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we do not know whether our Theorem 3.1 remains valid if kn (the sequence associ-
ated with the asymptotic nonexpansive mapping T ) is allowed to approach 1 slowly
enough so that

∑∞
n=1(kn − 1) diverges.

In 2010, Khan and Fukhar-Ud-Din [21] established weak convergence of Ishikawa
iterates of two asymptotic nonexpansive mappings without any condition on the
rate of convergence associated with the two mappings. They also got the new weak
convergence theorem which does not require any of the Opial condition, Kadec-Klee
property or Fréchet differentiable norm.

The class of asymptotic nonexpansive self-mappings is a natural generalization
of the important class of nonexpansive mappings. Goebel and Kirk [14] proved that
if C is a nonempty closed convex and bounded subset of a real uniformly convex
Banach space, then every asymptotic nonexpansive self-mapping has a fixed point.

T is said to be an asymptotic pointwise nonexpansive mapping if there exists a
sequence of maps an : C → [0,∞) such that

d(Tn(x), Tn(y)) ≤ an(x)d(x, y)

for all x, y ∈ C, n ≥ 1, where lim supn→∞an(x) ≤ 1. Denote cn(x) = max(an(x), 1).
Then note that without any loss of generality, T is an asymptotic pointwise nonex-
pansive mapping if

d(Tn(x), Tn(y)) ≤ cn(x)d(x, y)

for all x, y ∈ C, n ≥ 1, where cn(x) ≥ 1 and lim n→∞cn(x) = 1. Moreover, we recall
that T : C → C is uniformly L-Lipschitzian if for some L > 0 we have that

d(Tnx, Tny) ≤ Ld(x, y)

for x, y ∈ K and n ≥ 1. T is an asymptotic nonexpansive mapping if there is a
sequence {kn} ⊂ [1,∞) with limn→∞kn = 1 such that

d(Tnx, Tny) ≤ knd(x, y)

for all x, y ∈ C and n ≥ 1. T is said to be semi-compact (completely continuous)
if for any bounded sequence {xn} in C with d(xn, Txn) → 0 as n → ∞, there is a
subsequence {xni} of {xn} such that xni → x ∈ C as i → ∞.

Let S, T : C → C be asymptotic pointwise nonexpansive mappings with func-
tion sequences {an(x) ≥ 1} and {bn(x) ≥ 1} satisfying limn→∞an(x) = 1 and
limn→∞bn(x) = 1, respectively. Set cn(x) = max[an(x), bn(x)]. Then

limn→∞cn(x) = limn→∞an(x) = limn→∞bn(x) = 1.

Throughout the paper, we shall take τ(C) as the class of all asymptotic point-
wise nonexpansive self-mappings T and C with function sequence {cn(x) ≥ 1} with
limn→∞cn(x) = 1 for every T ∈ τ(C). Also F will stand for the set of common fixed
points of the two maps S, T : C → C. We assume that cn is a bounded function for
every n ≥ 1 and all the functions cn are not bounded by a common constant, there-
fore an asymptotic pointwise nonexpansive mapping is not uniformly Lipschitzian.
However, an asymptotic nonexpansive mapping is an asymptotic pointwise nonex-
pansive mapping as well as uniformly Lipschitzian.

A strictly increasing sequence {ni} of natural numbers is quasi-periodic if the
sequence {ni+1 − ni} is bounded or equivalently if there exists a natural number q
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such that any block of q consecutive natural numbers must contain a term of the
sequence {ni} The smallest of such numbers q will be called a quasi-period of {ni}.

In 2008, Kirk and Xu [25] studied the existence of fixed points of asymptotic
pointwise nonexpansive self-mapping T on C in Banach spaces defined by:

d(Tn(x), Tn(y)) ≤ cn(x)d(x, y)

for all x, y ∈ C, where lim supn→∞ cn(x) ≤ 1. Their main result (see [25], The-
orem 3.5) states that every asymptotic pointwise nonexpansive self-mapping of a
nonempty closed bounded convex subset C of a uniformly convex Banach space
has a fixed point. This result of Kirk and Xu is a generalization of Goebel and
Kirk fixed point theorem [14] for a narrower class of maps, the class of asymptotic
nonexpansive mappings, where (using our notation) every function cn is a constant
function.

In 2009, the results of [25] has been generalized by Hussain and Khamsi [16] to
metric spaces. As pointed out by Kirk and Xu in [25], asymptotic pointwise map-
pings seem to be a natural generalization of nonexpansive maps. The conditions
on cn can be, for instance, expressed in terms of the derivatives of iterations of T
for differentiable T . Hussain and Khamsi [16] have shown that if X is a Hadamard
space and C is a nonempty bounded closed convex subset of X, then any pointwise
asymptotic nonexpansive self-mapping on C has a fixed point. Moreover, this fixed
point set is closed and convex. The proof of this important theorem is of the ex-
istential nature and does not describe any algorithm for constructing a fixed point
of an asymptotic pointwise nonexpansive mapping. It is well known that the iter-
ation processes for generalized nonexpansive mappings have been successfully used
to develop efficient and powerful numerical methods for solving various nonlinear
equations and variational problems.

Espinola et al. [8] examined the convergence of iterates for asymptotic pointwise
contractions in uniformly convex metric spaces. Kozlowski [26] proved convergence
to a fixed point of some iterative algorithms applied to asymptotic pointwise map-
pings in Banach spaces.

For more on metric fixed point theory, the reader may consult the book of Khamsi
and Kirk [18].

Recently, Khan and Fukhar-ud-din [22] used the concept of unique geodesic path
denoted by αx⊕(1−α)y of two points x, y in geodesic space and define Ishikawa iter-
ative process I(S, T, αk, βk, nk) of two pointwise asymptotic nonexpansive mappings
in a geodesic space. It is given as follows:

xk+1 = (1− αk)xk ⊕ αkS
nkyk,

yk = (1− βk)xk ⊕ βkT
nkxk, k ≥ 1,(1.1)

where {nk} is an increasing sequence of natural numbers, 0 ≤ αk, βk ≤ 1 and
I(S, T, αk, βk, nk) is well -defined if lim supk→∞ cnk

(xk) = 1. They studied the weak
and strong convergence of the scheme (1.1) under proper conditions.

Inspired and motivated by the recent works, we introduce and study a new type
of Ishikawa iterative schemes in this paper. The scheme is defined as follows:

Let C be a nonempty and convex subset of a geodesic space X. Let S, T : C →
C be asymptotic pointwise nonexpansive mappings and let {nk} be an increasing
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sequence of natural numbers and 0 ≤ αk, βk ≤ 1. Then the new type of Ishikawa
iteration process denoted by I(S, T, αk, βk, nk) in a geodesic space X is as under:

xk+1 = (1− αk)yk ⊕ αkS
nkyk,

yk = (1− βk)xk ⊕ βkT
nkxk, k ≥ 1.(1.2)

The iterative schemes (1.1) and (1.2) are independent: neither reduces to the
other.

The purpose of this paper is to construct an iteration scheme for approximating
common fixed points of two asymptotic pointwise nonexpansive mappings and to
prove some strong and weak convergence theorems for such mappings in a Hadamard
space.

Now, we recall some well known concepts and results.
Let (X, d) be a metric space. (X, d) is said to be a length space if any two

points of X are joined by a rectifiable path (that is, a path of finite length) and the
distance between any two points of X is taken to be the infimum of the lengths of all
rectifiable paths joining them. In this case, d is known as length metric (otherwise
an inner metric or intrinsic metric). In case, no rectifiable path joins two points of
the space, the distance between them is taken to be ∞. A geodesic space is a metric
space such that every x, y ∈ X can be joined by a geodesic map c : [0, l] → X were
c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. Moreover, c is an
isometry and d(x, y) = l. X is said to be uniquely geodesic if for every x, y ∈ X there
is exactly one geodesic joining them, which will be denoted by [x, y], and called the
segment joining x to y.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points x1, x2, x3 in X (the vertices of ∆) and three geodesic segments between each
pair of vertices (the edges of ∆). A comparison triangle for ∆(x1, x2, x3) in (X, d)
is a triangle ∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3) in R2 such that dR2(x̄i, x̄j) = d(xi, xj) for
i, j ∈ {1, 2, 3}. Such a triangle always exists (see [2]).

A geodesic metric space is a CAT (0) space if every geodesic triangle satisfies the
following CAT (0) inequality:

d(x, y) ≤ d(x̄, ȳ)

for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆̄. If x, y, z are points of a CAT (0)
space and y0 =

x⊕y
2 is the midpoint of the segment [x, y], then the CAT (0) inequality

implies:

d2(z, y0) ≤
1

2
d2(z, x) +

1

2
d2(z, y)− 1

4
d2(x, y),

which is the (CN) inequality of Bruhat and Tits [3]. For any α ∈ [0, 1] and x, y, z ∈
X, Dhompongsa and Panyanak [7] modified the (CN) inequality of Bruhat and
Tits [3] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)

−α(1− α)d2(x, y).(1.3)

If α = 1
2 , then (1.3) reduces to the original (CN) inequality of Bruhat and Tits

[4].



COMMON FIXED POINTS ITERATION PROCESSES 2445

Let us recall that a geodesic metric space is a CAT (0) space if and only if it
satisfies the (CN) inequality (see [2], p. 163). Complete CAT (0) spaces are often
called Hadamard spaces (see [24]) and if x, y, z ∈ X and α ∈ [0, 1], then there exists
a unique point αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y).(1.4)

A subset C of a CAT (0) space X is convex if for any x, y ∈ C, we have [x, y] ⊂ C.
Let {xk} be a bounded sequence in a metric spaceX. For x ∈ X, define r(x, {xk}) =

lim sup
k→∞

d(xk, x). The asymptotic radius r({xk}) of {xk} is given by:

r({xk}) = inf{r(x, {xk}) : x ∈ X}.
The asymptotic center of a bounded sequence {xk} with respect to C ⊆ X is defined
by

Ac({xk}) = {x ∈ X : r{(x, {xk}) ≤ r(y, {xk})
for any y ∈ C}. If the asymptotic center is taken with respect to X, then it is
simply denoted by A({xk}).

A bounded sequence {xk} in X is said to be regular if r({xk}) = r({uk}) for
every subsequence {uk} of {xk}. Recall that a sequence {xk} converges weakly to
w (written as xk ⇀ w) if and only if r(w, {xk}) = inf x∈Cr(x, {xk}), where C is
a closed and convex subset containing the bounded sequence {xk}. Moreover, a
sequence {xk} ⊆ X ∆−converges to x ∈ X if x is the unique asymptotic center of
{uk} for every subsequence {uk} of {xk}. In this case, we write ∆ − limn xn = x
and x is called ∆− limit of {xn}.

In a Banach space setting, ∆−convergence coincides with weak convergence. A
connection between weak convergence and ∆−convergence in geodesic spaces is
characterized in the following lemma due to Nanjaras and Panyanak [30].

Lemma 1.1 (see [30], Proposition 3.12). Let {xk} be a bounded sequence in a
CAT (0) space X and let C be a closed and convex subset of X which contains
{xk}.Then

(1) ∆− limk xk = x implies that xk ⇀ x,
(2) the converse of (1) is true if {xk} is regular.

The following demiclosed principle in CAT (0) spaces due to Hussain and Khamsi
[16] plays an important role in the study of the weak convergence theorem.

Lemma 1.2 (see [22]). Let C be a nonempty bounded closed convex set in a CAT (0)
space X and let T : C → C be an asymptotic pointwise nonexpansive mapping.
Let {xk} be a sequence in C such that {xk} ⇀ ω and lim

k→∞
d(xk, Txk) = 0. Then

T (ω) = ω.

2. Main results

In this section, we prove weak and strong convergence theorems of the iterative
scheme given in (1.2) to a common fixed point for two asymptotic pointwise non-
expansive mappings in a Hadamard space. In order to prove our main results, the
following lemmas are needed.
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Lemma 2.1. Let X be a geodesic space and let C be a nonempty closed convex
bounded subset in X. Let S, T ∈ τ(C) and let {nk} be an increasing sequence of
natural numbers such that the sequence {xk} in (1.2) is well defined. If the set
Ω = {j : nj+1 = nj + 1} is quasi-periodic and

lim
k→∞

d(xk, S
nkxk) = 0 = lim

k→∞
d(xk, T

nkxk),(2.1)

then

lim
k→∞

d(xk, Sxk) = 0 = lim
k→∞

d(xk, Txk).

Proof. Set ck = d(xk, S
nkxk) and dk = d(xk, T

nkxk). Using (1.2) and (1.4), we have

d(xk, yk) = d(xk, (1− βk)xk ⊕ βkT
nkxk)

≤ βkd(xk, T
nkxk) + (1− βk)d(xk, xk)

= βkd(xk, T
nkxk)

≤ d(xk, T
nkxk).(2.2)

From (2.1) and (2.2), we have

lim
k→∞

d(xk, yk) = 0.(2.3)

Using (1.2) and (1.4), we have

d(xk, xk+1) = d(xk, (1− αk)yk ⊕ αkS
nkyk)

≤ αkd(xk, S
nkyk) + (1− αk)d(xk, yk)

≤ d(xk, S
nkxk) + d(Snkxk, S

nkyk) + d(xk, yk)

≤ d(xk, S
nkxk) + cnk

(xk)d(xk, yk) + d(xk, yk).(2.4)

It follows from (2.1), (2.3) and (2.4) that

lim
k→∞

d(xk, xk+1) = 0.(2.5)

In addition,

d(xk, Sxk) ≤ d(xk, xk+1) + d(xk+1, Sxk)

≤ d(xk, xk+1) + d(xk+1, S
nk+1xk+1)

+d(Snk+1xk+1, S
nk+1xk) + d(Snk+1xk, Sxk)

≤ d(xk, xk+1) + d(xk+1, S
nk+1xk+1)

+cnk+1
(xk+1)d(xk+1, xk) + c1(x1)d(S

nkxk, xk)

= d(xk+1, S
nk+1xk+1) + (1 + cnk+1

(xk+1))d(xk+1, xk)

+c1(x1)d(S
nkxk, xk).(2.6)

By taking lim sup on both sides of inequality (2.6) and using (2.1) and (2.5), we
obtain lim supk→∞ d(xk, Sxk) ≤ 0 and hence

lim
k→∞

d(xk, Sxk) = 0.

Similarly, we may show that

lim
k→∞

d(xk, Txk) = 0.
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That is, lim
k→∞

d(xk, Sxk) = 0 = lim
k→∞

d(xk, Txk). □

Lemma 2.2. Let X be a Hadamard space and let C be a nonempty closed convex
bounded subset in X. Let S, T ∈ τ(C), let αk, βk ∈ (δ, 1− δ) for some δ ∈ (0, 12) and
let {nk} be an increasing sequence of natural numbers such that the sequence {xk}
in (1.2) is well-defined. If the set Ω = {j : nj+1 = nj + 1} is quasi-periodic and
F ̸= ∅, then

lim
k→∞

d(xk, Sxk) = 0 = lim
k→∞

d(xk, Txk).

Proof. Let p ∈ F. Using (CN) inequality (1.3) and (1.2), we have

d2(xk+1, p) = d2((1− αk)yk ⊕ αkS
nkyk, p)

≤ αkd
2(Snkyk, p) + (1− αk)d

2(yk, p)− αk(1− αk)d
2(yk, S

nkyk)

≤ αkc
2
nk
(p)d2(yk, p) + (1− αk)d

2(yk, p)

−αk(1− αk)d
2(yk, S

nkyk)

≤ αkc
2
nk
(p)d2(yk, p) + c2nk

(p)(1− αk)d
2(yk, p)

−αk(1− αk)d
2(yk, S

nkyk)

= c2nk
(p)d2(yk, p)− αk(1− αk)d

2(yk, S
nkyk)

= c2nk
(p)d2((1− βk)xk ⊕ βkT

nkxk, p)

−αk(1− αk)d
2(yk, S

nkyk)

≤ c2nk
(p)(βkc

2
nk
(p)d2(xk, p) + (1− βk)d

2(xk, p)

−βk(1− βk)d
2(xk, T

nkxk))− αk(1− αk)d
2(yk, S

nkyk)

≤ βkc
4
nk
(p)d2(xk, p) + (1− βk)c

4
nk
(p)d2(xk, p)

−c2nk
(p)βk(1− βk)d

2(xk, T
nkxk)− αk(1− αk)d

2(yk, S
nkyk)

= c4nk
(p)d2(xk, p)− c2nk

(p)βk(1− βk)d
2(xk, T

nkxk)

−αk(1− αk)d
2(yk, S

nkyk)

= d2(xk, p) + c4nk
(p)d2(xk, p)− d2(xk, p)

−c2nk
(p)βk(1− βk)d

2(xk, T
nkxk)− αk(1− αk)d

2(yk, S
nkyk).(2.7)

Since C is bounded, there exists Br[x0] = {x ∈ X : d(x, x0) ≤ r} such that
C ⊂ Br[x0] for some r > 0. Therefore the inequality (2.7) becomes

d2(xk+1, p) ≤ d2(xk, p) + r2(c4nk
(p)− 1)

−δ2d2(xk, T
nkxk)− δ2d2(yk, S

nkyk).(2.8)

Form (2.8), we obtain the following two important inequalities:

d2(xk+1, p) ≤ d2(xk, p) + r2(c4nk
(p)− 1)− δ2d2(yk, S

nkyk),(2.9)

d2(xk+1, p) ≤ d2(xk, p) + r2(c4nk
(p)− 1)− δ2d2(xk, T

nkxk).(2.10)

Now, we prove that

lim
k→∞

d(yk, S
nkyk) = 0 = lim

k→∞
d(xk, T

nkxk).
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Assume that lim supk→∞ d(yk, S
nkyk) > 0. Then, there exist a subsequence (use the

same notation for subsequence as for the sequence) of {xk} and µ > 0 such that
d(yk, S

nkyk) ≥ µ > 0. Form (2.9), we have

d2(xk+1, p) ≤ d2(xk, p) + r2(c4nk
(p)− 1)− (δµ)2

= d2(xk, p) + r2((c4nk
(p)− 1)− (δµ)2

2r2
)− (δµ)2

2
.(2.11)

In addition, c4nk
(p) → 1 and (δµ)2

2r2
> 0; there exists k0 ≥ 1 such that (c4nk

(p)− 1) <
(δµ)2

2r2
for all k ≥ k0. From (2.11) we obtain

(δµ)2

2
≤ d2(xk, p)− d2(xk+1, p)(2.12)

for all k ≥ k0. Let l ≥ k0. It follows from (2.12) that

(δµ)2

2
(l − k0) ≤ d2(xk0 , p)− d2(xl+1, p)

≤ d2(xk0 , p).(2.13)

By letting l → ∞ in (2.13), we obtain

∞ ≤ d2(xk0 , p) < ∞,

which contradicts the reality. This proves that µ = 0. Thus,

lim sup
k→∞

d(yk, S
nkyk) ≤ 0.

Consequently, we have

lim
k→∞

d(yk, S
nkyk) = 0.(2.14)

Similarly, using (2.10), we may show that

lim
k→∞

d(xk, T
nkxk) = 0.(2.15)

Using (2.3) and (2.14), we have

d(xk, S
nkxk) ≤ d(xk, yk) + d(yk, S

nkxk)

≤ d(xk, yk) + d(yk, S
nkyk) + d(Snkxk, S

nkyk)

≤ d(xk, yk) + d(yk, S
nkyk) + bnk

(xk)d(xk, yk)

→ 0 (as k → ∞).

That is,

lim
k→∞

d(xk, S
nkxk) = 0.(2.16)

Finally, using (2.15) and (2.16), Lemma 2.1 appeals that

lim
k→∞

d(xk, Sxk) = 0 = lim
k→∞

d(xk, Txk).

□
Next, we deal with the weak convergence of the sequence {xk} defined by (1.2)

in a Hadamard space.
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Theorem 2.3. Let X be a Hadamard space and let C be a nonempty closed convex
bounded subset in X. Let S, T ∈ τ(C), let αk, βk ∈ (δ, 1− δ) for some δ ∈ (0, 12) and
let {nk} be an increasing sequence of natural numbers such that the sequence {xk}
in (1.2) is well defined. If the set Ω = {j : nj+1 = nj + 1} is quasi-periodic and
F ̸= Ø, then {xk} converges weakly to a point in F.

Proof. Let ωw(xk) be the set of all weak subsequential limits of {xk}. That is,
ωw(xk) = {y ∈ C : xki ⇀ y for {xki} ⊆ {xk}}. Since C is a nonempty bounded
closed convex subset of a Hadamard space X, there exists a subsequence {xki} of
{xk} such that xki converges weakly to p ∈ ωw(xk). This show that ωw(xk) ̸= ∅
and, using Lemma 2.1,

lim
i→∞

d(xki , Sxki) = 0 = lim
i→∞

d(xki , Txki).

It follows from Lemma 1.2 that Sp = p = Tp. Therefore ωw(xk) ⊂ F. Next, we
follow the idea of Chang et al. [5]. For any p ∈ ωw(xk), there exists a subsequence
{xki} of {xk} such that

xki ⇀ p (as i → ∞).(2.17)

It follows from (2.15) and (2.17) that

Tnkixki ⇀ p (as i → ∞).(2.18)

Now, from (1.2), (2.17) and (2.18), we get that

yki = (1− βki)xki ⊕ βkiT
nki ⇀ p (as i → ∞).(2.19)

Also, from (2.14) and (2.19), we have

Snkiyki ⇀ p (as i → ∞).(2.20)

It follows from (1.2), (2.19) and (2.20) that

xki+1 = (1− αki)yki ⊕ αkiS
nkiyki ⇀ p (as i → ∞).

Continuing in this way, by induction, we can prove that, for any l ≥ 0,

xki+l ⇀ p.

By induction, one can prove that
∪∞

l=0{xkj+l} converges weakly to p as j → ∞; in
fact, {xk}∞k=k1

=
∪∞

l=0{xkj+l}∞j=1 gives that xk ⇀ p as k → ∞. This completes the
proof. □

Remark 2.4. If {xk} is reqular in a geodesic space, then {xk} is ∆−convergent.

Our strong convergence theorem is as follows. We do not use the rate of conver-
gence condition namely

∑∞
k=1(cnk

(x)− 1) < ∞ in its proof.

Theorem 2.5. Let X be a Hadamard space and let C be a nonempty closed convex
bounded subset in X. Let S, T ∈ τ(C), let αk, βk ∈ (δ, 1 − δ) for some δ ∈ (0, 12)
and let {nk} be an increasing sequence of natural numbers such that the sequence
{xk} in (1.2) is well defind. If the set Ω = {j : nj+1 = nj + 1} is quasi-periodic
and F ̸= ∅ and either S or T is semi-compact (completely continuous), then xk
converges strongly to a point in F.
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Proof. Suppose that S is semi-compact. By Lemma 2.2, we have

limk→∞d(xk, Sxk) = 0.

Since S is semi-compact, there exists a subsequence {xki} of {xk} such that

xki → p (as i → ∞).

Now Lemma 2.3 guarantees that limi→∞ d(xki , Sxki) = 0. By the continuity of S
and T , we obtain that p ∈ F. The rest of the proof follows by replacing ⇀ with →
in Theorem 2.3 and we, therefore, omit the details. □
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[4] R. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive

mappings in Banach spaces with the uniform Opial property, Collec. Math. 65 (1993), 169–179.
[5] S. Chang, Y. J. Cho and H. Zhou, Demiclosed principle and weak convergence problems for

asymptotically nonexpansive mappings, J. Korean Math. Soc. 38 (2001), 145–160.
[6] C. E. Chidume, E.U. Ofoedu and H. Zegeye, Strong and weak convergence theorems for asymp-

totically nonexpansive mappings, J. Math. Anal. Appl. 280 (2003), 364–374.
[7] S. Dhompongsa and B. Panyanak, On ∆-convergence theorems in CAT(0) spaces, Comput.

Math. Appl. 56 (2008), 2572–2579.
[8] R. Espinola, A. Fernandez-Leon and B. Piatek, Fixed points of single and set-valued mappings

in uniformly convex metric spaces with no metric convexity, Fixed Point Theory Appl. 2010,
Article ID 169837.

[9] H. Fukhar-ud-din and A. R. Khan, Convergence of implicit iterates with errors for mappings
with unbounded domain in Banach spaces, Inter. J. Math. Math. Sci. 10 (2005), 1643–1653.

[10] H. Fukhar-ud-din and A. R. Khan, Approximating common fixed points of asymptotically non-
expansive maps in uniformly convex Banach spaces, Comput. Math. Appl. 53 (2007), 1349–
1360.

[11] H. Fukhar-ud-din and A. R. Khan, D. O’Regan, R. P. Agarwal, An implicit iteration scheme
with errors for a finite family of uniformly continuous mappings, Func. Dif. Equa. 14 (2007),
245–256.

[12] H. Fukhar-ud-din and S. H. Khan, Convergence of two-step iterative scheme with errors for
two asymptotically nonexpansive mappings, Inter. J. Math. Math. Sci. 37 (2004), 1965–1971.

[13] H. Fukhar-ud-din and S. H. Khan, Convergence of iterates with errors of asymptotically quasi-
nonexpansive mappings and applications, J. Math. Anal. Appl. 328 (2007), 821–829.

[14] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings,
Proc. Amer. Math. Soc. 35 (1972), 171–174.

[15] C. W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40 (1972), 369–
372.

[16] N. Hussain and M. A. Khamsi, On asymptotic pointwise contractions in metric spaces, Non-
linear Anal. 71 (2009), 4423–4429.

[17] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–
150.

[18] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory,
Wiley, New York, 2001.

[19] A. R. Khan and N. Hussain, Iterative approximation of fixed points of nonexpansive maps,
Scientiae Mathematicae Japonicae 54 (2001), 503–511.



COMMON FIXED POINTS ITERATION PROCESSES 2451

[20] S. H. Khan and H. Fukhar-ud-din, Weak and strong convergence of a scheme with errors for
two nonexpansive mappings, Nonlinear Anal. 61 (2005), 1295–1301.

[21] S. H. Khan and H. Fukhar-Ud-Din, Weak and strong convergence theorems whithout some
widely used conditions, Inter. J. Pure Appl. Math. 63 (2010), 137–148.

[22] S. H. Khan and H. Fukhar-Ud-Din, Approximation of common fixed points of pointwise as-
ymptotic nonexpansive maps in a Hadamard space, Advances Pure Math. 2 (2012), 450–456.

[23] S. H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically
nonexpansive mappings, Scientiae Mathematicae Japonicae 53 (2001), 143–148.

[24] W. A. Kirk, A fixed point theorem in CAT (0) spaces and R-trees, Fixed Point Theory Appl.
4 (2004), 309–316.

[25] W. A. Kirk and H. K. Xu, Asymptotic pointwise contractions, Nonlinear Anal. 69 (2008),
4706–4712.

[26] W. M. Kozlowski, Fixed point iteration processes for asymptotic pointwise nonexpansive map-
ping in Banach spaces, J. Math. Anal. Appl. 377 (2011), 43–52.

[27] T. Laokul and B. Panyanak, Approximating fixed points of nonexpansive mappings in CAT(0)
spaces, Inter. J. Math. Math. Sci. 3 (2009), 1305–1315.

[28] W. Laowang and B. Panyanak, Approximating fixed points of nonexpansive nonself mappings
in CAT(0) spaces, Fixed Point Theory Appl. 2010, 11 pages, Article ID: 367274.

[29] W. R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[30] B. Nanjara and B. Panyanak, Demiclosed principle for asymptotically nonexpansive mapping

in CAT(0) spaces, Fixed Point Theory Appl. 2010, 14 pages, Article ID: 268780.
[31] M. A. Noor and B. Xu, Fixed point iterations for asymptotically nonexpansive mappings in

Banach spaces, J. Math. Anal. Appl. 267 (2002), 444–453.
[32] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull.

Amer. Math. Soc. 73 (1967), 591–597.
[33] M. O. Osilike and A.Udomene, Weak and strong convergence theorems for fixed points of

asymptotically nonexpansive mappings, Math. Comput. Model. 32 (2000), 1181–1191.
[34] G. B. Passty, Construction of fixed points for asymptotically nonexpansive mappings, Proc.

Amer. Math. Soc. 84 (1982), 212–216.
[35] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.

Anal. Appl. 67 (1979), 274–276.
[36] B. E. Rhoades, Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl.

183 (1994), 118–120.
[37] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J.

Math. Anal. Appl. 158 (1991), 407–413.
[38] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings,

Bull. Amer. Math. Soc. 43 (1991), 153–159.
[39] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mapping by the Ishikawa

iteration process, J. Math. Anal. Appl. 178 (1993), 301–308.
[40] K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive

mapping, Proc. Amer. Math. Soc. 122 (1994), 733–739.

Manuscript received August 31, 2014

revised Noveber 27, 2015

T. Thianwan
Department of Mathematics, School of Science, University of Phayao, Phayao, 56000, Thailand

E-mail address: tanakit.th@up.ac.th


