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(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ M ,

then d is called a cone metric on M , and (M,d) is called a cone metric space.

Let (M,d) be a cone metric space. A set A ⊆ M is called closed if for any
sequence {xn} ⊆ A which is convergent to x, we have x ∈ A, where {xn} converges
to x if for every c ∈ E with c ≫ 0 there exists N such that for n ≥ N , we have
d(xn, x) ≪ c.

A set A ⊆ M is called sequentially compact if for any sequence {xn} ⊆ A, there
exists a subsequence {xnk

} of {xn} which is convergent to an element of A.
Denote byN(M) the collection of all nonempty subsets ofM , C(M) the collection

of all nonempty closed subsets of (M) and K(M) the collection of all nonempty
sequentially compact subsets of M.

An element x ∈ M is said to be an endpoint of a set-valued map T : M → N(M),
if Tx = {x}. We denote a set of all endpoints of T by End(T ).

An element x ∈ M is said to be a fixed point of a set-valued map T : M → N(M),
if x ∈ Tx. Denote the set of all fixed point of T by Fix(T ) = {x ∈ M |x ∈ Tx}.

A map f : M → R is called lower semi continuous, if for any sequence {xn} in
M and x ∈ M, such that xn → x as n → ∞, we have f(x) ≤ lim infn→∞ f(xn).

A map f : M → E is said to have the lower semi continuous condition, (l.s.c.c.
for short) if for any sequence {xn} ⊆ M and x ∈ M such that xn → x as n → ∞
and for all c ∈ E with c ≫ 0 then there exists N ∈ N that f(x) < f(xn) + c for all
n ≥ N.

P called minihedral cone if sup{x, y} exists for all x, y ∈ E, and strongly mini-
hedral if every subset of E which is bounded from above has a supremum [8]. Let
(M,d) a cone metric space, cone P is strongly minihedral and hence, every subset
of P has infimum, so for A ∈ C(M), we define d(x,A) = infy∈A d(x, y).

Definition 1.2. Let (M,d) be a cone metric space. The distance of a point x ∈ M
to a set A ∈ C(M) is defined to be

ρ(x,A) = inf
u∈D(x,A)

∥u∥,

where D(x,A) = {d(x, z) : z ∈ A} ⊆ E.
Distance between sets in C(M), H : C(M)× C(M) → R, is defined by,

H(A,B) = max{sup
x∈B

ρ(x,A), sup
y∈A

ρ(y,B)},

for every A,B ∈ C(M).

For a net {Aα} ⊆ C(M) and A0 ∈ C(M) we say

Aα → A0 ⇐⇒ H(Aα, A0) → 0.

For A ∈ C(M) let FA be a non-empty collection of mappings from [0, 1] to C(M)
with f(1) = A for all f ∈ FA. Let F = ∪A∈C(M)FA.

Such a family F is said to be contractive if there exists a decreasing map φ :
(0, 1) → (0, 1) such that

H(fA(t), fB(t)) ≤ φ(t)H(A,B),
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for all A,B ∈ C(M) and t ∈ (0, 1).
F said to be jointly continuous if Aα → A0 and tα → t0 implies

fAα(tα) → fA0(t0).

2. The results

Lemma 2.1. If ρ(x,A) = 0 then x ∈ A.

Proof. Suppose ρ(x,A) = 0 then, there exists {yn} ⊆ A with d(x, yn) → 0, so
yn → x which implies that x ∈ A because A is closed. □
Theorem 2.2. Let M be a sequentially compact subset of a complete cone metric
space (X, d), with normal cone P of constant one such that every contraction set-
valued map M → K(M) has a fixed point, and there exists a contractive and jointly
continuous family F of functions associated to K(M). Then every nonexpansive
set-valued map T : M → K(M) has a fixed point.

Proof. For all n let Tn : M → K(M) be defined by Tn(x) = fT (x)(
n

n+1). So for all
n ∈ N and x, y ∈ M we have

H(Tnx, Tny) = H

(
fT (x)

(
n

n+ 1

)
, fT (y)

(
n

n+ 1

))
≤ φ

(
n

n+ 1

)
H(Tx, Ty)

≤ φ

(
n

n+ 1

)
ρ(x, y) = φ

(
n

n+ 1

)
∥d(x, y)∥.

Hence every Tn : M → K(M) is a contraction set-valued map and so has a fixed
point. Therefore for all n ∈ N there exists xn ∈ M such that xn ∈ Tn(xn). By the
sequentially compactness of M there exists a subsequence {xnk

} of {xn} such that
xnk

→ x0 for some x0 ∈ M. Now

H(Txnk
, Tx0) ≤ ρ(xnk

, x0) = ∥d(xnk
, x0)∥ → 0

this implies that Txnk
→ Tx0 as k → ∞. On the other hand limn→∞

n
n+1 = 1 and

according to the joint continuity of F

xnk
∈ Tnk

(xnk
) = fTxnk

(
n

n+ 1

)
→ fTx0(1),

so x0 ∈ Tx0, because for all z ∈ Tx0 we have

d(x0, z) ≤ d(x0, xnk
) + d(xnk

, z),

and hence,
ρ(x0, z) = ∥d(x0, z)∥ ≤ ρ(x0, xnk

) + ρ(xnk
, z),

because P is a normal cone with constant 1. Now,

ρ(x0, Tx0) ≤ ρ(x0, z) ≤ ρ(x0, xnk
) + ρ(xnk

, z),

for all z ∈ Tx0, therefore

ρ(x0, Tx0) ≤ ρ(x0, xnk
) + inf

z∈Tx0

ρ(xnk
, z)

≤ ρ(x0, xnk
) + ρ(xnk

, Tx0)
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≤ ρ(x0, xnk
) +H(Tnk

xnk
, Tx0),

which implies that x0 ∈ Tx0. □

Example 2.3. Let M := [0, 1] and let E := R2 with norm ∥(a, b)∥ = max{|a|, |b|},
then P := {(x, y) : x, y ≥ 0} is normal cone of constant one and (M,d) is a complete
cone metric space with d(x, y) = (|x− y|, β|x− y|) where β ∈ (0, 1).

Define T : M → K(M) = C(M) with

Tx =

{
{1
2x} x ∈ [0, 1),

[0, 12 ] x = 1.

T is nonexpansive, since

H(Tx, Ty) = H
(1
2
x,

1

2
y
)
= ρ

(1
2
x,

1

2
y
)

=
∥∥∥d(1

2
x,

1

2
y
)∥∥∥ =

∥∥∥(1
2
|x− y|, β 1

2
|x− y|

)∥∥∥ =
|x− y|

2
,

for all x, y < 1. On the other hand

H(x, y) = ρ(x, y) = ∥d(x, y)∥ = ∥(|x− y|, β|x− y|)∥ = |x− y|.

So for all x, y < 1 we have H(Tx, Ty) ≤ H(x, y) = ρ(x, y). For x < 1 and y = 1, we
conclude H(Tx, Ty) = H({x

2}, [0,
1
2 ]) = 0. And for x = y = 1 we have H(T1, T1) =

ρ(1, 1) = 0.
Now we show that every contraction T : [0, 1] → K([0, 1]) has a fixed point. We

note that H(Tx, Ty) = |Tx − Ty| and ρ(x, y) = |x − y| by definition, so every
contraction set-valued map T : [0, 1] → C([0, 1]) has a fixed point, by Nadler’s
theorem.

Let fA : [0, 1] → K([0, 1]) be defined by fA(t) = tA = {tx : x ∈ A} and
F := {fA : A ∈ K([0, 1])}. Then F is jointly continuous and we have

H(fA(t), fB(t)) = H(tA, tB) ≤ φ(t)H(A,B),

for all A,B ∈ K([0, 1]) and φ(t) = t for all t ∈ [0, 1]. Thus, T satisfies the hypothesis
of the previous theorem and must have a fixed point. In fact 0 ∈ T0 = {0}, is a
fixed point.

3. Fixed points and endpoints

Let (M,d) be a cone metric space and T : M → C(M). For x, y ∈ M we define

D(x, Ty) = {d(x, z) : z ∈ Ty},

S(x, Ty) = {u ∈ D(x, Ty) : ∥u∥ = inf{∥v∥ : v ∈ D(x, Ty)}}.
In the hypothesis of the following lemma and theorems the assumption that the
cone is normal is omitted.

Lemma 3.1. Let (M,d) be a cone metric space and T : M → C(M). If the function
f(x) = infy∈Tx ∥d(x, y)∥, x ∈ M is lower semi continuous, then Fix(T ) is closed.
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Proof. Let xn ∈ Tx and xn → x. We show that x ∈ Tx. We have

f(x) ≤ lim inf
n→∞

f(xn) = lim inf
n→∞

inf
y∈Txn

∥d(xn, y)∥,

≤ lim inf
n→∞

∥d(xn, xn)∥ = 0,

so f(x) = 0 therefore ∥d(yn, x)∥ → 0 for some yn ∈ Tx. Given c ∈ E with c ≫ 0,
there exists N such that for n ≥ N we have d(yn, x) ≪ c. So yn → x and since Tx
is closed thus x ∈ Tx. □

In the next results we will suppose that P is strongly minihedral cone in E with
nonempty interior.

Theorem 3.2. Let (M,d) be a complete cone metric space, let T : M → C(M), be
a set-valued map and suppose f(x) = d(x, Tx) x ∈ M , satisfies the l.s.c.c. If there
exist real numbers a, b, c, e ≥ 0 and q > 1 with k := aq + b+ ceq < 1 such that

∀x∈M∃y∈Tx∃v∈D(y,Ty)∀u∈D(x,Tx)∃z∈D(y,Tx),

we have
d(x, y) ≤ qu, z ≤ ed(x, y) and v ≤ ad(x, y) + bu+ cz,

then Fix(T ) ̸= ∅.

Proof. Choose x0 ∈ M . Take u0 ∈ D(x0, Tx0). So there exist x1 ∈ Tx0 and
u1 ∈ D(x1, Tx1) and z0 ∈ D(x1, Tx0) such that

d(x0, x1) ≤ qu0 and z0 ≤ ed(x0, x1),

and
u1 ≤ ad(x0, x1) + bu0 + cz0.

Thus z0 ≤ equ0 and u1 ≤ ku0.
Further, for x1 ∈ M . Take u1 ∈ D(x1, Tx1). So there exist x2 ∈ Tx1 and u2 ∈
D(x2, Tx2) and z1 ∈ D(x2, Tx1) such that

d(x1, x2) ≤ qu1 and z1 ≤ ed(x1, x2),

and
u2 ≤ ad(x1, x2) + bu1 + cz1.

Thus z1 ≤ equ1 and u2 ≤ ku1 ≤ k2u0.
Continuing in this way we obtain sequence {un} and {xn} with, un ≤ knu0 and
d(xn, xn+1) ≤ qun ≤ qknu0.

So, for every n > m

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

≤ qkn−1u0 + qkn−2u0 + · · ·+ qkmu0,

≤ qkm(1 + k + k2 + · · · )u0

≤ q
km

1− k
u0.

So, for every c ≫ 0 and c ∈ E there exists N such that for n,m ≥ N we have
d(xn, xm) ≤ q km

1−ku0 ≪ c.

Therefore {xn} is Cauchy in a complete cone metric space, so xn → x∗ for some
x∗ ∈ M. Now we claim x∗ ∈ Tx∗.
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Let un ∈ D(xn, Txn) hence there exists tn ∈ Txn such that 0 ≤ un = d(xn, tn) ≤
knu0 for all u0 ∈ D(x0, Tx0). Now knu0 → 0 as n → ∞, so again, for all 0 ≪ c
there exists N ∈ N such that un ≤ knu0 ≪ c for all n ≥ N.

Now, from the l.s.c.c. of f , for all c ≫ 0 there exists N ∈ N such that for all
n ≥ N

f(x∗) < f(xn) + c = inf
y∈Txn

d(xn, y) + c ≤ un + c ≪ 2c.

So 0 ≤ f(x∗) ≪ 2c for all c ≫ 0. Hence, f(x∗) = 0 and so d(yn, x
∗) → 0 for some

yn ∈ Tx∗, and since Tx∗ is closed we have x∗ ∈ Tx∗. □
Corollary 3.3. Let (M,d) be a complete cone metric space, let T : M → K(M)
be a set-valued map and suppose the function f(x) = d(x, Tx), for x ∈ M , has the
l.s.c.c.

(i) If there exist real numbers a, b, c, e ≥ 0 and q > 1 with k := aq+ b+ ceq < 1
such that

∀x∈M∃y∈Tx∃v∈S(y,Ty)∀u∈S(x,Tx)∃z∈S(y,Tx),

with

d(x, y) ≤ qu, z ≤ ed(x, y) and v ≤ ad(x, y) + bu+ cz,

then Fix(T ) ̸= ∅.
(ii) If there exist real numbers a, b, c, e ≥ 0 and q > 1 with k := aq+ b+ ceq < 1

such that

∀x∈M∀y∈Tx∃v∈S(y,Ty)∀u∈S(x,Tx)∃z∈D(y,Tx),

we have

d(x, y) ≤ qu, z ≤ ed(x, y) and v ≤ ad(x, y) + bu+ cz,

then Fix(T ) = End(T ) ̸= ∅.

Corollary 3.4. Let (M,d) be a complete cone metric space, let T : M → C(M)
be a set-valued map and suppose that the function defined by f(x) = d(x, Tx), for
x ∈ M , satisfies the l.s.c.c. If there exist real numbers a, b ≥ 0 and q > 1 with
aq + b < 1 such that

∀x∈M∃y∈Tx∃v∈D(y,Ty)∀u∈D(x,Tx),

we have
d(x, y) ≤ qu and v ≤ ad(x, y) + bu,

then Fix(T ) ̸= ∅.

Corollary 3.5. Let (M,d) be a complete cone metric space, let T : M → C(M)
be a set-valued map and suppose that the function defined by f(x) = d(x, Tx), for
x ∈ M , satisfies the l.s.c.c. If there exist real numbers 0 ≤ λ < 1, λ < b ≤ 1 such
that

∀x∈M∃y∈Tx∃v∈D(y,Ty)∀u∈D(x,Tx),

we have
bd(x, y) ≤ u and v ≤ λd(x, y)],

then Fix(T ) ̸= ∅.
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