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the optimal solution of each sequence belonging to a larger set of minimizing se-
quences. Subsequently, some authors studied the Levitin-Polyak well-posedness for
convex optimization problems with functional constraints (Konsulova and Reval-
ski [19]), general constrained nonconvex optimization problems (Huang and Yang
[15]), general constrained vector optimization problems (Huang and Yang [16]) and
generalized variational inequality problems with functional constraints (Huang and
Yang [17]).

The notion of well-posedness for variational inequality problems was introduced
by Lucchetti and Patrone [27] based on the fact that an optimization problem of min-
imizing a function can be formulated as a variational inequality problem involving
the derivative of the objective. After that several researchers [10, 11, 12, 24, 23, 26]
have explored the forms of well-posedness for various forms of variational inequality
problems. Recently, Hu and Fang [11] studied LP well-posedness of a classical vari-
ational inequality problems. Huang [14] studied various types of LP well-posedness
for scalar and vector optimization problems with functional constraints with appli-
cations to the convergence analysis of augmented Lagrangian methods and penalty
methods for constrained scalar or vector optimization problems. Lalitha and Bhatia
[21] performed and extended parametric quasivariational inequality of the Stampac-
chia type, the study of well-posedness and generalized well-posedness to an opti-
mization problem with quasivariational inequality constraints. Fang and Hu [10]
considered notions of well-posedness for both Stampacchia and Minty variational
inequalities in terms of bifunction which were further extended for parametric quasi-
variational inequalities by Hu et al. [12]. Recently, Lalitha and Bhatia [20] proposed
the notions of LP well-posedness and LP well-posedness in the generalized sense,
for a parametric quasivariational inequality problem of the Minty type. Further,
they studied the metric characterizations of LP well-posedness and generalized LP
well-posedness, in terms of the approximate solution sets. In [25], Luc and Tan intro-
duced and studied the existence results for a general variational inclusion problem
with constraints which can deduce to the variational inclusion of Minty type (VIM).
Further, a parametric generalized quasivariational inequality of the Minty type (for
short GMVI) can be viewed as a special case for VIM. However, to the best of our
knowledge, there is no a result concerning the LP well-posedness for GMVI. It is
natural to raise and give an answer to the following conjecture :

Conjecture : Can one give some criteria and characterizations of the LP well-
posedness for GMVI ?

Inspired and motivated by researches going on this direction, the aim of this pa-
per is to give positive answers to the above question. We first give the notions of
Levitin-Polyak (LP) well-posedness and Levitin-Polyak well-posedness in the gen-
eralized sense, for a parametric generalized quasivariational inequality problem of
the Minty type. We establish some metric characterizations of well-posedness and
generalized LP well-posedness, in terms of the approximate solution sets. The paper
organization is described below.

In Section 2, the concept of LP well-posedness for a parametric generalized qua-
sivariational inequality problem of the Minty type and present metric characteriza-
tions for LP well-posedness in terms of the approximate solution sets is introduced.
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Under suitable conditions, including a compactness condition, it is shown that LP
well-posedness of the problem is analogous to the existence and uniqueness of its
solution. In Section 3, the notion of generalized LP well-posedness for parametric
generalized quasivariational inequalities possessing more than one solution is intro-
duced. We propose various characterizations for generalized LP well-posedness and
sufficient conditions for generalized LP well-posedness in this section.

The following well known notions for the set-valued maps are required throughout
the paper. For a set-valued map F : X ⇒ Y the domain of F, denoted by dom F,
is given as

domF = {x ∈ X : F (x) ̸= ∅}.

Definition 1.1. The set-valued map F is said to be

(1) upper semicontinuous (usc) at x ∈ dom F if for any open set U satisfying
F (x) ⊂ U, there exists a δ > 0 such that F (y) ⊂ U, for every y ∈ B(x, δ);

(2) lower semicontinuous (lsc) at x ∈ dom F if for any open set U satisfying
F (x) ∩ U ̸= ∅, there exists a δ > 0 such that F (y) ∩ U ̸= ∅, for every
y ∈ B(x, δ);

(3) closed at x ∈ dom F if for each sequence {xn} ⊆ X converging to x and
{yn} in Y converging to y such that yn ∈ F (xn), we have y ∈ F (x).

If S ⊆ X, then F is said to be usc (lsc, closed respectively) on the set S if F is
usc (lsc, closed respectively) at every x ∈ dom F ∩ S.

Remark 1.2. An equivalent formulation of Definition 1.1(ii) is as follows: F is said
to be lsc at x ∈ dom F if for each sequence {xn} ⊆ dom F converging to x and for
any y ∈ F (x), there exists a sequence {yn} in F (xn) converging to y.

Let A,B be two subsets of a metric space X. The Hausdorff distance between A
and B is defined as follows

H(A,B) = max{H∗(A,B), H∗(B,A)},
where H∗(A,B) = supa∈A d(a,B), and d(x,A) = infy∈A d(x, y).

2. LP well-posedness for the parametric generalized
quasivariational inequality problem of the Minty type

Let X be a nonempty closed subset of Rn and A be nonempty closed convex
subset of Rm. Let K1,K2 : X × Rm ⇒ Rm and T : X × Rm ⇒ Rm be set-valued
maps with K1,K2 being closed valued maps. We assume throughout that domK1

= domK2 = domT = X × Rm.
We consider the following the generalized quasivariational inequality problem of

the Minty type, corresponding to a parameter x̄ ∈ X.

(GMVI(x̄))

{
Find ū ∈ K1(x̄, ū) ∩A such that
⟨t, ū− v⟩ ≤ 0, ∀v ∈ K2(x̄, ū), ∀t ∈ T (x̄, v).

In [25], Luc and Tan studied the existence of solutions to the variational inclusion
of the Minty type, defined in terms of set-valued maps with nonempty values ϕ :
B × A × A ⇒ Z, T ′ : A × A ⇒ B , where X,Y, Z are Hausdorff topological vector
spaces and A ⊂ X,B ⊂ Y are nonempty sets. Let S1, S2 : A ⇒ A be set-valued
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maps with nonempty values. They considered the following variational inclusion of
Minty type;

(VIM)

{
Find ū ∈ S1(ū) ∩A such that
ϕ(t, v, ū) ⊆ ϕ(t, ū, ū) + C, ∀v ∈ S2(ū), ∀t ∈ T ′(v, v),

where ∅ ̸= C ⊂ Z is a cone. If Z = R, C = R+, Ki(x̄, ū) = Si(ū) for all i ∈
{1, 2}, T (x̄, v) = T ′(v, v) and ϕ(t, v, ū) = {⟨t, v − ū⟩} then (GMVI) is of the form
considered by Luc and Tan [25] in the same setting of spaces.

When K1 = K2 := K : X × Rm ⇒ Rm, the (GMVI) collapses to the quasivari-
ational inequality problem of the Minty type (MVI) corresponding to a parameter
x̄ ∈ X :

(MVI(x̄))

{
Find ū ∈ K(x̄, ū) ∩A such that
⟨t, ū− v⟩ ≤ 0, ∀v ∈ K(x̄, ū), ∀t ∈ T (x̄, v).

In [20], Lalitha and Bhatia introduced the notions of Levitin-Polyak (LP) well-
posedness and Levitin-Polyak well-posedness in the generalized sense, for (MVI).
They obtained some sufficient conditions for a family of such problems to be LP
well-posed at the reference point. In [12], Hu et al. considered a parametric Minty
variational inequality problem, defined in terms of a function h : X ×A× Y → R∪
{−∞,+∞}, where A is a nonempty subset of a Banach space Y , X is a parametric
Banach space and K : X × A ⇒ A is a set-valued map. The problem is to find
ū ∈ K(x̄, ū) ∩A such that

h(x̄, v, ū− v) ≤ 0, ∀v ∈ K(x̄, ū).

If the map T is single valued and h(x̄, v, ū− v) = ⟨t, ū− v⟩, then (MVI(x̄)) is of the
form considered by Hu et al. [12] in the same setting of spaces.

Let GM(x̄) denote the solution set of (GMVI(x̄)), that is,

GM(x̄) := {u ∈ K1(x̄, ū) ∩A : ⟨t, u− v⟩ ≤ 0, ∀v ∈ K2(x̄, u), ∀t ∈ T (x̄, v)}.
For δ, ε ≥ 0, define the set of approximation solutions for the problem (GMVI(x̄))
as

GM(x̄, δ, ε) :=
∪

x∈B(x̄,δ)∩X

{
u ∈ Rm : d(u,K1(x, u) ∩A) ≤ ε and ⟨t, u− v⟩ ≤ ε,
∀v ∈ K2(x, u),∀t ∈ T (x, v),

}
where B(x̄, δ) denotes the closed ball centered at x̄ with radius δ. Observe that

GM(x̄, 0, 0) = GM(x̄)

and

GM(x̄) ⊆ GM(x̄, δ, ε), ∀δ, ε > 0.

Next, we present the sufficient conditions ensuring the closedness of the approx-
imate solution set.

Proposition 2.1. If the following conditions hold:

(i) K1 is closed and K2 is lsc on X × Rm;
(ii) T is lsc on X × Rm;
(iii) A is a compact subset of Rm;

then GM(x̄, δ, ε) is closed, for all δ and ε > 0.
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Proof. Suppose that there exist δ, ε > 0 such that GM(x̄, δ, ε) is not closed. Then
there exists a sequence un ∈ GM(x̄, δ, ε) with un → u′ such that

u′ ̸∈ GM(x̄, δ, ε).

Since un ∈ GM(x̄, δ, ε), there exists a sequence xn ⊆ B(x̄, δ) ∩X such that

(2.1) d(un,K1(xn, un) ∩A) ≤ ε,

and

(2.2) ⟨t, un − v⟩ ≤ ε, ∀v ∈ K2(xn, un), ∀t ∈ T (xn, v).

Since B(x̄, δ) is compact, we can assume that

xn → x′ ∈ B(x̄, δ),

which further implies that x′ ∈ X, as X is closed. Since K1(xn, un) ∩A is a closed
set in Rm and from (2.1), we can choose zn ∈ K1(xn, un) ∩A such that

∥un − zn∥ ≤ ε, ∀n ∈ N.

Since A is compact, without loss of generality, we can assume that

zn → z′ ∈ A.

Since K1 is closed at (x′, u′), it follows that z′ ∈ K1(x
′, u′) and hence

(2.3) d(u′,K1(x
′, u′) ∩A) ≤ ∥u′ − z′∥ = lim

n→∞
∥un − zn∥ ≤ ε.

Next, since K2 is lsc at (x′, u′) and (xn, un) → (x′, u′), it follows that for any
v ∈ K2(x

′, u′) there exists a sequence vn ∈ K2(xn, un), such that

vn → v, as n → ∞.

By assumption (ii), we have T is lsc at (x′, v) and (xn, vn) → (x′, v), then it follows
that for any t ∈ T (x′, v), there exists a sequence tn ∈ T (xn, vn) such that

tn → t.

Taking limit as n → ∞ in (2.2), we have

(2.4) ⟨t, u′ − v⟩ ≤ ε, for all t ∈ T (x′, v).

By (2.3) and (2.4), we conclude that u′ ∈ GM(x̄, δ, ε), which leads to a contradiction,
therefore GM(x̄, δ, ε) is closed. □

In general, GM(x̄) ⊆ GM(x̄, δ, ε), ∀δ, ε > 0 and hence

GM(x̄) ⊆
∩

δ,ε>0

GM(x̄, δ, ε).

Next, we provide the sufficient conditions for the two sets to coincide.

Proposition 2.2. If the following conditions hold:

(i) K1 is closed and K2 is lsc on X × Rm;
(ii) T is lsc on X × Rm;
(iii) A is a closed subset of Rm,
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then ∩
δ,ε>0

GM(x̄, δ, ε) = GM(x̄).

Proof. Let ū ∈
∩

δ,ε>0GM(x̄, δ, ε). Hence, there exist two sequences {δn} and {εn}
in (0,∞) such that δn → 0, εn → 0 and

ū ∈ GM(x̄, δn, εn), for all n ∈ N.

Hence, for each n ∈ N, it follows that there exists a sequence xn ⊆ B(x̄, δn) ∩ X
such that

(2.5) d(ū,K1(xn, ū) ∩A) ≤ εn,

and

(2.6) ⟨t, ū− v⟩ ≤ εn, ∀v ∈ K2(xn, ū), ∀t ∈ T (xn, v).

Since K1(xn, ū) ∩ A is a closed set, it follows from (2.5) that we can choose un ∈
K1(xn, un) ∩A such that

(2.7) ∥ū− un∥ ≤ εn, for all n ∈ N,

Hence, one has

un → ū, as n → ∞.

Since K2 is lsc at (x̄, ū), and (xn, un) → (x̄, ū), it follows that, for any v ∈ K2(x̄, ū),
there exists a sequence vn ∈ K2(xn, un) such that

vn → v, as n → ∞.

Also, since T is lsc at (x̄, v) and (xn, vn) → (x̄, v), it is clear that, for any t ∈ T (x̄, v),
there exists a sequence tn ∈ T (xn, vn) such that

tn → t, as n → ∞.

On taking v = vn and t = tn in (2.6) and taking limit as n → ∞, we have ⟨t, ū−v⟩ ≤
0 and hence, ū ∈ GM(x̄). The proof is completed. □
Definition 2.3. Let {xn} be a sequence in X such that xn → x̄. A sequence {un}
is said to be an LP approximating sequence for (GMVI(x̄)) with respect to {xn}, if
there exists a positive sequence {εn} in R with εn → 0 such that, for each n ∈ N,

(i) d(un,K1(xn, un) ∩A) ≤ εn;
(ii) ⟨t, un − v⟩ ≤ εn, ∀v ∈ K2(xn, un) and ∀t ∈ T (xn, v).

Definition 2.4. The problem (GMVI(x̄)) is said to be LP well-posed if

(i) there exists a unique solution ū of (GMVI(x̄));
(ii) for any sequence {xn} converging to x̄, every LP approximating sequence

{un} with respect to {xn} converges to ū.

We now present a metric characterization for LP well-posedness in terms of the
behavior of the approximate solution set. We recall that the diameter of a nonempty
set A in Rm, is defined as

diam A := sup
a,b∈A

∥a− b∥.
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Theorem 2.1. Suppose that all conditions of Proposition 2.2 are satisfied. Then
(GMVI(x̄)) is LP well-posed if and only if

(2.8) GM(x̄, δ, ε) ̸= ∅, ∀δ, ε > 0 and diam GM(x̄, δ, ε) → 0 as (δ, ε) → (0, 0).

Proof. Suppose that the problem (GMVI(x̄)) is LP well-posed. Then it has a unique
solution ū ∈ GM(x̄) and hence

GM(x̄, δ, ε) ̸= ∅, ∀δ, ε > 0 as GM(x̄) ⊆ GM(x̄, δ, ε).

Assume, on the contrary, that diam GM(x̄, δ, ε) ↛ 0 as (δ, ε) → (0, 0). Hence,
there exist r > 0, a positive integer m, sequences δn > 0, εn > 0 with (δn, εn) →
(0, 0) as n → ∞, and un, u

′
n ∈ GM(x̄, δn, εn) such that

(2.9) ∥un − u′n∥ > r, ∀n ≥ m.

For each n ∈ N, as un, u′n ∈ GM(x̄, δn, εn), there exist {xn} and {x′n} which belong
to B(x̄, δn) ∩X such that

d(un,K1(xn, un) ∩A) ≤ εn, d(u′n,K1(x
′
n, u

′
n) ∩A) ≤ εn,

⟨t, un − v⟩ ≤ εn, ∀v ∈ K2(xn, un), ∀t ∈ T (xn, v)

and

⟨t, u′n − v⟩ ≤ εn, ∀v ∈ K2(x
′
n, u

′
n), ∀t ∈ T (x′n, v).

Since xn → x̄ and x′n → x̄, it follows that {un} and {u′n} are LP approximating
sequences for (GMVI(x̄)). Since (GMVI(x̄)) is LP well-posed, both the sequences
converge to the unique solution ū, which gives a contradiction with (2.9). Therefore,
we obtain diam GM(x̄, δ, ε) → 0 as (δ, ε) → (0, 0).

Conversely, let {xn} be a sequence in X converging to x̄ and {un} be an LP
approximating sequence with respect to {xn}. Hence, there exists a sequence {εn}
with εn → 0 as n → ∞ such that

d(un,K1(xn, un) ∩A) ≤ εn

and

(2.10) ⟨t, un − v⟩ ≤ εn, ∀v ∈ K2(xn, un), ∀t ∈ T (xn, v).

For each n ∈ N, putting δn = ∥xn−x̄∥, we have that δn → 0 as n → ∞. Furthermore,
we get that

un ∈ GM(x̄, δn, εn), for all n ∈ N.
Since diam GM(x̄, δn, εn) → 0 as (δn, εn) → (0, 0), it follows that {un} is a Cauchy
sequence in Rm. Since Rm is complete, we have {un} converges to a point ū ∈ Rm.
Since d(un,K1(xn, un) ∩ A) ≤ εn for each positive integer n, we can choose u′n ∈
K1(xn, un) ∩A so that

∥un − u′n∥ ≤ εn,

which further implies that u′n → ū. Since A is closed and K1 is a closed map on
X × Rm, it follows that ū ∈ K1(x̄, ū) ∩ A. Next, we will show that ū ∈ GM(x̄).
Suppose on the contrary ū ̸∈ GM(x̄), that is, there exist v̄ ∈ K2(x̄, ū) and t̄ ∈ T (x̄, v̄)
such that

(2.11) ⟨t̄, ū− v̄⟩ > 0.
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Since K2 is lsc at (x̄, ū) and (xn, un) → (x̄, ū), there exists a sequence vn ∈
K2(xn, un) such that

vn → v̄, as n → ∞.

Again, since T is lsc at (x̄, v̄) and (xn, vn) → (x̄, v̄), there exists a sequence tn ∈
T (xn, vn) such that

tn → t̄, as n → ∞.

Considering v = vn and t = tn in (2.10) and taking n → ∞, we have

⟨t̄, ū− v̄⟩ ≤ 0,

which leads to a contradiction (2.11). The uniqueness of ū follows from (2.8). □

Corollary 2.5. If the conditions of Theorem 2.1 hold then (GMVI(x̄)) is LP well-
posed if and only if GM(x̄) ̸= ∅ and

diam GM(x̄, δ, ε) → 0 as (δ, ε) → (0, 0).

We now give an example as an application of the metric characterization of LP
well-posedness.

Example 2.6. Let X = [−1, 1] and A = R. Define set-valued maps K1,K2 :
X × R ⇒ R and T : X × R ⇒ R as follows

K1(x, u) =

{
{0}, if u ≥ 0;
[0, |x|] if u < 0,

K2(x, u) =

{
{1}, if u ≥ 0;
[0, 1], if u < 0

and

T (x, u) =

{ {1

4

}
, if u ≥ 0;

[0, 1], if u < 0.

For x̄ = 0, the map K1 is closed on {x̄} ×R and T is lsc on {x̄} ×R. By definition
of K2, we have K2 is lsc but not closed. Indeed if we choose un = − 1

n → 0 and
sequence yn in K2(x̄, un) = [0, 1] which does not converges to 1, then limit point of
yn is not belong to {1} = K2(x̄, 0). Therefore K2 is not closed on {x̄} ×R. Next, it
can be observed that GM(x̄) = {0}. For ε > 0 and x ∈ B(x̄, δ) ∩X, for any δ > 0

{u ∈ R : d(u,K1(x, u) ∩A) ≤ ε} = [−ε, ε].

For every u ∈ [−ε, ε] and x ∈ B(x̄, δ) ∩X and any δ > 0, it can be seen that

⟨t, u− v⟩ ≤ ε, ∀v ∈ K2(x, u), ∀t ∈ T (x, v).

Hence it follows that GM(x̄, δ, ε) = [−ε, ε] and diamGM(x̄, δ, ε) = 2ε → 0 as ε → 0.
By Theorem 2.1, we canclude that the problem (GMVI(x̄)) is LP well-posed.

Next, we show that the assumptions of Theorem 2.1 cannot be dispensed as
indicated in the following examples.
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Example 2.7 (the lower semicontinuity of K2). Let X = [−1, 1] and A = R. Define
set-valued maps K1,K2 : X × R ⇒ R and T : X × R ⇒ R as follows

K1(x, u) = [0, 1], K2(x, u) =

{
{1}, if u ≥ 0;
f{0}, if u < 0

and

T (x, u) =

{ {1

2

}
, if u ≥ 0;

[0, 1], if u < 0.

For x̄ ∈ X, we see that K1 is closed on x̄ × R and T is lsc on x̄ × R but K2 is not
lsc because we can choose xn = 1

n , un = −1
n → 0 and for any y ∈ K2(x, 0) = {1},

we can not find sequence in K2(xn, un) = {0} which converges to y. Next, it can be
observed that GM(x̄) = [0, 1]. For ε > 0 and x ∈ B(x̄, δ) ∩X, for any δ > 0

{u ∈ R : d(u,K1(x, u) ∩A) ≤ ε} = [−ε, ε+ 1].

For every u ∈ [−ε, ε+ 1] and x ∈ B(x̄, δ) ∩X and any δ > 0, it can be seen that

⟨t, u− v⟩ ≤ ε, ∀v ∈ K2(x, u), ∀t ∈ T (x, v).

Hence it follows that GM(x̄, δ, ε) = [−ε, ε + 1] and diamGM(x̄, δ, ε) = 1 + 2ε → 1
as ε → 0. Then we conclude that the problem (GMVI(x̄)) is not LP well-posed.

Example 2.8 (the closedness of K1). Let X = [−1, 1] and A = R. Define set-valued
maps K1,K2 : X × R ⇒ R and T : X × R ⇒ R as follows

K1(x, u) =

{ [1
2
, 1
]
, if u ≥ 0;

[0, 1], if u < 0,

K2(x, u) = {1}, T (x, u) =
{1
2

}
.

For x̄ ∈ X, we see thatK2 is lsc on {x̄}×R and T is lsc on {x̄}×R butK1 is not closed
on {x̄} × R. Indeed we choose un = −1

n → 0 = u and yn = 0 ∈ K1(x̄, un) = [0, 1]

which converges to 0 but 0 ̸∈ K1(x, u) = [12 , 1]. Next, it can be observed that
GM(x̄) = [0, 1]. For ε > 0 and x ∈ B(x̄, δ) ∩X, for any δ > 0

{u ∈ R : d(u,K1(x, u) ∩A) ≤ ε} = [−ε, ε+ 1].

For every u ∈ [−ε, ε+ 1] and x ∈ B(x̄, δ) ∩X and any δ > 0, it can be seen that

⟨t, u− v⟩ ≤ ε, ∀v ∈ K2(x, u), ∀t ∈ T (x, v).

Hence it follows that GM(x̄, δ, ε) = [−ε, ε + 1] and diamGM(x̄, δ, ε) = 1 + 2ε → 1
as ε → 0. Then we conclude that the problem (GMVI(x̄)) is not LP well-posed.

Example 2.9 (the lower semicontinuity of T ). Let X = [−1, 1] and A = R. Define
set-valued maps K1,K2 : X × R ⇒ R and T : X × R ⇒ R as follows

K1(x, u) = [0, 1], K2(x, u) =

{
{1}, if u ≥ 0;
[0, 1], if u < 0

and

T (x, u) =

{
[0, 1], if u ≥ 0;{1

2

}
, if u < 0.
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For x̄ ∈ X, we see that K1 is closed on {x̄} × R and K2 is lsc on {x̄} × R but T
is not lsc on {x̄} × R. Indeed we choose sequence xn = 1

n → 0 and un = −1
n → 0

and choose y = 1 ∈ T (0, 0) = [0, 1], we can’t find some sequence in T (xn, un) = {1
2}

which converges to y. Next, it can be observed that GM(x̄) = [0, 1]. For ε > 0 and
x ∈ B(x̄, δ) ∩X, for any δ > 0

{u ∈ R : d(u,K1(x, u) ∩A) ≤ ε} = [−ε, ε+ 1].

For every u ∈ [−ε, ε+ 1] and x ∈ B(x̄, δ) ∩X and any δ > 0, it can be seen that

⟨t, u− v⟩ ≤ ε, ∀v ∈ K2(x, u), ∀t ∈ T (x, v).

Hence it follows that GM(x̄, δ, ε) = [−ε, ε + 1] and diamGM(x̄, δ, ε) = 1 + 2ε ̸→ 0
as ε → 0. Then we conclude that the problem (GMVI(x̄)) is not LP well-posed.

We give the relation between the LP well-posedness of the problem (GMVI(x̄))
with the existence and uniqueness of its solution as follows.

Theorem 2.2. If the conditions Proposition 2.2 hold and A is compact, then
(GMVI(x̄)) is LP well-posed if and only if it has a unique solution.

Proof. It is obvioused that if (GMVI(x̄)) is LP well-posed, then it has a unique
solution. Thus, we next prove the converse, assume that (GMVI(x̄)) has a unique
solution u′. Let {xn} be a sequence in X which converges to x̄. Let {un} be an LP
approximating sequence with respect to {xn}. Then there exists a sequence εn > 0
with εn → 0 such that

(2.12) d(un,K1(xn, un) ∩A) ≤ εn

and

(2.13) ⟨t, un − v⟩ ≤ εn, ∀v ∈ K2(xn, un), ∀t ∈ T (xn, v).

Using (2.12) and the closedness of K1(xn, un) ∩ A, for each positive integer n, we
can choose u′n ∈ K1(xn, un) ∩A so that

(2.14) ∥un − u′n∥ ≤ εn.

Since A is a compact set, the sequence {u′n} has a subsequence {u′nk
} which con-

verges to a point ū ∈ A. Using (2.14), we conclude that the corresponding sub-
sequence {unk

} of {un} converges to ū. We use the assumption in K1, it follows
that

ū ∈ K1(x̄, ū).

By similar argument as the proof in Theorem 2.1, we can show that

ū ∈ GM(x̄).

Consequently, ū coincides with u′. Again, by the uniqueness of the solution, it
is obvious that every possible subsequence converges to the unique solution u′ and
hence the sequence {un} converges to u′. Hence the LP well-posedness of (GMVI(x̄))
is satisfied. □

We are going to use the notions of measures of noncompactness in a normed
space Y := Rm for interpreting the equivalence between LP well-posedness and the
measure of the set of approximation solutions under suitable conditions.
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Definition 2.10. Let M be a nonempty subset of a metric space Y .
(i) The Kuratowski measure of M is

µ(M) = inf
{
ε > 0|M ⊆

n∪
k=1

Mk and diam Mk ≤ ε, k = 1, . . . , n, ∃n ∈ N
}
.

(ii) The Hausdorff measure of M is

η(M) = inf
{
ε > 0|M ⊆

n∪
k=1

B(xk, ε), xk ∈ X, for some n ∈ N
}
.

Daneš [6] obtained the following inequalities:

(2.15) η(M) ≤ µ(M) ≤ 2η(M).

The measures µ and η share many common properties and we will use γ in the
sequel to denote either one of them. γ is a regular measure (see [2, 30]), i.e., it
enjoys the following properties

(1) γ(M) = +∞ if and only if the set M is unbounded;
(2) γ(M) = γ(clM);
(3) from γ(M) = 0 it follows that M is totally bounded set;
(4) if X is a complete space and if {An} is a sequence of closed subsets of

X such that An+1 ⊆ An for each n ∈ N and limn→+∞ γ(An) = 0, then
K :=

∩
n∈NAn is a nonempty compact set and limn→+∞H(An,K) = 0,

where H is the Hausdorff metric;
(5) from M ⊆ N it follows that γ(M) ≤ γ(N).

Theorem 2.3. (i) If (GMVI(x̄)) is LP well-posed, then γ(GM(x̄, δ, ε)) → 0+

as (δ, ε) → (0+, 0+).
(ii) Conversely, if X is complete and the following conditions hold

(a) K1 is closed and K2 is lsc on X × Rm;
(b) T is lsc on X × Rm;
(c) A is a closed subset of Rm,

then GMVI(x̄) is LP well-posed, provided that γ(GM(x̄, δ, ε)) → 0+ as (δ, ε) →
(0+, 0+).

Proof. Let γ be the Hausdorff measure η (for the Kuratowski measure case the
argument is similar).

(i) Assume that (GMVI(x̄)) is LP well-posed. For any δ, ε in (0,∞), we have
GM(x̄) ⊆ GM(x̄, δ, ε), and hence

H(GM(x̄, δ, ε), GM(x̄)) = H∗(GM(x̄, δ, ε), GM(x̄)).

Let {un} be arbitrary sequence in GM(x̄). Then, of course, {un} is an LP approx-
imating sequence for (GMVI(x̄)), there is a subsequence convergent to some point
of GM(x̄). Therefore, GM(x̄) is compact. Consequently, for any ε > 0, there exist
z1, z2, · · · , zn, for some n ∈ N, such that

GM(x̄) ⊆ ∪n
k=1B(zk, ε),
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which gives that

GM(x̄, δ, ε) ⊆
n∪

k=1

B(zk, ε+H(GM(x̄, δ, ε), GM(x̄))).

Then,

γ(GM(x̄, δ, ε)) ≤ H(GM(x̄, δ, ε), GM(x̄)) + γ(GM(x̄)).

Since GM(x̄) is compact, we have γ(GM(x̄)) = 0. Thus, we obtain that

γ(GM(x̄, δ, ε)) ≤ H(GM(x̄, δ, ε), GM(x̄)).

Next, we claim that H(GM(x̄, δ, ε), GM(x̄)) → 0+ as (δ, ε) → (0+, 0+). Suppose
that there are ρ > 0, {(δn, εn)} → (0+, 0+) and {u′n} ⊆ GM(x̄, δn, εn) such that, for
all n ∈ N,

d(u′n, GM(x̄)) ≥ ρ.

Since {u′n} is an LP approximating sequence for (GMVI(x̄)), there is a subsequence
{u′nk

} converging to a point of GM(x̄) which leads to a contradiction. Hence, we

conclude that γ(GM(x̄, δ, ε)) → 0+ as (δ, ε) → (0+, 0+).
(ii) Suppose that γ(GM(x̄, δ, ε)) → 0+ as (δ, ε) → (0+, 0+). First, we will show

thatGM(x̄, δ, ε) is closed for all positive δ and ε. Let the sequence {un} inGM(x̄, δ, ε)
be such that un → u, as n → ∞. Then, for each n ∈ N, there is {xn} ⊆ B(x̄, δ)
such that
(2.16)

d(un,K1(xn, un) ∩A) ≤ ε and ⟨t, un − v⟩ ≤ ε, ∀v ∈ K2(xn, un), ∀t ∈ T (xn, v).

Since B(x̄, δ) is compact, we can assume that xn → x for some x ∈ B(x̄, δ). By
similar argument as the proof in Theorem 2.1, we have u ∈ K1(x, u) ∩A. Next, we
claim that, for all v ∈ K2(x, u) and t ∈ T (x, v),

(2.17) ⟨t, u− v⟩ ≤ ε.

Suppose that there is v ∈ K2(x, u) and t ∈ T (x, v) such that

(2.18) ⟨t, u− v⟩ > ε.

Since K2 is lsc at (x, u), there is vn ∈ K2(xn, un) such that vn → v. By using (b),
there is tn ∈ T (xn, vn) such that tn → t. By the continuity of ⟨·, ·⟩, we have

⟨tn, un − vn⟩ → ⟨t, u− v⟩.

Put ε′ = ⟨t, u− v⟩ − ε > 0, there is n0 ∈ N such that

|⟨t, u− v⟩ − ⟨tn, un − vn⟩| < ε′ for all n ≥ n0

This implies that

ε = ⟨t, u− v⟩ − ε′ < ⟨tn, un − vn⟩ for all n ≥ n0,

which leads to a contradiction with (2.16). Therefore, (2.17) is proved. Furthermore,
since x ∈ B(x̄, δ), we can conclude that u ∈ GM(x̄, δ, ε). Hence GM(x̄, δ, ε) is
closed. By Proposition 2.2, we get that∩

δ,ε>0

GM(x̄, δ, ε) = GM(x̄).
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Since γ(GM(x̄, δ, ε)) → 0+ as (δ, ε) → (0+, 0+), the regular measure properties of
γ imply that GM(x̄) is compact and

H(GM(x̄, δ, ε), GM(x̄)) → 0+ as (δ, ε) → (0+, 0+).

Finally, let {un} be an approximating sequence for (GMVI(x̄)) with respect to
a sequence {xn} converging to x̄. Hence, t here is εn → 0+ such that for all
v ∈ K2(xn, un), t ∈ T (xn, v) and for all n ∈ N,

⟨t, un − v⟩ ≤ εn,

which gives that un ∈ GM(x̄, δn, εn) with δn := d(x̄, xn). We see that

d(un, GM(x̄)) ≤ H(GM(x̄, δn, εn), GM(x̄)) → 0+.

Hence, there is ūn ∈ GM(x̄) such that d(un, ūn) → 0 as n → ∞. By the compactness
of GM(x̄), there is a subsequence {ūnk

} of {ūn} converging to a point ū ∈ GM(x̄).
Therefore, the corresponding subsequence {unk

} of {un} tends to ū. Hence GMVI(x̄)
is LP well-posed. The proof is completed. □

3. LP well-posedness in the parametric generalized sense for the
generalized quasivariational inequality problem of the Minty type

In many practical situations, the problem (GMVI(x̄)) may not always possess a
unique solution. Hence, in this section, we introduce a generalization of LP well-
posedness defined as follows.

Definition 3.1. The problem GMVI(x̄) is said to be LP well-posed in the general-
ized sense if

(i) the solution set GM(x̄) is nonempty;
(ii) for any sequence {xn} converging to x̄, every LP approximating sequence

{un} with respect to {xn} has a subsequence converging to some point of
GM(x̄).

Proposition 3.2. If GMVI(x̄) is LP well-posed in the generalized sense, then its
solution set GM(x̄) is a nonempty compact set.

Proof. Let {un} be any sequence in GM(x̄). Then, of course, it is an LP approxi-
mating sequence with respect to sequences xn := x̄ and εn := 1

n , for every n ∈ N.
The generalized LP well-posedness of GMVI(x̄) ensures the existence of a subse-
quence {unk

} of {un} converging to a point of in GM(x̄). Therefore, we conclude
that GM(x̄) is a nonempty compact set. The proof is completed. □

Next, we present a metric characterization for the generalized LP well-posedness
of (GMVI(x̄)) in terms of the upper semicontinuity of the approximate solution set.

Theorem 3.1. GMVI(x̄) is LP well-posed in the generalized sense if and only if
GM(x̄) is a nonempty, compact set and GM(x̄, ·, ·) is usc at (δ, ε) := (0, 0).

Proof. Assume that GMVI(x̄) is LP well-posed in the generalized sense it follows
that

GM(x̄) ̸= ∅
and using Proposition 3.2, we have GM(x̄) is compact. Next, suppose on the
contrary that GM(x̄, ·, ·) is not usc at (δ, ε) := (0, 0). Then there exist open set U
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containing GM(x̄, 0, 0) = GM(x̄) and sequences δn > 0 with δn → 0 and εn > 0
with εn → 0 such that

GM(x̄, δn, εn) ̸⊆ U.

Thus, there exists an LP approximating sequence, such that none of its subsequences
converges to a point of GM(x̄), which is a contradiction. Therefore, GM(x̄, ·, ·) is
usc at (δ, ε) := (0, 0).

Conversely, let {un} be an LP approximating sequence with respect to {xn}
converging x̄ as n → ∞. For each n ∈ N, let a sequence δn := ∥xn − x̄∥, we have

δn → 0 and un ∈ GM(x̄, δn, εn).

As GM(x̄, δ, ε) is usc at (δ, ε) = (0, 0) and GM(x̄) ̸= ∅, it follows that for every
α > 0,

GM(x̄, δn, εn) ⊆ GM(x̄) +B(0, α) for n sufficiently large.

Thus un ∈ GM(x̄)+B(0, α), for n sufficiently large and hence there exists a sequence
ūn ∈ GM(x̄) such that

(3.1) ∥un − ūn∥ ≤ α.

Since GM(x̄) is compact, there exists a subsequence {ūnk
} of {ūn} converging to

ū ∈ GM(x̄). From (3.1), we conclude that the corresponding subsequence {unk
} of

{un} converges to ū ∈ GM(x̄). Hence, GMVI(x̄) is LP well-posed in the generalized
sense . The proof is completed. □

The following example illustrates that the compactness assumption for the solu-
tion set can’t be relaxed in the previous theorem.

Example 3.3. Let X = R and A = [−1,∞). Define set-valued maps K1,K2, T :
X × R ⇒ R as follows

K1(x, u) =

{
[u, 1 + |x|], if u ≤ 1;
[1, 2u− 1], if u > 1,

K2(x, u) =

{
{1}, if u ≤ 1;
[0, 1], if u > 1

and

T (x, u) =

{
[0, 1], if u < 1;
{0}, if u ≥ 1.

For x̄ = 0, it can be observed that GM(x̄) = [−1,∞),

GM(x̄, δ, ε) = [−1− ε,∞)

and GM(x̄, δ, ε) is usc at (δ, ε) = (0, 0). The sequence {xn} where xn = 1
n converges

to x̄, the sequence {un} where un = n satisfies

d(un,K1(xn, un) ∩A) ≤ εn

and

⟨t, un − v⟩ ≤ εn, ∀v ∈ K2(xn, un), ∀t ∈ T (xn, v)

for every sequence εn with εn → 0. Thus {un} is an LP approximating sequence
for (GMVI(x̄)) but posseses no convergent subsequence, consequently (GMVI(x̄))
is not generalized LP well-posed.
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The following result illustrates the fact that generalized LP well-posedness of the
parametric quasivariational inequality ensures the stability, in terms of the upper
semicontinuity of the solution set.

Theorem 3.2. If (GMVI(x̄)) is LP well-posed in the generalized sense, then GM
is usc at x̄.

Proof. Suppose that M is not usc at x̄. Then there is an open set U containing
GM(x̄) such that for every sequence xn → x̄, there exists un ∈ GM(xn) such that
un ̸∈ U, for every n. Since xn → x̄, {un} is an LP approximating sequence for
(GMVI(x̄)) and none of its subsequences converge to a point of GM(x̄), hence we
have a contradiction to the fact that (GMVI(x̄)) is LP well-posed in the generalized
sense. □

It is easy to get that if GM(x̄, δ, ε) is usc at (δ, ε) = (0, 0), then

H∗(GM(x̄, δ, ε), GM(x̄)) → 0 as (δ, ε) → (0, 0).

The converse implication holds if GM(x̄) is a nonempty compact set. For more
details, refer to [13, 29]. Hence (GMVI(x̄)) is LP well-posed in the generalized
sense if and only if GM(x̄) is nonempty, compact and

H∗(GM(x̄, δ, ε), GM(x̄)) → 0 as (δ, ε) → (0, 0).

The proof of the following theorem is similar to that of Theorem 2.2

Theorem 3.3. If the conditions (i)-(iii) of Proposition 2.2 hold then GMVI(x̄) is
LP well-posed in the generalized sense if and only if the solution set GM(x̄) ̸= ∅.

Finally, in this section we provide sufficient conditions which ensure that the
generalized LP well-posedness in terms of upper semicontinuity of a particular type
of approximate solution set.

Theorem 3.4. If the conditions (i) and (ii) of Proposition 2.2 hold and if for each
x ∈ X there exists ε > 0 such that GM(x, ε, ε) is nonempty and bounded, then
(GMVI(x̄)) is LP well-posed in the generalized sense.

Proof. Let {xn} be a sequence in X with xn → x̄ and {un} be an LP approximating
sequence, with respect to {xn}. Then there exists a sequence εn > 0 with εn → 0
as n → ∞ such that

d(un,K1(xn, un) ∩A) ≤ εn

and

(3.2) ⟨t, un − v⟩ ≤ εn, ∀v ∈ K2(xn, un), ∀t ∈ T (xn, v).

Setting δn = ∥xn − x̄∥, we have

δn → 0 and un ∈ GM(x̄, δn, εn).

Let ε > 0 be the number such that GM(x, ε, ε) is nonempty and bounded. Then
there is a positive integer m such that

un ∈ GM(x̄, ε, ε) for all n ≥ m.



2416 R. WANGKEEREE AND P. YIMMUANG

This implies that {un} is bounded and hence, there exists a subsequence {unk
} of

{un} such that

unk
→ ū as k → ∞.

On taking the subsequence {unk
} in (3.2), we can show that ū ∈ GM(x̄) by Theorem

2.1. □
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[6] J. Daneš, On the Istrăţescus measure of noncompactness, Bull. Math. Soc. Sci. Math. R. S.
Roumanie (N.S.) 16 (1974), 403–406.

[7] F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Ann. Oper. Res. 175
(2010), 177–211.

[8] F. Giannessi, On Minty variational principle. in: New Trends in Mathematical Programming,
Applied Optimization, F. Giannessi, S. Komlsi, T. Rapcsak (eds.), vol. 13, Kluwer Academic,
Massachusetts, 1998, pp. 93–99.

[9] J. Hadamard, Sur les problmes aux drives partielles et leur signification physique, Princet.
Univ. Bull. 13 (1902), 49–52.

[10] R. Hu and Y. P. Fang, Parametric well-posedness for variational inequalities defined by bi-
functions Comput. Math. Appl. 53 (2007), 1306–1316.

[11] R. Hu and Y. P. Fang, Levitin-Polyak well-posedness of variational inequalities, Nonlinear
Anal. Theory Meth. Appl. 72 (2010), 373–381.

[12] R. Hu, Y. P. Fang and N. J. Huang, Characterizations of α-well-posedness for parametric
quasivariational inequalities defined by bifunctions Math. Commun. 15 (2010), 37–55.

[13] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory. Kluwer,
Dordrecht, 1997.

[14] X. X Huang, Levitin-Polyak well-posedness in constrained optimization, in: Recent Develop-
ments in Vector Optimization, Q. H. Ansari, J.C. Yao, (eds.), Springer-Verlag, Berlin, 2012,
pp. 329–366.

[15] X. X. Huang and X. Q. Yang, Generalized Levitin-Polyak well-posedness in constrained opti-
mization, SIAM J Optim. 17 (2006), 243–258.

[16] X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of constrained vector optimization
problems, J Global Optim. 37 (2007), 287–304.

[17] X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequal-
ity problems with functional constraints, J Ind Manag Optim. 3 (2007), 671–684.

[18] R. John, Variational inequalities and pseudomonotone functions: some characterizations, in:
Generalized Convexity, Generalized Monotonicity, J. P. Crouzeix, J. E. Martinez-Legaz, M.
Volle (eds.), Kluwer, Dordrecht, 1998, pp. 291–301.

[19] A. S. Konsulova and J. P. Revalski, Constrained convex optimization problems-well-posedness
and stability, Numer. Funct. Anal. Optim. 15 (1994), 889–907.

[20] C. S. Lalitha and G. Bhatia, Levitin-Polyak well-posedness for parametric quasivariational
inequality problem of the Minty type, Positivity 16 (2012), 527–541.



LP WELLPOSEDNESS FOR GENERALIZED QUASIVARIATIONAL INEQUALITY PROBLEM 2417

[21] C. S. Lalitha and G. Bhatia, Well-posedness for parametric quasivariational inequality problems
and for optimization problems with quasivariational inequality constraints, Optimization 59
(2010), 997–1011.

[22] E. S. Levitin amd B. T. Polyak, Convergence of minimizing sequences in conditional extremum
problems, Soviet Math. Dokl. 7 (1966), 764–767.

[23] M. B. Lignola, Well-posedness and L-well-posedness for quasivariational inequalities, J. Optim.
Theory Appl. 128 (2006), 119–138.

[24] M. B. Lignola and J. Morgan, Well-posedness for optimization problems with constraints de-
fined by variational inequalities having a unique solution J. Glob. Optim. 16 (2000), 57–67.

[25] D. T. Luc and N. X. Tan, Existence conditions in variational inclusions with constraints,
Optimization 53 (2004), 505–515.

[26] R. Lucchetti, Convexity and Well-Posed Problems, CMS Books in Mathematics, Springer, New
York, 2006.

[27] R. Lucchetti and A. F. Patrone, A characterization of Tyhonov well posedness for minimum
problems, with applications to variational inequalities Numer. Funct. Anal. Optim. 3 (1981),
461–476.

[28] G. J. Minty, On the generalization of a direct method of the calculus of variations, Bull. Am.
Math. Soc. 73 (1967), 315–321.

[29] N. S. Papageorgiou and N. Yannakakis, Second order nonlinear evolution inclusions II: struc-
ture of the solution set, Acta Math. Sin. (Engl. Ser.) 22 (2006), 195–206.
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