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FIXED POINTS OF PROXIMINAL VALUED p-y-CONTRACTIVE
MULTIFUNCTIONS

H. ALIKHANI, V. RAKOCEVIC, SH. REZAPOUR, AND N. SHAHZAD

ABSTRACT. In this paper, we provide some fixed point results for proximinal
valued [-i-contractive multifunctions.

1. INTRODUCTION

During the last 50 years, a lot of fixed point results appeared on metric spaces
and ordered metric spaces by using different notions and distinct methods (see for
example, [1-21]). In 2012, Samet et al. introduced the notion of a-t)-contractive
mappings and proved some fixed point results for such mappings ([23]). Afterwards,
some authors further investigated this notion and obtained several fixed point results
(see, e.g., [9,10] and [22]). This notion was extended to multifunctions in [5, 7]
and [11].

Denote by ¥ the family of nondecreasing functions 1 : [0,00) — [0,00) such
that > "2 ¢"(t) < +oo for each t > 0. Tt is well known that ¢(¢) < ¢ for all
t > 0. Let (X,d) be a metric space. Let 3: 2% x 2X — [0,00) be a mapping and
Y € U. A closed valued multifunction 7' : X — 2% is said to be f-t-contractive
if 8(Tz, Ty)H(Tx,Ty) < (d(z,y)) for all z,y € X, where H is the Hausdorff
distance. Also, we say that T is S-admissible if (A, B) > 1 implies 8(Tz,Ty) > 1
for all z € A and y € B, where A and B are subsets of X. A subset A of a metric
space (X,d) is called proximinal if for each z € X there exists ap € A such that
d(x,a0) = inf,c 4 d(a,x). We denote the set of all proximinal subsets of X by P(X).
Finally, let (X, <) be an ordered set and A, B C X. We say that A < B if for each
a € A there exists b € B such that a < b. In this paper, we provide some fixed
point results for proximinal valued S-1)-contractive multifunctions.

2. MAIN RESULTS
Now, we are ready to state and prove our main results.

Theorem 2.1. Let (X,d) be a complete metric space, B : 2% x 2% — [0, 4+00) a
mapping and T : X — P(X) a [-admissible and B--contractive multifunction.
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Suppose that there exist A C X and o9 € A such that 3(A,Txg) > 1. If © —
d(xz,Tx) is lower semi-continuous, then T has a fized point.

Proof. Take the subset A of X and xzy € A such that S(A,Tzp) > 1. Choose
x1 € Txg such that d(xp, x1) = infaery, d(a, xo). By continuing this process we can
find a sequence {z,} in X such that d(x,, xn+1) = infeery, d(a, z,) and z,41 € Ty,
for all n > 1. If x,, = z,,4+1 for some n, then x,, is a fixed point of T. Assume that
Xy # xp—1 for all n > 1. Since 5(A,T'zp) and T is [S-admissible, 5(Txg, Tz1) > 1.
It is easy to get that S(Tzp—1,Tx,) > 1 for all n > 1. On the other hand, we have

H(Txp—1,Txy)

B(Txp—1,Txn)H(Txp—1,TTy)

Y(d(@n—1,2n))

and so d(zy, Tn11) < Y(d(zp—1,xy,)) for all n. Now by induction, we get d(zy,, Tni1) <

Y™ (d(xg, 1)) for all n. Let € > 0 be given. Choose a natural number N, such that
anNE Y™ (t) < e. Let m >n > N.. Then,

Cl((]?n, wn—i—l)

ININ A

m—1
d(Tp, xm) < Zd(fﬂkal‘k—&-l)
k=n

m—1
< Y YFd(wo, 1)
k=n

< > rd(wo, )
n>Ng
< e

Hence, {z,} is a Cauchy sequence. Choose z* € X such that z,, — z*. Since
d(xpn, Txn) < B(Txp—1,Txy)H(TxH_1,Txy) < Y(d(Tp—1,2y)) for all n. we have
limy, o0 d(zp, Txy,) = 0. Lower semi-continuity of z — d(x,Tx) further implies
that d(x*, Ta*) = 0. Since each proximinal set is closed, we get z* € T'z*. O

The following example shows that there are multifunctions satisfying the condi-
tions of Theorem 2.1.

Example 2.2. Let X = [0,00) and d(z,y) = |x — y|. Define the multifunction
T:X — P(X) by Tz = [5,4] forx < 4 and Tx = [2,z] for 4 < . Also, define
the mappings B : 2% x 2% — [0,400) and ¢ : [0,+00) — [0,+00) by ¥(t) = §
and B(A,B) = 1 if A and B are subsets of [0,4] and B(A, B) = 0 otherwise. It
is easy to see that T is B-admissible and B(Tx, Ty)H(Txz,Ty) < (d(x,y)) for all
z,y € X. Let A=[1,2] and zo = 1. Then, Tzo = [35,4] and B(A, Txo) = 1. Also
x — d(z,Tx) is lower semi-continuous.

Corollary 2.3. Let (X,d) be a complete metric space, x* € X a fized element
and T : X — P(X) a multifunction such that H(Tx,Ty) < (d(z,y)) for all
x,y € X with z* € Te N Ty. Suppose that there exist A C X and x1 € A such
that x* € Tx1 N A. Assume that for each subset B C X with xg € AN B, we have
¥ e€TeNTy forallxz € A andy € B. If © — d(x,Tx) is lower semi-continuous,
then T has a fixed point.
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Proof. Tt is sufficient we define 3 : 2% x 2% — [0,00) by B(4,B) =1ifz* € ANB
and B(A, B) = 0 otherwise, and then we use Theorem 2.1. O

Corollary 2.4. Let (X, =,d) be a complete ordered metric space and T : X — P(X)
a multifunction such that H(Tx,Ty) < (d(z,y)) for all x,y € X with Tx < Ty.
Suppose that there exist A C X and xg € A such that Txg < A. Assume that for
each subset B C X with A 2 B, we have Tx <X Ty for allz € A andy € B. If
x — d(x,Tx) is lower semi-continuous, then T has a fized point.

Proof. 1t is sufficient we define 5(A,B) = 1 if A < B and (A, B) = 0 otherwise,
and then we use Theorem 2.1. O

Now, we give our second result by replacing a distinct condition instead of lower
semi-continuity. We call it Condition (R).

Theorem 2.5. Let (X,d) be a complete metric space and T : X — P(X) a (-
admissible and B-1y-contractive multifunction. Suppose that there exist A C X and
xo € A such that B(A,Txg) > 1. Also, suppose that for each convergent sequence
{zn} in X with v, — = and B(Txp—1,Tx,) > 1 for all n, we have 3(Txy,,Tx) > 1
for alln. Then T has a fixed point.

Proof. By using a similar argument in the proof of Theorem 2.1, we obtain the

Cauchy sequence {z,} in X such that B(Tx,—1,Tz,) > 1 for all n. Choose an

element z* € X such that x,, — z*. Thus, (Tx,—1,Tx*) > 1 for all n. Hence,
d(z*, Tz") < d(x7,y) < d(z”, z) + d(z,y)

for all y € Tz* and all z € X and so d(z*,Tz*) < d(2*, Txp—1) + d(Txp—1,Tx*).
Thus, we get

dz*, Tx*) < d(z",Txp-1)+d(Txp_1,Tx")
< d(z*,xpn) + B(Txp_1,Tx*)d(Txp_1,Tx")
< d(@”, wn) + P(d(rn-1,27))
< d(z*,zp) + d(zp—1,2").
Hence, d(z*,Tx*) = 0 and so z* € Tz*. O

The following examples show that there are multifunctions satisfying Theorem
2.5.

Example 2.6. Let X = NU{0} and d(z,y) = |x —y|. Define the proximinal valued
multifunction T on R by Tx = Up>1[z + 2n]10, where

[+ 2n|1o={m € X : 2+ 2n=m (modl0)}.

If we calculate, then we get that Tx = {1,3,5,7,9,11,...} whenever x is odd and
Tz = {0,2,4,6,8,10,...} otherwise. Also, suppose that » € U and define the
mapping 3 : 2% x 2% — [0, +00) by B(A, B) = 1 if A and B does not have any even
elements and (A, B) = 0 otherwise. Let A and B be subsets of X with (A, B) > 1.
Then A and B have only odd elements and so

Tz =Ty ={1,3,5,7,9,...}.
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Hence, (Tz,Ty) = 1 for all x € A and y € B. This implies that T is [3-
admissible. Now, put A = {1,3} and v9 = 1. Then, Tzy = {1,3,5,7,9,...}
and so B(A,Txg) = 1. Suppose that {x,} is a convergent sequence in X with
xn — x* and (Txy, Txn—1) > 1 for all n. Then for each n, Tx, has no even
element and so x, is odd for all n. Thus, we conclude that x* is odd and so
Tz, = Tx* = {1,3,5,7,9,...} for all n. Hence, B(Tx,,Tx*) = 1 for all n. If
B(Tz,Ty) =1, then H(Tz,Ty) = 0 and so f(Tz,Ty)H(Tz,Ty) < (d(z,y)) for
all x,y € X. Therefore, T is a B-1)-contractive multifunction.

By using the idea of last example, we can provide an easier one.

Example 2.7. Let X = NU{0} and d(z,y) = |z —y|. Define the proziminal valued
multifunction T on R by Tx = {1,3,5,7,9} if x is odd and Tx = {0,2,4,6,8}
otherwise. Also, suppose that ¢ € U and define the mapping B3 : 2% x 2% — [0, +00)
by B(A,B) =1 if A and B does not have even element and (A, B) = 0 otherwise.
Let A and B be subsets of X with B(A,B) > 1. Then A and B have only odd
elements and so Tx = Ty = {1,3,5,7,9} for all x € A and y € B. Hence,
B(Tx,Ty) =1 and so T is f-admissible. Now, put A = {1,3} and xg = 1. Then,
Txo ={1,3,5,7,9} and (A, Txzo) = 1. Suppose that {x,} is a convergent sequence
in X with x, — x* and f(Tzy,Txp—1) > 1 for alln. Then for each n, Tz, has no
even element and so x, is odd for all n. Thus, =* is also odd and Tz, = Tz* =
{1,3,5,7,9} for all n. Hence, f(Txn, Tx*) =1 for all n. If B(Tz,Ty) = 1, then
H(Tz,Ty) = 0 and so 0 = B(Tz,Ty)d(Tz,Ty) < ¢(d(x,y)) for all z,y € X.
Therefore, T is a B--contractive multifunction.

Corollary 2.8. Let (X, d) be a complete metric space, zg € X andT : X — P(X) a
multifunction such that H(Tx,Ty) < ¢(d(z,y)) for all z,y € X with zg € TxNTy.
Suppose that there exist A C X and x1 € A such that xg € Tx1 N A. Assume that
for each subset B C X with xg € AN B, we have xg € Tx NTy for all x € A and
y € B. Also, suppose that for each convergent sequence {x,} in X with x, — = and
xg € Txn_1 NTx, for all n, we have xg € Txy, NTx for all n. Then T has a fized
point.

Corollary 2.9. Let (X, <X,d) be a complete ordered metric space andT : X — P(X)
a multifunction such that H(Txz,Ty) < (d(z,y)) for all x,y € X with Tx < Ty.
Suppose that there exist A C X and xg € A such that Txg < A. Assume that for
each subset B C X with A < B, we have Tx X Ty for allx € A and y € B. Also,
suppose that for each convergent sequence {x,} in X with x, — x and Txy,_1 < Txy,
for all n, we have Tx, < Tx for all n. Then T has a fized point.

Theorem 2.10. Let (X,d) be a complete metric space and T : X — P(X) a B-
admissible multifunction. Suppose that there exist A C X and xg in A such that
B(A,Txo) > 1. Also, Assume that

B(Tz, Ty)H(Tx, Ty) < (M (z,y))

for all z,y € X, where
d(y, Tx) + d(z, Ty
Mz, y) = max {d(z,y), d(z, Tz), d(y, Ty), ( )2 ( ))}

If © — d(x,Tx) is lower semi-continuous, then T has a fixed point.
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Proof. Let {x,} be the sequence obtained as in the proof of Theorem 2.1. Then,
H(Txp—1,Txy)
B(Txp—1,Txy)H(Txp_1,Txy)
V(M (zn-1,2n))
for all n. If M(xp—1,2,) = d(zp—1,zy), then d(xn, zny1) < Y(d(zp—1,2,)). If
M(xp—1,24) = d(xp-1,Txy_1), then
d(m’m xn—s—l) < w(d(xn—laTxn—l)) < ¢<d(xn—17xn))

If M(xp—1,2y) = d(xn, Txy,), then

d(Tn, Tny1) < Y(d(xn, Tan)) < Y(d(Tn, Tnt1))
and so we get a contradiction. Thus, d(x,,Tnt+1) < Y(d(zp-1,%,)). Finally, if
M (21, ) = Qo T o2 PdEnTon) - pen
M(xp—1,2,) < d(xp, xns1). Therefore, we get

d(xnv xn—i—l) < w(d(xn—ly xn))

for all n. Now, by following the proof of Theorem 2.1, one can show that the
sequence {x,} is Cauchy and T has a fixed point. O

d($na anrl)

VAN VANVAN

Tn—1,%n) < d(xp—1,2y) or we have

Corollary 2.11. Let (X,d) be a complete metric space, x* € X a fized element
and T : X — P(X) a multifunction such that H(Tx,Ty) < (M(x,y)) for all
x,y € X with z* € Te N Ty. Suppose that there exist A C X and r1 € A such
that x* € Tx1 N A. Assume that for each subset B C X with x* € AN B, we have
¥ e€TeNTy forallx € A andy € B. If v — d(x,Tx) is lower semi-continuous,
then T has a fixzed point.

Corollary 2.12. Let (X, =,d) be a complete ordered metric space and T : X —
P(X) a multifunction such that H(Tz,Ty) < ¥(M(x,y)) for all xz,y € X with
Tx < Ty. Suppose that there exist A C X and xg € A such that Txzg =X A. Assume
that for each subset B C X with A < B, we have Tx <X Ty for allx € A and y € B.

If ¢ — d(x,Tx) is lower semi-continuous, then T has a fized point.
Similar to Theorem 2.5, we can obtain the following result.

Theorem 2.13. Let (X,d) be a complete metric space and T : X — P(X) a B-
admissible multifunction. Suppose that there exist A C X and zg € A such that
B(A,Txzg) > 1. Assume that for each convergent sequence {x,} in X with x, — x
and B(Txp—1,Txy) > 1 for all n, we have B(Tx,,Tx) > 1 for all n. Suppose that
B(Tx, Ty)H(Tz,Ty) < Y(M(x,y)) for all x,y € X, where

dy, Tz) +d(z, Ty
M(z.y) = max {d(z,y). d(z. Tx). d(y. Ty), (227D ATTIYY
Then T has a fized point.

Corollary 2.14. Let (X, d) be a complete metric space, x* € X a fized element and
T:X — P(X) a multifunction such that H(Tz,Ty) < (M (z,y)) for all x,y € X
with x* € Tx NTy. Suppose that there exist A C X and x1 € A such that z* €
Tx1NA. Assume that for each subset B C X with z* € ANB, we have x* € TxNTy
for allz € A and y € B. Also, suppose that for each convergent sequence {x,} in
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X with x,, > = and oy € Txp_1 NTx, for all n, we have xg € Tx, NTx for all n.
Then T has a fized point.

Corollary 2.15. Let (X, =,d) be a complete ordered metric space and T : X —
P(X) a multifunction such that H(Tz,Ty) < ¥(M(x,y)) for all xz,y € X with
Tx <= Ty. Suppose that there exist A C X and xg € A such that Tzg X A. Assume
that for each subset B C X with A < B, we have Tx =< Ty for all x € A and
y € B. Also, suppose that for each convergent sequence {z,} in X with z, — x and
Tz, 1 2Tz, for all n, we have Tz, <X Tz for all n. Then T has a fized point.

Finally, we emphasize that by using the techniques of [8] one can obtain similar
results by substituting equivalent contractions instead of (-iy-contractivity.
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