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FIXED POINT AND ENDPOINTS THEOREMS FOR
SET-VALUED CONTRACTION MAPS
IN CONE METRIC SPACES

HOSSEIN SOLEIMANI, S. MANSOUR VAEZPOUR, MEHDI ASADI, AND BRAILEY SIMS

ABSTRACT. Wardowski [D. Wardowski, End points and fixed points of set-valued
contractions in cone metric spaces, J. Nonlinear Analysis, doi:10.1016 j.na.2008.
10.089] introduced the concept of set-valued contractions in cone metric spaces
and proved some theorems in normal cone metric spaces. In this work we prove
a theorem for nonexpansive set valued maps and by omitting the assumption of
normality in some results we generalize some end point and fixed point theorems
for set-valued maps.

1. INTRODUCTION AND PRELIMINARY

Long-Guang and Xian [11] defined cone metric spaces by substituting an ordered
normed space for the real numbers and proved various fixed point theorems for
contractive single valued maps in such spaces. The study of fixed point theorems
on cone metric spaces was taken up by other mathematicians, see [1-12]. Wardowski
[13] introduced the concept of set-valued contractions in cone metric spaces. In this
paper we prove a theorem for nonexpansive set valued maps and by omitting the
assumption of normality in some results we generalize several end point and fixed
point theorems for set-valued maps.

Let E be a real Banach space, and P a subset of E, P is called a cone in F if it
satisfies:

(i) P is closed, nonempty and P # {0},

(ii) a,b € R, a,b >0 and z,y € P imply that ax + by € P,

(iii) z € P and —z € P imply that z = 0.
The space E can be partially ordered by the cone P C F; that is, x < y if and only
ify—a € P. Also we write x < y if y —x € int P, where int P denotes the interior
of P.
A cone P is called normal if there exists a constant K > 0 such that 0 < z < y
implies ||z|| < K||y||. The least positive such number is called the normal constant
of P.
In the following we always suppose that F is a real Banach space, P is a cone in
with intP # () and < is the partial ordering induced on E by P.

Definition 1.1 ([11]). Let M be a nonempty set. Assume that the mapping d :
M x M — E satisfies

(i) 0 < d(z,y) for all z,y € M and d(z,y) =0iff x =y

(ii) d(z,y) = d(y,x) for all z,y € M
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(iii) d(z,y) < d(z,z) + d(z,y) for all x,y,z € M,

then d is called a cone metric on M, and (M, d) is called a cone metric space.

Let (M,d) be a cone metric space. A set A C M is called closed if for any
sequence {z,} C A which is convergent to =, we have x € A, where {x,} converges
to x if for every ¢ € E with ¢ > 0 there exists IV such that for n > N, we have
d(zy, ) < c.

A set A C M is called sequentially compact if for any sequence {x,} C A, there
exists a subsequence {zy, } of {x,} which is convergent to an element of A.

Denote by N (M) the collection of all nonempty subsets of M, C (M) the collection
of all nonempty closed subsets of (M) and K (M) the collection of all nonempty
sequentially compact subsets of M.

An element z € M is said to be an endpoint of a set-valued map T': M — N (M),
if Tz = {x}. We denote a set of all endpoints of T' by End(T).

An element = € M is said to be a fized point of a set-valued map T : M — N (M),
if z € T'z. Denote the set of all fixed point of T' by Fix(T) = {x € M|z € Tz}.

A map f: M — R is called lower semi continuous, if for any sequence {z,} in
M and z € M, such that x,, — = as n — oo, we have f(x) < liminf,, o f(xy).

A map f: M — F is said to have the lower semi continuous condition, (l.s.c.c.
for short) if for any sequence {z,} C M and z € M such that z,, - = as n — o0
and for all ¢ € E with ¢ > 0 then there exists N € N that f(z) < f(xy,) + ¢ for all
n > N.

P called minihedral cone if sup{x,y} exists for all z,y € E, and strongly mini-
hedral if every subset of E which is bounded from above has a supremum [8]. Let
(M,d) a cone metric space, cone P is strongly minihedral and hence, every subset
of P has infimum, so for A € C'(M), we define d(x, A) = infyca d(z,y).

Definition 1.2. Let (M, d) be a cone metric space. The distance of a point = € M
to aset A € C(M) is defined to be

?A = .f b
p(z,A) ueg@,A)”“”

where D(z, A) = {d(z,2): z € A} CE.
Distance between sets in C'(M), H : C(M) x C(M) — R, is defined by,

H(A, B) = max{sup p(z, A), sup p(y, B)},
reB yeA

for every A, B € C(M).
For a net {A,} C C(M) and Ag € C(M) we say
Ay — Ay = H(Aa,Ao) — 0.

For A € C(M) let F4 be a non-empty collection of mappings from [0, 1] to C(M)
with f(1) = A for all f € Fa. Let F'= UaccmnFa-

Such a family F' is said to be contractive if there exists a decreasing map ¢ :
(0,1) — (0,1) such that

H(fa(t), f5(t)) < (t)H(A, B),
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for all A,B € C(M) and t € (0,1).
F said to be jointly continuous if A, — Ao and t, — to implies
faa(ta) = faq(to)-
2. THE RESULTS
Lemma 2.1. If p(z,A) =0 then x € A.

Proof. Suppose p(xz,A) = 0 then, there exists {y,} C A with d(z,y,) — 0, so
Yn — x which implies that z € A because A is closed. 0

Theorem 2.2. Let M be a sequentially compact subset of a complete cone metric
space (X,d), with normal cone P of constant one such that every contraction set-
valued map M — K (M) has a fixved point, and there exists a contractive and jointly
continuous family F of functions associated to K(M). Then every nonexpansive
set-valued map T : M — K (M) has a fixed point.

Proof. For all n let T, : M — K (M) be defined by T,,(z) = fr(,)(;37)- So for all
n € Nand x,y € M we have

H(Tohx, Thy) = H (fT(:v> (nil> J1) <nj—1>>
o <nil) H(Tz,Ty)

o () oo = (0 )Nl

Hence every T, : M — K(M) is a contraction set-valued map and so has a fixed
point. Therefore for all n € N there exists z,, € M such that z, € T,(x,). By the
sequentially compactness of M there exists a subsequence {z,, } of {x,} such that
T, — o for some xg € M. Now

H(TxanxO) < p(xnk’ xO) = Hd(xnme)H —0

this implies that Tz, — T'zo as k — oo. On the other hand lim,,_,
according to the joint continuity of F'
n

xnk € Tnk(xnk) = sznk <n+ 1
so xg € Txg, because for all z € Txzg we have
d(zo, z) < d(zo,zpn,) + d(zp,, 2),

IN

IN

n_ __
rﬂ—land

> = frao(1),

and hence,
p(xo, 2) = ||d(zo, 2)|| < p(z0,Tn,) + p(Tny, 2),
because P is a normal cone with constant 1. Now,
P(x07 Tx()) S P(x07 Z) S p({BOa mnk) + p<$nk7 Z)?
for all z € Tz, therefore
10(1'07T$0) < p($0axnk) + inf ,O(l'nk,z)
z€Txq

< p(x()a .’L'nk) + p(.%'nk,TLUO)
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< p($0axnk) +H(Tnk$”k’T:E0)7
which implies that xy € T'xg. O
Example 2.3. Let M :=[0,1] and let E := R? with norm H( ,b) || = max{|al,|b|},

then P := {(z,y) : z,y > 0} is normal cone of constant one and (M, d) is a complete
cone metric space with d(z,y) = (| — y|, 8|z — y|) where g € (0,1).

Define T': M — K (M) = C(M) with

B {iz} z€l0,1),
T“J—{[OQ,;] r=1

T is nonexpansive, since
1 1 1 1
H(Tz,T :H( z, ):(7,7>
(Tx, Ty) 58 5Y) = P55y
1

- H ( )H H( |z —yl, B |.Z‘—y|)H_ lz =yl

for all x,y < 1. On the other hand

H(z,y) = pz,y) = [ld(z,y)l| = [[(lz —yl, Blz —yDIl = | — yl.
So for all z,y < 1 we have H(Tx,Ty) < H(z,y) = p(z,y). Forx <1 and y = 1, we
conclude H(Txz,Ty) = H({%£},[0,4]) = 0. And for z = y = 1 we have H(T1,T1) =
p(1,1) = 0.

Now we show that every contraction T : [0, 1] — K([0,1]) has a fixed point. We
note that H(Tz,Ty) = |Tx — Ty| and p(x,y) = |x — y| by definition, so every
contraction set-valued map 7 : [0,1] — C([0,1]) has a fixed point, by Nadler’s
theorem.

Let fa : [0,1] — K(]0,1]) be defined by fa(t) = tA = {tz : = € A} and
F:={fa:Aec K(0,1])}. Then F is jointly continuous and we have

H(fa(t), f5(t)) = H(tA,tB) < p(t)H(A, B),

forall A, B € K([0,1]) and ¢(t) =t for all t € [0,1]. Thus, T satisfies the hypothesis
of the previous theorem and must have a fixed point. In fact 0 € T0 = {0}, is a
fixed point.

3. FIXED POINTS AND ENDPOINTS
Let (M,d) be a cone metric space and T : M — C(M). For x,y € M we define
D(z,Ty) = {d(z,2) : z € Ty},
S(x, Ty) = {u € D(z,Ty) : ||lu|| =inf{||Jv]| : v € D(z,Ty)}}.

In the hypothesis of the following lemma and theorems the assumption that the
cone is normal is omitted.

Lemma 3.1. Let (M, d) be a cone metric space andT : M — C(M). If the function
f(x) = infyery |d(z, )|, x € M is lower semi continuous, then Fix(T) is closed.
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Proof. Let x, € Tx and x,, — x. We show that x € T'x. We have
< T fioie
fx) < liminf f(z,) = lim inf ot [d(zn, )],

< hnrglgéf |d(xn, zp)|| =0,

so f(x) = 0 therefore ||d(yn,x)|| — 0 for some y,, € Tz. Given ¢ € E with ¢ > 0,
there exists N such that for n > N we have d(y,,z) < ¢. So y, — x and since Tz
is closed thus x € T'x. O

In the next results we will suppose that P is strongly minihedral cone in F with
nonempty interior.

Theorem 3.2. Let (M,d) be a complete cone metric space, let T : M — C(M), be
a set-valued map and suppose f(x) = d(x,Tx) © € M, satisfies the l.s.c.c. If there
exist real numbers a,b,c,e > 0 and g > 1 with k := aq + b+ ceq < 1 such that

vaMayETIElvGD(y,Ty)quD(x,Tx) ElzeD(y,Tac)u
we have
d(z,y) < qu, z <ed(z,y) andv < ad(x,y) + bu + cz,
then Fixz(T) # 0.
Proof. Choose g € M. Take ug € D(xo,Txo). So there exist x; € Tzp and
uyp € D(x1,Tx1) and 29 € D(x1,Txp) such that
d(zo, 1) < qup and zg < ed(xp,x1),
and
uy < ad(xo,x1) + bug + c2p.
Thus 2y < equg and u; < kug.

Further, for z; € M. Take u; € D(z1,Tx1). So there exist o € Tzy and ug €
D(z9,Tx2) and 21 € D(x2,Tx1) such that

d(x1,m2) < qui and z; < ed(z1,x2),
and
ug < ad(x1,x2) + buy + 2.
Thus 21 < equi and us < kuqp < k2up.
Continuing in this way we obtain sequence {u,} and {z,} with, u, < k™up and
d(Zpy Tnt1) < qup < gk"ug.
So, for every n > m

d(xna xm) S d(xna xn—l) + d(xn—ly mn—Q) +---+ d(xm+17 xm)
< gk" tug + gk Pug + - + gk,
< g4k R4 up
< gq K Uug.
I Ay

So, for every ¢ > 0 and ¢ € FE there exists N such that for n,m > N we have
A(Zpy Tm) < q%uo < ec.

Therefore {x,} is Cauchy in a complete cone metric space, so z,, — x* for some
z* € M. Now we claim z* € Tz*.
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Let u,, € D(xy,Tx,) hence there exists t,, € Tz, such that 0 < u,, = d(x,,t,) <
k™uq for all ug € D(xg,Txzp). Now k™ug — 0 as n — oo, so again, for all 0 < ¢
there exists N € N such that u,, < k"™uy < ¢ for all n > N.

Now, from the ls.c.c. of f, for all ¢ > 0 there exists NV € N such that for all
n>N
f@) < flxp) +c= e1I%f d(xn,y) + ¢ < up +c <K 2¢.
yelxn

So 0 < f(z*) < 2¢ for all ¢ > 0. Hence, f(z*) = 0 and so d(y,,x*) — 0 for some
yn € Tx*, and since T'x* is closed we have x* € T'x*. O

Corollary 3.3. Let (M,d) be a complete cone metric space, let T : M — K(M)
be a set-valued map and suppose the function f(x) = d(x,Tx), for x € M, has the
l.s.c.c.

(i) If there exist real numbers a,b,c,e > 0 and ¢ > 1 with k := aq+b+ceq < 1
such that

va:eMElyeTxE'veS(y,Ty)Vues(ac,Tac)E'zGS(y,T:z:)7
with
d(z,y) < qu, z <ed(xz,y) and v < ad(z,y) + bu + cz,
then Fix(T) # 0.

(ii) If there exist real numbers a,b,c,e > 0 and ¢ > 1 with k := aq+b+ceq < 1
such that

VeeMVyerzFves(y,Ty) VueS(e,Tz) F2e D(y,Tz)s
we have
d(z,y) < qu, z <ed(z,y) and v < ad(z,y) + bu + cz,
then Fix(T) = End(T) # 0.

Corollary 3.4. Let (M,d) be a complete cone metric space, let T : M — C(M)
be a set-valued map and suppose that the function defined by f(x) = d(z,Tz), for
x € M, satisfies the l.s.c.c. If there exist real numbers a,b > 0 and ¢ > 1 with
aq + b < 1 such that
v:I:EMElyeTzElveD(y,Ty)quD(ac,Tyc)7

we have

d(z,y) < qu and v < ad(z,y) + bu,
then Fix(T) # 0.

Corollary 3.5. Let (M,d) be a complete cone metric space, let T : M — C(M)
be a set-valued map and suppose that the function defined by f(x) = d(xz,Tx), for
x € M, satisfies the l.s.c.c. If there exist real numbers 0 < A < 1, A < b <1 such
that

vxEMEyETxElveD(y7Ty)vueD(ac,Tac)7
we have

bd(z,y) <u and v < Ad(zx,y)],

then Fix(T) # 0.
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