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ABSTRACT. The Jacobi pseudo-spectral method for the second order Volterra
integro-differential equations of the second kind is proposed in this paper. We
provide a rigorous error analysis for the proposed method, which indicates that

numerical errors (in the Lia‘ﬁ—norm and the L*°-norm ) will decay exponentially

provided that the source function is sufficiently smooth. Numerical examples are
given to illustrate the theoretical results.

1. INTRODUCTION

In practical applications one frequently encounters the second order Volterra
integro-differential equations of the second kind of the form

"

(1.1) y' (x) = a(z)y(z) + b(x)y () + c(x) + /Off K(x,s)y(s)ds, 0 <z <T

with the given initial condition y(0) = yo, y/(O) = y[/). Where the unknown function
y(x) is defined in 0 < x < T < oc0. a(x),b(z),c(x) are three given functions and
K (z,s) is a given kernel.

Equations of this type arise in the mathematical model of physical and biological
phenomena. Due to the wide application of these equations, they must be solved
successfully with efficient numerical methods. For these problems, many numerical
approaches can be applied directly, such as collocation methods, which have been
provided ([1,11]), Sine-collocation method see, e.g., [18] and references therein. But
the spectral collocation methods are similar to the finite-difference approach. It
makes use of values of interpolation points to present coefficients of expanded form
of the numerical solution, and as a result its computing scheme is complex and the
corresponding error analysis is tedious as it does not fit in a unified framework. So
to find a simple and efficient method is very meaningful for solving the VIDES.

In this paper, we propose a kind of novel algorithm for second order Volterra
integro-differential equations, which is called the pseudo-spectral method, and it
differs from the spectral-collocation method and has several advantages. Firstly,
Although both the pseudo-spectral method and the spectral-collocation algorithm
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possess the spectral accuracy, in the pseudo-spectral method, we put the approx-
imation scheme under the general inner product type framework and take advan-
tage of the property of orthogonal polynomials sufficiently, the results are that the
computing schemes of the pseudo-spectral method are more simple and the relevant
convergence theories, as will be seen from Sections 2,4, are cleaner and more reason-
able than those obtained in [9,10,16]. Secondly, compared with the finite-difference
method,etc., the pseudo-spectral method possesses high accuracy.

The paper is organized as follows. In Section 2, we introduce the Jacobi pseudo-
spectral approaches for the second order Volterra integro-differential equations (1.1).
Some preliminaries and useful lemmas are provided in Section 3. In Section 4, the
convergence analysis is given. We prove the error estimates in the L2 o5~ ROTI and
L*-norm. The numerical experiments are carried out in Section 5, Wthh will be
used to verify the theoretical results obtained in Section 4. The final section contains
conclusions.

2. JACOBI PSEUDO-SPECTRAL GALERKIN METHOD

In this section, we formulate the Jacobi pseudo-spectral schemes for problem
(1.1). For this purpose, Let wy 5 = (1 —£)*(1+1)” be a weight function in the usual
sense, for o, f > —1.J." B (t), k=0,1,..., denote the Jacobi polynomials. The set
of Jacobi polynomials {.J;} o o forms a complete L2, 5(—1,1)-orthogonal system.
Before using pseudo-spectral methods, we need to restate problem (1.1). The usual
way (see [6]) to deal with the original problem is: writing z(z) = y' (), z1(z) =

y (x), (1.1) is equivalent to a linear Volterra integral equations of the second kind
with respect to ¥, z, 21.

y() = o + /0 " 2(s)ds,

o) z(x) = yo +/0 z1(s)ds,

21(x) = yoa(x) + yob(w) + c(x)

+ [0 5)u(5) + al)a() + b2 5)ds.
0

For the sake of applying the theory of orthogonal polynomials conveniently, by the

linear transformation

T
,_TO+) | T(+r)
2 2

letting

u(t) = y(T(12+t> Z(Tl—i—t) (t)—z1<T(12+t)>,

g(t) = yoa<T(1+t) yob( 1+t) (M)

O N ] 2
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) = a(T(12m>,g(t):b<T(l2—m>, A=[-1,1]

—y0+/ T)dr, v(t —Z/o+/

(2.2) )
w(t) = g(t) + & /_ (R(tm)ulr) +ato(r) + K)o,

The weak form of (2.2) is to find u,v,w € LZJ&’B (A) x Liaﬁ (A) x LEJQYB(A), such that

(0080 = (w45 [ o(raro)
23) S (0P = (46 §/ (Pre)
(0000 = (0005 [ (Rit7ur) + 0000 + O wirar )

Vo, p,0 € L, (M) x L, (M) x L (A).

where (-, ')wa, 5 denotes the usual inner product in the L? o5 -Shace.

Now, let N be any positive integer and Py(A) be the set of all algebralc
polynomials of degree at most N. Obviously, the Jacobi polynomials Jj" (),
JEP (), ..., ISP (#) are the basis functions of Py (A).

Next, we denote the collocation points by {t;}, which is the set of (N+1) Jacobi
Gauss point. We also define the Jacobi interpolating polynomial IJO\‘,’B v € Pn(A),
satisfying

I3%(t) = v(t), 0<i < N.
It can be written as an expression of the form

N

(2.4) IPu(t) = > vt Fi(t),

1=0

where Fj(t) is the Lagrange interpolation basis function associated with the Jacobi
collocation points {t;}I¥,
Now we describe the Jacobi pseudo-spectral method. For this purpose, set 7 =
7(t,0) = 5 + 520, 0 € [-1,1]. We define that

25)  Mu(t) = / / (S )utr 0))a0,

(2.6) Mu(t) = / T)dT = / 5 Ju(7(t,0))do,

@7 Mut) = 2/_15(t)u(7)d72§[1< —gl)b(t)u(r(t,ﬁ))dﬁ,
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and

(Mu)(t) = g /_ R(t.ryulr)ar
1 ~
(2.8) _ % / 1 (%)K(t,r(t, 0))u(r(t, 0))do.

Using (N +1)-point Gauss-Jacobi quadrature formula with weight w, g to approxi-
mate (2.5)-(2.8) yields

o N
=
T
2o |+

—

(2.9)  Mu(t) = Myu(t) = )u(T(t,ej))w_a _5(0;)w;,

7=0
N
(2.10) Mu(t) ~ Myu(t) = gz (t—;l)ﬁ(t)u(T(tﬁj))w (0,
=0
N
(2.11) ./(/l\u(t)zﬂ/l\Nu(t) = §Z<%)g(t)u(7'(t,6g))w a,—3(0;)w;,

<.
I
o

and

N
—~ T
(212) Mu(t) ~ Myu(t) == 5 > ( ) (t,7(t,0,)u(r(t, 0;))w—a—5(0;)w;,
7=0
where {6; } " oare the (N + 1)-degree Jacobi-Gauss points associated with w, g, and

{w; W j=o are the corresponding Jacobi weights. On the other hand, instead of the
continuous inner product, the discrete inner product will be implemented by the
following equality,

N
= Z u(f;)v(0;)w;
j=0
As a result,
(2.13) (0, Vg s = (0, ¥)N, if 9 € Pany1(A).
By the definition of Iy, @p , we have
(2.14) (u,v)N = (Ijo\‘,’ﬁu, V)N

The Jacobi pseudo-spectral method is to find

N
=Y " w0 (), un(t) =
j=0

such that

M=
=
I
N
=
&~
)
>
=
m
2
=

(un, d)n = (Yo + Mnvn, @) N
(2.15)  { (on,@)n = (o + Mywn, )n N
(wn, ¥)n = (9(t) + Myuy + Myoy + Mywy, ),
Vo, 0,9 € Pn(A).



where {u]}j 0> {UJ} ' pand {wJ}J ', are determined by
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]:
N

2 M

(80, TP Ny —

LN T,

N
(I TP NG = D (M TSP TP NG = (g0, I3,

TP T Ny = (yo, I )N

)

. NU]+ZM J wp J ’B)N’U

PN = (g(t), 7w

0<i<N,0<j<N,
N+1<i<2N+1,
0<j<N,
2N +2<i<3N+2,
0<j<N,
0<i<N,
N+41<j<2N+1,
N+1<i<2N+1,

(2.16) J N i=
= (MNP
Jj=0 7=0
N —~
+) (I = My I,
7=0
Denoting X = [T, U1, . - ., Un, 00; U1, - - - » ON5 Wo, W - - -
tion of the matrix form
(2.17) AX =gy,
where
(0, 17 ), 0<i<N,
av(@) =% Wo, I )N, N+1<i<2N+1,
(g(t), J* 50 )Ny 2N +2<i <3N +2.
(J]qﬁ? Jiaﬁ)N
0,
_(.//\—\/I/NJOQB JaygN 2)
—(MNTSN T ),
(J] —1 Jza A )N7
Ay j) =

~(Mn T3y o T )N

((Jja_’g]v ) MNJ Zon— 2)7Jia_’gN—2)N7

N+1<j<2N+1,
2N +2<i<3N+2,
N+1<j<2N+1,
0<i<N,

2N +2<j <3N +2,
N+1<i<2N+1,
IN +2<j <3N +2,
IN +2<i<3N+2,
ON +2<j<3N+2.

(2.16) yields a equa-
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3. SOME USEFUL LEMMAS

We first introduce some Hilbert spaces. For simplicity, denote d,v(t) = (9/0;)v(t),
etc. For a nonnegative integer m, define

HT (=1,1) = {v: dfv(t) € L2 (~1,1), 0 <k < m},

War,

with the semi-norm and the norm as

m
2
k
oz, , =Pz, o ol = (D 10F0OIE:, )
y b k:O Q,

respectively. It is convenient sometime to introduce the semi-norms

m 1

2
et SR DI T P

k=min(m,N+1)

For bounding some approximation error of Jacobi polynomials, we need the following
nonuniformly-weighted Sobolev spaces:

H™ (=1,1):= {v: dFv(t) € L? (-=1,1), 0 < k < m},

waﬁ,* Wa+k,B+k

equipped with the inner product and the norm as

m

(u,v)m,* = Z(atkuv atkv)wa+k,5+k7 HUHm,* Y, (U7U)M,*'

k=0
Next, we define the orthogonal projection Py : L2(A) — Px(A) as
(u— Pyu,v) =0, Vo€ Pn(A).

Py possesses the following approximation properties (5.4.11), (5.4.12) and (5.4.24)
on pp. 283-287 in Ref. ([8]):

(3.1) |u — Pyul[z2a)y < eN7™|[ull gm(a)
and

3
(3.2) |lu — Pyullpee < eNA7"|ul/m,00

We have the following optimal error estimate for the interpolation polynomials based
on the Jacobi Gauss points (cf. [10]).

Lemma 3.1. For any function v satisfying v € H" ﬁv*(—l, 1), we have

3.3 -1y’ < cNTT|oF
(3.3) o= I3 0lles ) < eNTTNO0ls

for the Jacobi Gauss points and Jacobi Gauss-Radau points.
Lemma 3.2. Ifv e H” 67*(—1, 1), for some m > 1 and ¢ € Pn(A), then for the
Jacobi Gauss and Jacobi Gauss-Radau integration we have (cf. [10])

0By — @ 0N < o= I3l N0l

. < ™o .
(3.4 NPl ol
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We have the following result on the Lebesgue constant for the Lagrange interpo-
lation polynomials associated with the zeros of the Jacobi polynomials; (cf. [10]).

Lemma 3.3. Let {Fj(t) §'V:o be the N-th Lagrange interpolation polynomials as-
sociated with the Gauss, or Gauss-Radau, or Gauss-Lobatto points of the Jacobi
polynomials. Then

N

B — A —
@5) e = oz 321550 =

1
clog N —1<a,ﬁ§—§,
-1, j= cNV‘%, v = maz(a, ), otherwise.

We now introduce some notation. For » > 0 and « € [0, 1], C"™"([—1,1]) will
denote the space of functions whose r-th derivatives are Holder continuous with
exponent #, endowed with the usual norm ||-||,s. When x = 0,C"%([—1, 1]) denotes
the space of functions with r continuous derivatives on [0, T], also denoted by
C"(]-1,1]), and with norm || - |,

We will make use of a result of Ragozin ([12], [13]), which states that,for each
nonnegative integer r and s € [0,1], there exists a constant C, , > 0 such that for
any function v € C™"%([—1,1]), there exists a polynomial function Tyv € Py such
that

(3.6) [v = 750l poe < CrpN =TT 0.

where || - ||oo is the norm of the space L*°(]—1,1]), and when the function v €
C([-1,1]). Actually,7y is a linear operator from C™"*([—1,1]) to Px.

We will need the fact that M ,which be defined by (2.8), is compact as an operator
from C([0,T]) to C™*([—1,1]) for any 0 < k < 1. (see [9].)

Lemma 3.4. Let 0 < k < 1. then, for any function v € C([—1,1]),there ezists a
positive constant C such that

|M’U(t/) _Mvv(t//)| < ¢ max "U(t)’

’t/ _t//‘fﬂ —1<t<1

Proof. We only need to prove that M is Holder continuous. For anyt’, ¢’ € [—1,1]
and t' #t",

m%@q—ﬁhwmzjgwaM@M—Jf@K@“*”“@W”<cnmxma»

’t/ _ t/l‘n ’t, _ t/l’n - —1<t<1
This implies that
(3.7) [Mvllo < Cllvllzse, 0< k< 1.
Clearly, M, M and M also satisfy (3.7). O

To prove the error estimate, we will apply the standard Gronwall Lemma. We
call such a function v = v(t) locally integrable on the interval [—1, 1] if for each
t € [-1,1], its Lebesgue integral fgv(s)ds is finite.

Lemma 3.5. Suppose that v(t), w,(t) are nonnegative and

Mﬂ<w40+?AUQM&t€MT}
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Then
t
v(t) < wy(t) +E/ wy(s)ds, t € [~1,1].
0

In our analysis, we will need the following estimate for the Lagrange interpolation
associated with the Jacobi Gaussian collocation points.

Lemma 3.6. For every bounded function v, there exists a constant C independent
of v such that

l 1
I @)= = | Y ) @)l < % 1IIUHL <a,f8< -3,
3=0 L= CN’YJ'_E H’UHLoou Y= ma/fL'(Ck’ 6)7 otherwise

where F;(t) is the Lagrange interpolation basis function associated with the Jacobi
collocation points {tj}é-vzo.

Proof. 1t is obvious that

N
157l = || X o) Fi ()]
j=0 Lee
3.8 < ()] F5(
(3.8) < ax Z\vgl\
< F( 0.
< (. malx”Zr )\UHL
By Lemma 3.3, we obtain the desired result. U

Lemma 3.7. For every bounded function v, there exists a constant C independent
of v such that

||I]°;5U(t)”%3 < cfvllzee,

where Fj(t) is the Lagrange interpolation basis function associated with the Jacobi
collocation points {tj}évzo.

Proof. It is obvious that
1 N N
5700, = [ I8P = Y Rty < ol Sows = ol
of -1 =0 =0
where o = (Jg"ﬁ, Jg"ﬁ)waﬁ. As a consequence,

supl| I v(t) |2 < Cllvllree,
N o8

with C = /0. 0
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4. CONVERGENCE FOR JACOBI PSEUDO-SPECTRAL METHOD

As IX‘,’ﬁ is the interpolation operator which is based on the (N + 1)-degree Jacobi-
Gauss points with weight w, g, in terms of (2.13), (2.14) and (2.15), the pseudo-
spectral solution uy, vy, wy satisfies

(U, By — I MNON, B s = (I3 0, D)is
(4.1) 1 (vn, ) - I Mywy, 9)a, 5= = (I Y01 @) -
(wn — (MNUN + Myoy + Mywn), ¥)w,, = I8 9(E), V) -
Vo, 0,9 € Py(A).
where
Mpyvy = Moy — (Moy — Mpyoy) = Mon — Q(t),
with

Q) = Moy — Myoy
N
a2 - /ll(tgl)wwte de—z(t“)m S —

(S ementren) = (5 )oracsntotin),

t+1 t+1
= ((~5- )w_a,_ﬁ,wwu, D). = (5 )eacsunGE)
Wa,B N
in which (-, ')wa, , represents the continuous inner product with respect to 6, and

(+,-)n is the corresponding discrete inner product defined by the Gauss-Jacobi quad-
rature formula. Similar to (4.2),we have that

MNUN = MUN — (MUN —MNUN) = Moy — Q(t)v
with
@(t) = Muvy — Myoy

B /11 (t; 1>5(t)”N(T(t, 0))do
(4.3) - i <t + 1>a(t)vN(T(t, 0,)w—a,—5(0;)w;

i=0
= (5 )0amontre ) = ()0t )

N

M\NwN = M\wN — (M\wN - M\NWN) = M\wN - @(07
with
@(t) = M\wN—M\NwN

N /_11 <%)g(t)w1v(7(t, 6))do
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N
t+ 1\~
(4 =Y (5 )btwn(r(t0;)—a-s(0);

7=0
- <<E)f5(t)w_a7_5,wzv(7'(t7 .)))waﬂ — ((E)Z(t)w_aj_ﬂij(T(t, .)))N’

2 2
and
.//\/lvNuN = .//\/lqu — (.//\/lqu — .//\/IVNUN) = ./K/lqu — @(t),
with
@(t) = MVUN — MVNuN
-/ (DR (0 un(r2,0))ds
1
N
(45) =3 () Rt 7)), -5(05un (70,6
=0
t+1\ ~

7) K(t,7(t,))w_a (), un (r(t, ')))waﬁ

)Rt Nwams () un(r(t, )
The combination of (4.1)-(4.5) yields

(un + I8°Q() — I Mon, @) s = T Y0, )5
(on + I5°Qu () — IR Muwn, ©)u , = (15 90, ) s
(wn + IN°Q(t) — Iy Muy + I Q(t) — I Moy + I Q1)
_IJO\?BMwNa ¢)wa,5 = (IJO\[[’B (t)v me

which gives rise to

un + IJO\‘/’BQ(t) - IJO\‘,’BMUN = Iﬁ,ﬁyo,

on +IR7Qi(t) = Iy Muy = I3y,

wy + IV Q) — IS Muy

FIXPQ(t) — IV Moy + 1$°Q(t) — I9° Muwy = 127 g(t).
By the discussion above, (2.15), (4.1) and (4.6) are equivalent.

We first consider an auxiliary problem. We want to find uy, 0y, Wy € Py (A)
such that

5

(4.6)

(Un, )N — (MUN, )N = (Yo, §) N,
(4.7) (N, ) — (Man, @)x = (Yo 9), Vo, 0,9 € Pr(A)

(Wn — My — Moy — My, ¥)n = (9(t), %) n,
where M, M, M and M are integral operators defined in Sect 2, and (-, )y is still
the discrete inner product based on the (N +1)-degree Jacobi-Gauss points. In
terms of the definition of IJO\‘,"B , (4.7) can be written as

4 Uy — I%’BM@\N =0, N — IJO\[T’BM@N = y(l),
(4.8) - o8 T B g5 wB i o
Oy — IV My — I3 Moy — 15" Mian = 15 g(t).
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When 3o =y, = g = 0, (4.8) can be written as

UN — [%’BM@\N =0, N — I%’BM@\N =0,

L/L}N — I]O\[,’BMY/EN — I%’ﬂm@\]\/ — I]%,’BM@N =0.
In terms of the fact that
Uy — I9P My = Tiy — Moy + (Miy — I9° Moy),
wy — I "BMUN I ’ﬁMUN I 7’5./\/1101\7

MUN + (./\/luN I ”BMUN)

= —MUN-i- (Moy -1 B Moy)
—MU)N + (MU)N I ’6./\/110]\[)

\

Suppose that max{|K(t,7)|, [a(t)|,|b(t)],1} < L. It is clear that from (2.5)-(2.8)
~ T t ~ aﬁ ~ ~
uN:— UNTdT—l-I’M'UN—M’UN,

/ wn(T)dT + 1 ’6./\/111)]\[ Moy,

wN—/ K(t,7)un (1) + a(t)on (1) + b(t)@n (7)) dr + I3° Miiy
—./\/luN + IN’BMUN — My + I]%’BM@N — M\@N.

\

which yields

t
(lun| + [on] + |oN]) < C/ ([an ()| + [on] + |[wn (7)) dr
—1
+|L |+ || + | 1Is| + |1s] + |T5].
where I} = I%° Moy — MUy, I = ISP Moy — My, I3 = 19 Miiy — Miiy, I =
I]O\‘,’Bﬂi)\jv — Moy, Is = I]%’BM@N — Mwy. Using Lemma 3.5 leads to
t
([un| + o]+ |oN]) < C/ (1] + |2 + 13| + [14] + | I5])ds
—1

+| L]+ || + | Is| + | 1s] + | 15|
c([1llpee + 2l Lo + |13l Loe + [ 1al[ Lo + [[15]| Lo ).

IN

This gives,
(4.9) [[an] + [on| + [Wn ]|l Lo
< c(Mrllzee + 2llzoe + [ s]lLee + [[al| Lo + [[15]| L )-

We now estimate ||I1||zo<, [[I2||L<, [[I3]| Lo, || 14]| 2= and ||I5]| <. By virtue of (3.6),
(3.7) and Lemma 3.3, we obtain that

%P My — M| = (I - I%?) My || 1o
= (I = I%?)( My — Ty M|z~
< (A Y| o) [ My — T My || oo
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clog N|Miy — TnMiin ||z < clog NN ||ty oo,
“1<a,f<—3
N2 | My — Ty Miiy||zo < eN2 7 iy g,

~v = max(a, 3), otherwise.

IN

Similarly,
clog NN =% x| pee, -1 <, B < —2
- CN%_”J”H@NHLOO, ~v = max(a, 3), otherwise.

{clogNN”|]5N\\Loo, ~1<a,B<—1

CN%—”JWHEENHLOO, ~ = max(a, 3), otherwise.

113 M@y — My | Lo

115 My — Moy]|

and

. ~ clog NN~*||0n||pe, -1 < a,B < —1
I3 My — Miby]| e < 7 N A” Nl A<= .
eN27" | Wn| e, v = max(a, ), otherwise.

These, together with (4.9), give
llan|+ [on| + [@n |l 2o
< clo%NN_”|||aN|+\?)\N|+|175N|||Loo, —1<047B§—%
= | eN2"||[un| + |[on] + |Dn||| L, ¥ = max(a, 8), otherwise.

which implies, taking x € (0,1) such that x > % + v, when N is large enough,
uny = vy = wy = 0. Hence, un,vn and Wy are existent and unique as Py (A) is
finite-dimensional.

Lemma 4.1. Suppose that uw € HF _  (A) and maz{|K (t,7)|, [a(t)], |b(t)], 1} <
L, then we have
(4.10) llu — un| + |v — On| + |w — Wn||| Lo

_ ] clog NNT=™Jullmis00, —1 <, 8< -3
cN%*m+'YHu||m+2’oo, v = maz(a, B), otherwise.

and

(4.11) llu = un|+ v = on| +|w = @nlllzz )

2
— k
N (SN0 )
k=0

R
+clog NN+~ ™|u|lm42,00, —1 <, < —%,

2
— k
N (SN0 )

k=0
+CN%’m+7||uHm+27oo, v = max(a, 5), otherwise.

IN
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Proof. Subtracting (4.8) from (2.2) yields
(u(t) — Ty + I8P My — Mu(t) =0,

o(t) — Oy + IS My — Mw(t) =0,

(4.12) w(t) — Dy + Iv° Miy — Mu + I Moy — Mo(t)

+IYP My — Muw(t)

= g(t) — 159 (t).

Set € = u(t) —uy,€ =v(t) — Un, € = w(t) — Wy. Direct computation shows that

Muo(t) — IS Moy = Mo — I Mo + I%° M(v — By)
= Mo — I Mo+ M(v —By)
—M(v—Ty) — I%° M(v - By)]
(4.13) = u—yo— I (u—yo) + M(v —Ty)
—[M(v—Ty) — I%° M(v - By)]
= u— I u+ Me — [Me — I%° M.

Similarly
(4.14)  Mu — ISP My + Mo — ISP Moy + Muw(t) — I9° My
=w— I]O\‘,’Bw —g(t)+ I]‘i‘,’ﬁg(t) + Me — [Me — Iﬁ‘,’ﬁ/(/lve]
+ Me — [Me — ISP Me] + Me — [Me — 13° Mal.
The insertion of (4.13), (4.14) into (4.12) yields

u— I u + Me — [Me — I3° M,

v— IX‘,’BU + Meé— [Me— I]o\‘,’ﬁ/\/lg],

w — IX‘,’Bw + Me — [Me — IJO\‘,"BME] + Me — [Me — IK{,’BME]
+Me — [Me - 13° Ma),

My Al @
Il

which implies that
e[ + el +[el < [Ju| + | o] + [Js] + [Ja| + [ J5] + [Js| + | J7] + [ Js]

(1.15) ve [ (1elr)l + )] + )i

where J; = u — I¥Pu, Jo =v =130, Js = w — I3 w, Jy = Me— IvP Me, Js =
Me— IV Me, Jo = Me— 15" Me, J; = Me— I3 ME, Jg = Me— 15" Me. Using
Lemma 3.5 gives

le| + el + el < |Ji| + |Jo| + |Js| + |Ja| + |T5] + | Ts| + |J7| + | T3]

t
(4.16) +C/ (1] + [ o] + [ 5| + |Ja| + | 5| + | 6| + |J7| + | Js|)dT.
-1

Similar to (4.9), we have that
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el + el + [elllze < elllllLe + 1 2llzee + ([ T3]l zoe + [ Jal| Lo
(4.17) 5l zee + |6l oo + |7l zoe + (| J8][2o0)-
By using (3.2), Lemma 3.3, we obtain that
= I ullpee = [(T = I3¢")(u — Pyw)| o
(4.18) < (14 T3 llso)llu — Prul| o
3
{clogNN4m||uHm,oo, “l<a,f<-1

cN%*mJF'YHuHmm, v = max(«, 3), otherwise.

lv — I3 ]| oo

< clogNN%_mHvHﬂwo < clogNN%_mHu/Hmm, —1<a,B<—3
NI 0]l oo < Nt || poe; ¥ = max(a, B), otherwise.

and
(4.19) [w — I%Pw|| oo
_ clog NN~ [w]|moo < clog NN 1[0 oo, —1 <, < —2
N cNgfer'YHme,Oo < cNgfer'VHu”Hm’oo, ~v = max(a, 3), otherwise.

We now estimate Jy. It is clear that e € C[—1,1]. Consequently, using (3.6), (3.7)
and Lemma 3.3 it follows that

il = (I = I")(Me— 7 Me)| L
< (A IR ) | Me — 7y Me|| o
(4.20) < (LA I3 || oo )N 75| Melo

clog NN~ lle| + [e] + [el[lL~, —1 <a,f< —3
N2~ |||e| + [¢] + [€]|| pe, 7 = max(a, B), otherwise.

where k € (0,1) and TvMe € Pn(A). (4.20) also holds for ||Js|| o<, || Js]| o, || J7]| o0
and |Jg|| . Taking x € (0, 1) such that x > 1 ++, the estimate (4.10) follows from
(4.17)-(4.20), provider that N is large enough.

Next we prove (4.11). Using the standard Gronwall inequality, we have from
(4.15) that

e+l + 1@l < el + 1l +IslE
(4.21) +HJ4||%3,M + ||J5H%gaﬁ + HJGH%gaﬁ
s+ 1l ).
We obtain that from (3.6), (3.7) and Lemma 3.7
1Jalz, = I = IR")Mellzz_ |

= (= 17 (Me = wMe)zz,
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cHMe — TNM6||Lw

<
< eN7"lellzee < eNT"lef + [e] + [ell poe-

It also holds for [|J5| 2 B’HJ6||L3 . |71l 2 5 sl 2 5 These result, together
with the estimates (3.3), (4.10) and (4.21), yields (4.11). O

Now subtracting (4.6) from (4.8) leads to

UN — UN — I]C\MI"BQ(t) + IJO\ZI’BM’UN — IJO\[[’BM@\N =0,
Oy —on — I9°Qu(t) + IS Mwy — TP My = 0,
Wy —wy — IYPQ(t) — IXPQ(t) — ISP Q(t) + 1P Muy — I3° My

I~

+IS Moy — I8P My + I9° Mwy — 13° Moy = 0,
which can be simplified as, by setting F = uy —uy, F1 = 0y — vn,E2 = Wy — wy
E - I%°Q(t) — I° ME; =0,
By — IPQ(t) — IS ME, = 0,
B, — INPQ() - I°Q() — I3°Q(t) — I ME
I3 ME, — I3° ME, = 0.

(4.22)

Let ey = u—un, ey = v — vy and €y = w — wy be the error corresponding to
Jacobi pseudo-spectral solution uy, vy, wy of (2.15). Now we are prepared to get
our global convergence result for problem (2.2).

Theorem 4.2. Suppose that maz{|K(t,7)|,[a(t)],[b(t)],1} < L and the solution
of (2.2) is sufficiently smooth. For the Jacobi pseudo spectral solution defined in
(2.15), we have the following estimates

(1) L norm of |len| + |en| + |en]| satisfies,
(4.23) [[(len] + [en] + [en])]l =

_ [ clog NN 20 + clog NNl e, —1 <, < —1
1
N1 Ju|lmt2,00 + N2 ull2,00, ¥ = maz(a, B), otherwise.

(2) The Jacobi spectral error |en| + [en| + |en| satisfies,

llen|+lenl +lenllizs
clog NN T [uflm 2,00 + clog NN~ u|5,00
2
1
- +k
+N mz Hazn u||wm+a,m+ﬁa -1< 0475 S _57

k=0
+eN T 2,00 + N2 ful|2,06

(4.24)

2
+cN—™ Z ||6{n+ku|]wm+a7m+6, ~v = mazx(a, ), otherwise.
k=0

Proof. We first prove the existence and uniqueness of the Jacobi pseudo-spectral
solution uy. As the dimension of Py (A) is finite and (2.15) and (4.6) are equivalent,
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we only need to prove that the solution of (4.6) is uy = vy = wy = 0 when
g =1y = yé) = 0. For this purpose, we consider equations

uN + I%’BQ(t) - I]C\Y["BMUN =0, vy + I]C:f’ﬁQlA@) - I]%/ﬁ./\/lw]v =0,
(4.25)  { wy +I37Q() + IQ) + IN°Q(t) — Iy Muy
1% Moy — I1%° Muwy = 0.

Obviously (4.25) can be written as

— Moy = I BM’UN Ia’BQ( ) Moy = R1 + Ro,
./Vle =1 "BMZUN I ”BQl( ) Muwy = Rs + Ry,
— Muy — Moy — Mwy = I Muy + Iy Moy + Iy Moy = I5°Q(t)
—I]‘i‘,’ﬂ@( t) = ISP Q(t) — Muy — Moy — Muwy
:R5+R6+R7+R8+R9+R10-

namely,
T t
/ dT+R1+R2, UN_Q/ wN(T)dT+R3+R4,
-1
4.26 ~ ~
( ) / K(t,s)un(T) + a(t)vn(T) + b(t)wn(7))dT

+R5+R6+R7+R8+R9+R10.
with Ry = IK,”BMUN — Moy, Ry = —IJO\;’BQ(t),Rg = IJ()\?’BMMN — Mwpy, Ry =
—I%”BQl(t), Rs = IJO\[I’BMUN — Mun, Rg = IJO\[/’ﬂMUN — MUN, R; = IX‘["BMU)N —
Muwy, Ry = —I%PQ(t), Ry = —I%7Q(t), Rio = —I% Q(t). Using (4.26) gives

(lun| + lon| + Jwn]) - < C/I(WN(T)I+|vN(T)|+|wN(T)|)dT

(4.27) +|R1| + |Ra| + |R3| + |R4| + |R5| + | Re|
+|R7| + | Rs| + | Ro| + | R1o.
Using Lemma 3.5 yields
[(lun| + lon] + Jwn e < e(l|Rillzee + || Rallzee + || R3] + || Rall Lo

(4.28) +|Rs|| Lo + || Rg||Loc + || Rz oo
+[| Rl Lo + | Ryl Lo + || R0l L)

On the other hand, according to Lemma 3.3,
IRslfe = II5"Q()IEx

(4.29) _ J cllogNQ() [}, ~1 <8< —3
. CN1+27”Q(t)HL°°7 ~v = max(a, 3), otherwise.

By the expression of Q(t) in (4.5), we have from Lemma 3.2

t+1

QI < eN 7|05 (5 ) Kt 7(t,0) )w-a-5(6)]

< N lunllzg

lunllr2
L m+o,m+p s
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which, together with (4.29), gives

(4.30)
| Ral e < CIO%NN_m||(|’LLN| + lon| + lwn)|lpe, -1 <a,B < —%,
ST = N2 (Juw] + o] + [wa ), v = max(a, 8), otherwise.
Similarly, (430) holds for HRQHLoo, HR4HL°°7 HRgHLoo and HRIOHLOO-
The combination of (4.20) and (4.30) yields

[(lun| + on] + [wn )] L=
c(log NN™™ +1og NN7")||(lun| + |[vn| + [wn])]| Lo,
431) _) -1<apB<-—3
1
] eVETEY 4 N2 (Ju| + [on] + [wn]) | e
~v = max(a, 3), otherwise.

Based on (4.31) and taking x > % + 7, when N is large enough,uy = vy = wy =
0. As a result, the existence and uniqueness of Jacobi pseudo-spectral solutions
uN, VN, wy are proved. O

Now we turn to the L™ error estimate. Actually (4.22) can be transformed into
— T t Ol,B anB
E=5 [ E (T)dT + I" MEy — ME; + I Q(t),
—1

T t a (0%
Ey = 2 / 1 By(r)dr + I3 MEy — MEs + I’ Qu (1),
(4.32) ot

By = 2/ (K(t,7)E(T) + a(t)Ey(7) + b(t) By (7))dr
1

~ME — ME, — MEy + I%° ME + 1% ME; + 13° ME;
\ HIRPQM) + IN7Q() + I7Q(1).

which yields

t

\E| + |Ba| + |Ba| < c/1<rE<T>|+|E1<r>\+E2<T>r>dr

(4.33) +|Ra| + |Ra| + |Rg| + |Ro| + |Rio| + | Ru1
+[Ria| + |Ras| + [Ria| + |Ras).
with Ryy = ISP ME,~MEy, Rig = I3 MEy—MEy, Riz = IV’ ME—ME, Ry, =
I3 ME) — MEy, Ris = I%° MEy — ME;.
Similar to (4.9), it follows from (3.9), (4.33) and Lemma 3.5 that

IE]+ [Er| + | Ball[re < c(l[Rallne + [ Rallpee + | Rslzee + [ Rol[ 1o

(4.34) +l Riollzee + | Runllzee + | Razllpee + [[Rusl| Lo
| Riallzee + | Rasllzec )

Similar to the estimate of (4.20), we obtain

clog NN E|l e, —1 < a, 8 < —1,

4.35 R oo <
( ) H 13”L = { CN§7H+’YHEHL°°7 yzmax(a,ﬁ),otherwise.
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It also holds for Rj1, Ri2, R14 and Ry5. In terms of (4.30), (4.34) and (4.35), when
N is large enough, we obtain

(4.36) ||| + |E1| + |Eol| 1~
clog NN~ (Juw| + [ | + [wn])l| o

< clog NN~ (|[(Ju] + [v] + Jw]) | poc

HI(Jw = un] + o — on| + Jw — wy]z=), —1 < a, <1,

N2 (Juw| + [on] + [w])l| o

< eN=7™ (|| (Ju] + o] + [w])]| o

+Hl(Ju — un| + Jv — o | + |w — wn]|) ||z ), ¥ = max(«, §), otherwise.

IN

By the triangular inequality,

llu = un| + v —on|+|w—wyll[Le < llu=un|+|v = Vn|+ |w = ©n|]| L~

(4.37) H[E] + [Ex] + [Ezll Lo

as well as (4.36), (4.37) and Lemma 4.1, we can obtain the estimated (4.23) provided
N is sufficiently large.

Next we prove (4.24). Using the standard Gronwall inequality, one obtains that
from (4.33).

7
BN+ 1B + 1Bl | < o(IRalf | +IRally  +3 IRslfs )
5 (e (e Z:O .,

7
(4.38) < c(IRelm + I Rallf + D I Rssillf )
=0

The combination of (4.30), (4.35) and (4.36) yields
(4.39)  [IE|+ |Ea] + [ B2lllz |

clog NN ([[(Ju] + [v] + |w])|| e
+llen] + len| + [enDllr=), -1 < a, 8 < —3,
1
N2 (||(ful + o] + |wl) || zes
+l|len| + len] + |enlllze), v = max(«, ), otherwise.

IN

By the triangular inequality again,
llenxl+lenl +lenllizs < lllu—unl+ v =on]+ |lw - wnll|z

(/Jayﬂ
(4.40) HIEI+ B + | E2llig, -

In terms of (4.23), (4.39), (4.40) and Lemma 4.1, we obtain the desired result.

5. NUMERICAL RESULTS

We give two numerical example to confirm our analysis.
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Example 5.1. Consider the second order Volterra integro-differential equation

U\\ (t)

tu(t) + (1 —tu' + (2+1 2t+2t_t2_1 (20t
u(t) + ( Ju' + (2 +t)e We
3—1t

t
—7(2 — 16)2et_2 + /_1 e Tu(r)dr.

The exact solution is u(t) = e*. Fig. 1 shows the errors u — uy and v’ — ulN of
approximate solution in L and Fig. 2 shows the errors weighted Lia norms

8
obtained by using the pseudo-spectral methods described above. It is observed that
the desired exponential rate of convergence is obtained.

IongLw

log, ,E, 2

FIGURE 2. Lf}aﬁ error of Example 5.1
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Example 5.2. Consider the second order Volterra equation integro-differential
equation

2Nl = etu(t)+2tu‘(t)+tsin(o.5t)—(i+et) cos(0.50)

1 —¢2 t T
—_— dr.
L +/1 cos(0.57)u(7) i

The corresponding exact solution is given by wu(t) = cos(0.5¢).

Fig.3 and Fig.4 plot the errors u — uy and u' — ulN for 3 < N <18 in L* and
L,
a,B

norms. Once again the desired spectral accuracy is obtained.

log, ,E, 2

FIGURE 4. Lf)a , error of Example 5.2
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6. CONCLUDING REMARKS

This paper proposes a numerical method for second order Volterra integro-
differential equations based on a Jacobi pseudospectral approach. To facilitate
the use of the method, we first restate the original second order Volterra integro-
differential equation as three simple integral equations of the second kind. The most
important contribution of this work is that we are able to demonstrate rigorously
that the errors of approximations decay exponentially in L*andL? which is a
desired feature for a spectral method.
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