plI? = (| AL un — Alug ||
A2 145 — Al ||| A Al — Al
(4.7) ie{l,2,...

We observe that

lkn =PI = [1dn(zn —p) + (1 = 62)(S"2n — )|

2391

7M}7

= Onllzn — p||2 + (1= 0)[[5™ 20 — p||2 — 6n(1 = dn)ll2n — Snan2
< Snllzn — plI? + (1= 0)[(L+ )llzn — pII* + &ll2n — S"znll” + cn]

(4.8) —0n (1 — o) ||2n — S”anz
[1 + ’Yn(l - 571)]“271 - p||2
+(1 = 8,) (k= 0) 120 — S™zn||? + (1 = 6)en

VARVAN

(L +7m)ll2n = I* + cn.

(1 +vn)llzn — p||2 + (1= 6n) (K — 0n)l2n — Snang +cn

Taking into account that {ay,} and {f,} are sequences in (0,1) and o, + fn < 1,
we get apn /(1 — By) < 1 for all n > 1. Then by Lemmas 2.2 and 2.19 we deduce

from (4.2), (4.3) and (4.8) and 0 <l < 7 that

Tt — p”2 = lany(f(zn) = uFp) + Bu(kn —p) + (1 = Bu)I — anpF )Wk,

_((1 — Bu)I — anuF)WanQ

= |lany(f(zn) = f(P) + Bukn —p) + (1 = Bu)I — anpF) Wik,

_((1 - ﬁn) - anNF)Wnp + O‘n(’yf(p) :uF )||2

p)

< lawy(f@n) = F0)) + Bulkn =) + (L = Bu) = aupF)Woky
—((1 = Bp)I — appkF) np”2+2an< f(p) — pFp, xpy1 —
< [an vl @a) = FO) + Ballkin — ]

+(1 - ﬁn)

+F2a|[(vf = uF)pll[|zns1 — pl

<I— 1f”BnMF)Wnkn— <I— 1fﬁnuF)W

I
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IN

arlllzn =l + Bullb = pll + (1 = ) (1 = 7222 [k — 1]

1_671

+an(|(vf = pF)pl? + l2ns1 — plI?)

[enTln = pll + Bullkn = pll + (1 = B — ant) [ kn — p|l]?

+an(|(vf = pF)pl? + |2ns1 = pl?)

= [antllzn —pl + (1 = anr)|[kn — pl]?

+an(|(vf = pF)pl? + lzns1 — o)

ant||zn = pl* + (1 = cn)llkn — p|?

+an(|(vf = pF)pl? + |21 — plf)

ant||zn = pl* + (1 = an) (1 + ) 120 = plI* + ¢2)

+an(|(vf = pF)pl? + |2ns1 — pl?)

anT ||z _PH2 + (1 = anm) (1 + )l — pH2 + ¢n)

+an(|(vf = pF)pl? + lzns1 — o)

= |lzn - p||2 + (1 — anT)mllzn — p”2 + (1 — anT)ey
+an(|(vf = pF)pl? + |21 — plf?)

< (U w)llen = pl* + en + an(|(vf = wF)pl* + [2ns1 — pl?),

which hence yields

IN

IN

IN

IN

1+~ @
o2 < 2y e n - 2
|Zng1 — p||? < . lzn — pl|* + 1 —a, (v f — pwF)pl|” + T anCn
Qv +’7n 2 Qn 2
49 = (1+ T o - — el
(4.9) e |zn — p| +1_anll(vf pF)pl| i

< [1+ (an +)alllan — ol + anol|(vf — nF)p|l* + ocn,

Lemma 2.10 and condition (i), we have that lim, . ||z, — p|| exists. Thus {z,} is
bounded and so are the sequences {u,},{z,} and {k,}.
Also, utilizing Lemmas 2.2 and 2.3 (b) we obtain from (4.2), (4.3) and (4.8) that

|Zn+1 — pHQ = lan(vf(zn) — pFEWnkn) + Bn(kn — p) + (1 = Bn) Wikn — p)HQ
< Bnlkn = p) + (1 = Ba)(Wakn — p)|?
20 (7 f(20) — nFWykn, 2pni1 — p)
Bullkn — p||2 + (1 = Bn) [[Wikn — p”2 = Bn(1 = Bn)lkn — Wnkn”2
2007 f (#n) — pEWnknl|[|2nt1 = pl|
Brllkn — p||2 + (1 = Bn)lkn — pH2 — Bn(L = Bn)llkn — WnanZ
(4.10) +2an||vf (xn) = pEWnkn |21 — pl]
= |[lkn — p”2 = Bn(1 = Bl kn — WnanQ
207 (2n) = pEWnkn || 241 — pl]
(1 +n)ll2n — p||2 +cn = Bu(1 — Bn)llkn — Wnkn”2
+2an|[vf (@n) = pEWnkn ||| 2041 — pl|

where p = < o0 (due to {an} C (0,1) and lim,_o @, = 0). From

IN

IN



GME, VI AND COMMON FIXED POINT PROBLEMS 2393

< A +w)llzn - pHQ + cn = Bn(l = Bn)|lkn — WnanZ
+2an |7 f(2n) — pEWnkal|||2n+1 — Pl
which leads to
Bn(1 = Bn)kn — WnanQ < g, _pH2 —lzns1 — pH2 + Y llzn — p”2 tcn
+200||7 f(2n) — pFEWnkn||||lzn41 — p-

Since lim,, oo @y, = 0, lim, ooy, = 0 and lim,, oo ¢, = 0, it follows from the
existence of lim,_, ||z, — p|| and condition (ii) that

(4.11) ILm \\kn, — Wiky|| = 0.
Note that
Tpp1 — kn = an(Vf(20) — pFWiky) + (1 — Bn) Wikn — kn),
which yields
O‘nH’Vf(xn) - NFWnan + (1 - /Bn)HWnkn - kn”
anl|vf(zn) — nFWykn || + Wk — k|-
So, from (4.11) and lim,,—,~ o, = 0, we get
(4.12) nh_g)lo |Znt1 — kn| = 0.

|Tnt1 — knll <
<

In the meantime, we conclude from (4.2), (4.3), (4.8) and (4.10) that

Hxn-i-l _p||2 S ”kn _pH2 - 571(1 - /Bn)Hkn - Wnan2
+2an“7f($n) - MFWnk;nHHanrl - p”

< lkn = ol + 20n|7.f (20) — pFWaka || 201 — p]

< (T+v)llzn - pH2 + (1= 6n) (5 — 0n)ll2n — SnanQ tcn
+200 |7 f(2n) — pEWnkn||||lzns1 — p|

< (T +7n)llzn — p||2 + (1= dn)(k — 0n)l2n — Snzn”2 ten

+20u |7 f(2n) — pEWakn|l[|#n+1 — pll,
which together with 0 < k 4+ € <, < d < 1, implies that
(1 —d)ellzn — Snan2 < (1 =6n)(k—dn)ll2n — 5"Zn|!2
< o _pH2 — llzn+1 _pH2 + Y llzn — pH2 tcn
+2an || f(zn) — pEWnkn || 2n41 — pl|-

Consequently, from lim, o o, = 0, lim, ooy, = 0, lim, o c, = 0 and the
existence of lim,_,« ||z, — p||, we get
(4.13) lim ||z, — S"z,| = 0.

n—o0

Since kyp, — zp, = (1 — 8,,)(S" 2, — 2p), from (4.13) we have
(4.14) nlggl() |kn — zn|l = 0.
Combining (4.4) ) and (4.10), we have

lkn = plI? + 2007 f (2n) — WEWnkn|l|zn+1 — ol
10 = PI* + Anll2n = pII* + cn

, (4.8
|zni1 —plI* <
<
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+2an||7f($n) - /LFWnk’nHHanrl - p”

< Nlun = plPP + vallzn = plI* + ¢n
+2an|[vf (@n) — pEWykn||[|2nt1 — pll
< ||A1:an_pH2+’Yonn_p”2+cn
+2an || f(2n) — pEWpkn ||| 2n41 — pll
< an = plI? + e (ren — 20| BrAY @0 — Bipl|?

Fynllzn = Pl + en + 200 7 f (20) — pEWakp| |01 — pll,
which implies
Phon (20 — k) | BRAY @0 — Bpl® < [lzn = pl* = [[2ns1 — plf?
+YnllZn _pH2 +cn
+2an |7 f(2n) — pEWnkn|l|2n+1 — pI|-
From {ry,} C [ex, fr] C (0,2u1), k€ {1,2,..., M}, limy o0 oy = 0, limy, 00 v =
0, limy, o ¢, = 0 and the existence of lim,, o ||z, — pl|, we get

(4.15) lim || By Ay~ 2, — Bepl| = 0.

n—co
Combining (4.5), (4.8) and (4.10), we have
|zt = pI* < ([ ARzn = o + mllzn — pl* + cn
+200||v f(2n) — pEWnkn|[||zn41 — p|
< lzn = pll* = |47 20 — Al
+2rp | AR e, — AR ||| Br AR e, — Byp||
+nllzn — p||2 +cn + 2007 f(20) — LEWykn || |2041 — pll,
which implies
1Ay 0 — Al < o = pl? = @n1 — pl?
20| A5 — Afaa|l|BeAy 2 — By
+nllzn — p”2 + cn + 2007 f (@) — LWEWykn | |2041 — pl-

From (4.15), lim,, 00 ay = 0, limy, 00 7 = 0, lim,, o0 ¢, = 0 and the existence of
lim,, 0 ||z, — pl|, we obtain

(4.16) Jim AR g, — AFz =0, ke{l,2,...,M}.
From (4.16), we have
|zn —unll = HA%xn - Aﬂ”wn\l
< HAngn - A}zmnH + HA}%xn - Aian
(4.17) 4o | AM Ay — AM |

—0 asn — oo.
Combining (4.6), (4.8) and (4.10), we have
< |lkn _pH2 + 200 || f (7)) — nFEWhknl|| 201 — pl|
< lzn =2l + Yallzn — pI* + cn

|z n+1 — pII?
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+20n (|7 f () — pEWnkn ||| 2n41 — p||
< [ 4hun = pl* + 2 — 2l + cn
+2an v f(zn) — pEWnkn||[|l2n41 — pl|
< lwn = p”Q + Xin(Aign — 2772')”141‘/151_1%1 - Aip||2
+ynllzn — p||2 + e+ 2an ||V f(20) — pEWakn | [|2n41 — pll,
where i € {1,2,..., N}, which implies
N (205 = X[ A A g — AplP - < |z = 1 = [lenss — plf?
+nl|Tn — pH2 +cn
20|17 f (2n) — pEWnkn|ll| 201 — pl|-

From {\;n} C [ai, b)) C (0,21),4 € {1,2,..., N}, limy o0 @y = 0, limy o0 7 =
0, limy, o ¢, = 0 and the existence of lim,,_,« ||z, — p||, we obtain

(4.18) lim_ | A ALy, — Agpl| =0, i€ {1,2,...,N}.

3

Combining (4.7),

—

4.8) and (4.10), we get

|Tnt1 — pH2 < lkn _pH2 + 200 ||V f () — pEWpkn||[|2n1 — ||
< ||Zn_p”2+’)’n”zn_pu2+cn
+200||v f(2n) — pEWnkn|[||2n41 — p|
< AL =l + yullzn — pl* +en
+2an|[7f (#n) — pEWnkn||[|2n41 — pl|
<l = pl? = 145 un — Au?

F2Xin |45 g — Ajunl[[|Ai A un — Aipl|
+nllTn — P||2 +cn + 2007 f () — LEWykn || |2541 — pl,
which implies
”Afzilun - Aiun”2 < @, _pH2 — [|[Zn41 —p||2
+2)\i,nH/1;_1un — AﬁlunH HA,;Afl_lun — Aipl|
+Ynl|Tn _pH2 + cn + 2007 f (20) — LEWikn ||| 2041 — pl-

From (4.18), lim,, 00 @y = 0, limy_yo0 ¥ = 0, lim,, o0 ¢, = 0 and the existence of
lim;, o0 ||Zn, — p||, we obtain

(4.19) nler;O]A%_lun—A;un\\ =0, i€{l,2,...,N}.
By (4.19), we have
[un — 2all = HAgun - Aévun”
< HAgun - Aiun” + HA1];,,U’TL - AiunH
(4.20) oo AN T g, — AN ||

— 0 asn — oo.
From (4.17) and (4.20), we have

|20 — 2all < l2n — wnll + [Jun — 24|
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(4.21) —0 asn— oo.
By (4.14) and (4.21), we obtain

1kn — znll < ko — 2all + [|20 — 24|
(4.22) — 0 asn— oo,

which together with (4.12) and (4.22), implies that

[Zn+1 — 2zoll < [@ns1 — kull + ||kn — 20|

(4.23) —0 asn— oo,

On the other hand, we observe that

zn+1 = znll < 2041 = Tngall + |01 — Tol| + |20 — 2.
By (4.21) and (4.23), we have
(4.24) lim ||zp41 — 2| = 0.

n—oo
We note that

l2n = Szall < llzn = 2nrall + 201 = 8" 2n i |

+‘|Sn+1zn+1 o Sn+1zn” + Hsn+1zn _ SZnH
From (4.13), (4.24), Lemma 2.5 and the uniform continuity of S, we obtain
(4.25) lim ||z, — Sz,| = 0.
n—oo
In addition, note that
[kn = Wkl < |lkn = Waknll + [Wakn — Wk ||

So, from (4.11) and Remark 2.3 it follows that
(4.26) lim ||k, — Wky| = 0.
n—oo

Since {x,,} is bounded, there exists a subsequence {x,, } of {z,} which converges
weakly to w. From (4.21) and (4.22), we have that z,, — w and k,, — w. From
(4.25) and the uniform continuity of S, we have lim, 0 ||z, — S™2y| = 0 for any
m > 1. So, from Lemma 2.7, we have w € Fix(S). In the meantime, by (4.26) and
Lemma 2.16, we get w € Fix(W) = Ny, Fix(T},). Utilizing the similar arguments
to those in the proof of Theorem 3.1, we can derive w € ﬂﬂilGMEP(Qk, Yk, Br) N
NN, VI(C, A4;). Consequently, w € 2. This shows that wy,(x,) C £2.

Next let us show that w,(7,) is a single-point set. As a matter of fact, let {zy,,}

be another subsequence of {z,} such that z,, — w'. Then we get w’' € 2. If
w # w', from the Opial condition, we have

lim ||z, —w| = lim ||z, —w| < lim ||z, — |
n—oo 11— 00 71— 00
= lim ||z, — '] = lim [ w'||
n—oo j—o0
<

lim |z, —w|| = lim [z, —w].
—00 n—oo
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This attains a contradiction. So we have w = w’. Put v,, = Ppx,. Since w € 2, we
have (x,, — vy, v, —w) > 0. By Lemma 2.12, we have that {v,} converges strongly
to some wq € 2. Since {x,} converges weakly to w, we have

(w — wo, wp — w) > 0.
Therefore we obtain w = wg = lim,, o, Pox,. This completes the proof. Il

Corollary 4.2. Let C' be a nonempty closed convexr subset of a real Hilbert space
H. Let © be a bifunction from C x C to R satisfying (A1)-(A4) and ¢ : C —
R U {400} be a proper lower semicontinuous and convez function. Let B : H — H
and A; : C — H be (-inverse strongly monotone and n;-inverse-strongly monotone,
respectively, for v =1,2. Let S : C — C be a uniformly continuous asymptotically
k-strict pseudocontractive mapping in the intermediate sense for some 0 < k < 1
with sequence {v,} C [0,00) and {c,} C [0,00). Let {T,}2>, be a sequence of
nonexpansive self-mappings on C and {\,} be a sequence in (0, b] for someb € (0,1).
Let F': H — H be a k-Lipschitzian and n-strongly monotone operator with positive
constants k,n > 0. Let f : H — H be an l-Lipschitzian mapping with constantl > 0.
Let 0 < p < i—g and 0 < vl < 7, where 1 =1 — \/1 — u(2n — pk?). Assume that
2 =N Fix(T,,) NGMEP(O, ¢, B) N VI(C, A2) N VI(C, A1) NFix(S) is nonempty
and that either (B1) or (B2) holds. Let W,, be the W-mapping defined by (2.2),
and {an}, {Bn} and {6,} be sequences in (0,1) such that a, + B, <1 (Vn > 1) and
0<k+e<d,<d<1l. Pick any x1 € H and let {z,,} be a sequence generated by
the following algorithm:

O(un,y) + ¢(y) — ¢(un) + (Bn,y — tn)
(Y — tn, un — ) >0, VyeC,

(4.27) 2n = Po(l — XonA2)Po(I — A1 Ar)up,
kn = 0nzn + (1 — 6,)S™2p,
(1 = an Y f(xn) + Brkn + [(1 — Bn)] — anuFWyk,, Yn >0,
where {\in} C [ai,bi] C (0,2n;), {rn} Cle, f] C (0,2€) fori=1,2. Assume that
the following conditions are satisfied:

(i) 2opiq an <00, 3071 n <00 and 307 ¢y < 00;

(ii)) 0 < liminf,, o By < limsup,,_,.. Bn < 1.

Then {z,} converges weakly to w = lim,_,o Poxy,.

Corollary 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let O be a bifunction from C'x C to R satisfying (A1)-(A4) and ¢ : C — RU{+0o0}
be a proper lower semicontinuous and convex function. Let B: H — H and A : C —
H be (-inverse strongly monotone and &-inverse-strongly monotone, respectively.
Let S : C'— C be a uniformly continuous asymptotically k-strict pseudocontractive
mapping in the intermediate sense for some 0 < k < 1 with sequence {v,} C [0, 00)
and {cp} C [0,00). Let {T,}22, be a sequence of nonexpansive self-mappings on
C and {\,} be a sequence in (0,b] for some b € (0,1). Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with positive constants k,n > 0. Let
f+ H — H be an l-Lipschitzian mapping with constant | > 0. Let 0 < p < 21 and

K

0 <Al <7, where 7 = 1 — /1 — pu(2n — pr?). Assume that 2 = N, Fix(T,) N
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GMEP(6, ¢, B)NVI(C, A)NFix(S) is nonempty and that either (B1) or (B2) holds.
Let Wy, be the W -mapping defined by (2.2), and {an},{6n} and {,} be sequences
in (0,1) such that ap + B <1 (Vn >1) and 0 < k+¢€ <, < d < 1. Pick any
x1 € H and let {x,} be a sequence generated by the following algorithm:

O(un,y) + o(y) — @(un) + (BTn,y — un)
(4.28) +%(y—un,un—mn>20, Yy € C,
' kn = 6nPo(l — pnA)un + (1 — 6,)S"Po(I — prnA)uy,

Tn+1 = O‘n")/f(xn) + ﬁnkn + [(1 - Bn)I - anﬂF]Wnkna Vn Z 07

where {pp} C [a,b] C (0,28), {rn} C [e, f] C (0,2¢). Assume that the following
conditions are satisfied:

(i) Yool <00, Yol <00 and Y 2 cp < 00;
(ii) 0 < liminf,, o Bn < limsup,, . fn < 1.

Then {x,} converges weakly to w = limy, oo PoTy.
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