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Schaible [23] or Nobakhtian [28, 29] derived several sufficient optimality conditions
under various generalized nondifferentiable invexity assumptions. Mishra et al. [26]
derived the sufficiency of Kuhn-Tucker necessary optimality conditions for a weakly
Pareto efficient solution involving generalized d-invexity functions. Using cones,
similar results were obtained by Suneja et al. [31] for weakly efficient points.

The aim of this paper is to state new optimality results which extend to general C-
efficiency the results proved by Arana et al. [1] and Suneja et al. [31]. Also the results
given by Cambini and Martein [11] are generalized from the vector differentiable
case to the vector nondifferentiable one under locally Lipschitz assumptions. New
generalized convexity concepts, based on a partial ordering induced by a convex
cone, are introduced and studied in order to characterize the optimality of critical
points.

This work is organized as follows. Section 2 presents the notations and definitions
of generalized derivatives and gradients of a locally Lipschitz functions, as well as
other basic results. In Section 3, concepts of efficient solutions under a partial order
induced by a generic closed, convex, pointed, solid cone are introduced and new
optimality conditions are stated. In Section 4, new classes of generalized convex
vector functions are proposed and their use in characterizing the efficiency or weak
efficiency of critical point is stated (some examples are also given). In Section 5,
various duality results are finally provided.

2. Preliminaries

In this section we recall the generalized gradient of a Lipschitz function and
some related concepts, as well as some concepts and results that will be needed in
the following sections. For a more extensive treatment of the theory, motivations,
applications and extensive references of generalized gradients we let the reader to
refer to the book by Clarke [13].

Let Y = Rp be the p-dimensional Euclidean vectorial space, with the usual norm
∥.∥ and topology; and Y ∗ the dual space of Y . We denote by ⟨., .⟩ the usual pairing
between Y and Y ∗. Let us consider a closed, convex cone C in Y with nonempty
interior, and recall the notion of the dual cone to C, denoted as C∗, and given by

C∗ := {y∗ ∈ Y ∗ : ⟨y∗, y⟩ ≥ 0,∀y ∈ C}.

Since Y = Rp, each element in Y ∗ can be represented as a p-dimensional vector.
So, if w represents an element in Y ∗, then we can write ⟨w, y⟩ as wT y, for all y ∈ Y .
Further, following this notation, if B ⊆ Y , we write the subset {⟨w, b⟩ : b ∈ B} as
wTB. If A ∈ Rp×n is a matrix, wTA denotes the classical product between a vector
w and a matrix A. If D ⊆ Rp×n then the subset {wTd : d ∈ D} is written as wTD.

Let from now on we denote with X a nonempty open subset of Rn.

Definition 2.1. A function θ : X → R is said to be Lipschitz near x ∈ X if for
some k > 0,

|θ(y)− θ(z)| ≤ k∥y − z∥, ∀y, z within a neighbourhood of x.

We say that θ : X → R is locally Lipschitz on X (or simply, locally Lipschitz) if it
is Lipschitz near any point of X.
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Let f = (f1, . . . fp) : Rn → Rp be a vector valued function. Then f is said to be
locally Lipschitz on Rn if each fi is locally Lipschitz on Rn.

Definition 2.2. If θ : X → R is locally Lipschitz at x ∈ X, the generalized
derivative (in the sense of Clarke) of θ at x ∈ X in the direction v ∈ Rn, denoted
by θ0(x; v), is given by

θ0(x; v) = lim sup
y→x

λ↓0

θ(y + λv)− θ(y)

λ

Definition 2.3. The Clarke’s generalized gradient of θ at x ∈ X or the Clarke’s
generalized subdifferential of θ at x, denoted by ∂θ(x), is the set:

∂θ(x) := {ξ ∈ Rn : θ0(x; v) ≥ ⟨ξ, v⟩, ∀v ∈ Rn}
For any v ∈ Rn, it follows:

θ0(x; v) = max{⟨ξ, v⟩ : ξ ∈ ∂θ(x)}
such that ξ is called a subgradient of θ at x.

If θ is locally Lipschitz, then its Clarke’s generalized gradient has got some prop-
erties: ∂θ(x) is a nonempty, convex and compact subset, for any x ∈ X.

If we extend this derivative to the vectorial case, we have that the generalized
derivative of a locally Lipschitz function f : Rn → Rp at x ∈ Rn in the direction v
is given by

f0(x; v) = {f0
1 (x; v), f

0
2 (x; v), . . . , f

0
p (x; v)}

The generalized gradient of f at x is the set

∂f(x) = ∂f1(x)× . . .× ∂fp(x) ⊂ Rp×n

where ∂fi(x) is the generalized gradient of fi at x for i = 1, 2, . . . , p.

In order to establish optimality conditions let us now consider the closed, convex
cone C ⊂ Rp with nonempty interior, which induces a partial order on Y . Let us
also denote C0 as C \ {0}. Thus,

x ≦C y iff y − x ∈ C,
x ≤C y iff y − x ∈ C0,
x <C y iff y − x ∈ intC.

The definitions of ≧C ,≥C and >C are straightforward from the previous ones.
Following Küçük et al. [24], we have that ≦C is a partial order induced by the cone
C, but the relations ≤C and <C are not reflexive, that is, x ≤C x and x <C x
are not fulfilled for any x. So, and although we can not properly consider these
relations (x ≤C x and x <C x) as partial orders, they provide classical efficiency
relations in vector optimization.

A first interesting nondifferentiable vector optimization problem is as follows:

(V P ) C-Minimize f(x)
subject to
x ∈ Rn,

where f = (f1, . . . , fp) : Rn → Rp, is a locally Lipschitz vector valued function.
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Although it is usual to request the incorporation of some constraints to our vector
optimization problem. In such a way, we are going to focus our optimization study
on this one:

(V PC) C-Minimize f(x)
subject to
−g(x) ∈ Q,

where g = (f1, . . . , fm) : Rn → Rm, is a locally Lipschitz vector valued function,
and Q is a closed convex cone with nonempty interior in Rm. For the sake of
convenience, let us denote with X0 the feasible solution set of problem (VPC).

The minimal solutions for (VP) will be studied under a relation induced by C,
what extends the classical concept of efficiency introduced by Pareto [30]. We will
center our attention in C-efficient solutions and C-weakly efficient solutions for
(VP):

Definition 2.4. A feasible point, x̄, is said to be a C-efficient solution of (VPC)
if there does not exist another feasible point, x, such that f(x) ≤C f(x̄), that is,
f(x)− f(x̄) ∈ −C0.

Definition 2.5. A feasible point, x̄, is said to be a C-weakly efficient solution of
(VPC) if there does not exist another feasible point, x, such that f(x) <C f(x̄),
that is, f(x)− f(x̄) ∈ −intC.

Observe that all C-efficient solutions are C-weakly efficient solutions, and the
reverse is not true in general. In the particular case C = Rp

+ = {y = (y1, . . . , yp) :
y1 ≥ 0, i = 1, . . . , p}, note that the definitions of C-efficient and C-weakly efficient
solutions reduce to the classical efficient and weakly efficient solutions. Let us denote
X0 the set of feasible points for our vector optimization problem (VPC).

3. Optimality conditions

In order to locate minimal solutions for (VP) and (VPC), it is useful to use the
stationary or vector critical points as optimality conditions. For the first vector
optimization problem (VP), we have the following necessary optimality condition
(see [13,17]).

Theorem 3.1. Let us consider the vector optimization problem (VP). If x̄ is a
C-weakly efficient solution then x̄ is a C-critical point for (VP), that is that there
exists λ ∈ C∗ such that

(3.1) 0 ∈ λT∂f(x̄)

Recently, Arana et al. [1] have formulated the minimal property that the objective
function has got for a C-critical point to be a C-weakly efficient solution of (VP).
For that, they have introduced the class of functions (C1, C2)-pseudoinvex, where
C1 and C2 are two nonempty and convex cones in Rp. In particular, if we denote
the interior of C as int C, we have:
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Definition 3.2 ([1]). The vector function f is said to be (int C, int C)-pseudoinvex
at x̄ if there exists a vector function η : Rn × Rn × Rp×n → Rn such that for all
x, x̄ ∈ Rn

f(x) ∈ f(x̄)− int C ⇒ ξη(x, x̄, ξ) ∈ −int C, ∀ξ ∈ ∂f(x̄)

Theorem 3.3. Every C-critical point is a C-efficient solution of (VP) if and only
if f is (int C, int C)-pseudoinvex.

In the case of the vector problem with constraints (VPC), researchers are looking
for optimality conditions in terms of critical points, as a generalization of those
given when C = Rp

+ and Q = Rm
+ . In this last situation, Fritz John type optimality

conditions are necessary, and so, a fine start point to obtain candidates for weakly
efficient solutions. But, in (VPC), these conditions are not necessary. In this regard,
it is necessary to require additional properties to the involved functions to ensure
that a Fritz John type optimality condition leads us to a C-weakly efficient solution.
Yen and Sach [32] proposed the following class of functions:

Definition 3.4. f is said to be C-generalized invex at x̄ ∈ Rn if there exists
η : Rn × Rn → Rn such that for x ∈ Rn and A ∈ ∂f(x̄),

f(x)− f(x̄)−Aη(x, x̄) ∈ C.

There exists a first relation between C-generalized invexity and (int C, int C)-
pseudoinvex in the case that the parameter functionals η are chosen.

Proposition 3.5. If f is a C-generalized invex function at x̄ ∈ Rn with respect
to η : Rn × Rn → Rn, then f is (int C, int C)-pseudoinvex with respect to η̄ :
Rn × Rn × Rp×n → Rn, with η̄(x, x̄, ξ) = η(x, x̄), for all x ∈ Rn, ξ ∈ ∂f(x̄).

Proof. Let f be a C-generalized invex function at x̄ ∈ Rn with respect to η, and be
x ∈ Rn such that f(x) ∈ f(x̄)− int C, that is,

(3.2) −f(x) + f(x̄) ∈ int C.

On the other hand, f be a C-generalized invex, so we have that for all ξ ∈ ∂f(x̄),

(3.3) f(x)− f(x̄)− ξη(x, x̄) ∈ C.

Since C is a cone, we sum (3.2) and (3.3), obtaining that

(3.4) −ξη(x, x̄) ∈ int C.

We just define η̄(x, x̄, ξ) = η(x, x̄), and it follows from (3.4) that ξη̄(x, x̄, ξ)=
ξη(x, x̄) ∈ −int C. Therefore, f is (int C, int C)-pseudoinvex with respect to
η̄. □

The reverse of this result is not true in general. For that, let us consider the
case in which C = Rp

+ and f is differentiable. In this particular case, the class
of (int C, int C)-pseudoinvex functions reduces to the class of pseudoinvex-I intro-
duced by Arana et al. [2], and C-generalized invex reduces to invex. Arana et al. [2]
proved that the class of invex functions is contained into the class of pseudoinvex-I
functions, and they both are not equivalent.

Under C-generalized invexity, and from Suneja et al. [31], we have the following
Fritz John type optimality result:
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Theorem 3.6. Let f be C-generalized invex and g be Q-generalized invex at x̄ ∈ X0

with respect to the same η : Rn × Rn → Rn. If (VPC) attains a C-weakly efficient
solution at x̄, then there exist λ ∈ C∗, µ ∈ Q∗ not both zero such that

(3.5) 0 ∈ λT∂f(x̄) + µT∂g(x̄),

(3.6) µT g(x̄) = 0.

Note that C-generalized invexity has been required to ensure that a C-weakly
efficient solution fulfills a Fritz John type condition. Following, we will prove that
if we remove any kind of generalized convexity requirement, we are able to obtain
a new necessary optimality condition.

Theorem 3.7 (Weak necessary optimality condition). If x̄ is a C-weakly efficient
solution for (VPC), then x̄ is a weak critical point for (VPC), that is, x̄ is a feasible
point for (VPC) such that there exist λ ∈ C∗, µ ∈ Q∗ not both zero such that

(3.7) 0 ∈ λT f∂(x̄) + µT g∂(x̄).

Proof. For that, let x̄ be a C-weakly efficient solution for our vector optimization
problem (VPC), and let us formulate an auxiliary problem:

(AP ) (C ×Q)-Minimize (f(x), g(x))
subject to
x ∈ Rn.

Firstly, we prove that if x̄ is a C-weakly efficient solution for (VPC) then x̄ is a
(C ×Q)-weakly efficient solution for (AP). For this purpose, let us suppose that x̄
is not a (C×Q)-weakly efficient solution for (AP), that is, there exists x ∈ Rn such
that (f(x), g(x))− (f(x̄), g(x̄)) ∈ (−int C)× (−int Q), i.e.,

(3.8) f(x)− f(x̄) ∈ −int C,

(3.9) g(x)− g(x̄) ∈ −int Q.

By assumption, x̄ is feasible for (VPC), and so g(x̄) ∈ −Q. Adding g(x̄) to (3.9),
and from the properties of cones (see [7]), we have that

g(x)− g(x̄) + g(x̄) ∈ −int Q,

that is,

(3.10) g(x) ∈ −int Q ⊆ −Q.

Therefore, by (3.10), x is a feasible point for (VPC), and then by (3.8), it follows
that x̄ is not a C-weakly efficient solution for (VPC), which stands in contradiction
with our initial assumption. Consequently, we have proved that if x̄ is a C-weakly
efficient solution for (VPC), then x̄ is a (C ×Q)-weakly efficient solution for (AP).
Thus, by Theorem 3.1, there exists ν ∈ (C ×Q)∗ such that

(3.11) 0 ∈ νT∂(f, g)(x̄).

Since (C ×Q)∗ = C∗ ×Q∗ (see [7]), we have that there exist λ ∈ C∗, µ ∈ Q∗, such
that ν = (λ, µ). Then, (3.11) is equivalent to

(3.12) 0 ∈ λT∂f(x̄) + µT∂g(x̄).
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Therefore, by (3.12), x̄ is a weak critical point for (VPC), and the result is proved.
□

Since all efficient solutions are weakly efficient solutions, Theorem 3.7 derives the
following result.

Corollary 3.8. If x̄ is a C-efficient solution for (VPC), then x̄ is a weak critical
point for (VPC), that is, x̄ is a feasible point for (VPC) such that there exist λ ∈ C∗,
µ ∈ Q∗ not both zero such that equation (3.7) is fulfilled.

In the particular case that the constraints are removed from (VPC) and C = Rp
+,

the previous optimality condition reduces to (3.1) given by Clarke [13].

4. A necessary and sufficient property

Let us recall that a weak critical point provides us a necessary optimality con-
dition to locate C-efficient and C-weakly efficient solutions of our vector problem
(VPC), but it is not a sufficient condition. To ensure the reverse, that is, a weak
critical point is a C-efficient or C-weakly efficient solution, we need the objective
function to satisfy some additional properties. In this regard, and following, we
study the sutitable properties of the involved vector functions to get this sufficiency.
Furthermore, we will obtain the minimal properties to state this sufficiency.

For this purpose, we introduce the following new class of nondifferentiable vector
functions, inspired on definitions given by Arana et al. [4] in the nondifferentiable
case, as well as, from classes under relations induced by C, by Cambini [8, 9],
Cambini and Martein [11], Cambini and Carosi [10], and Arana et al. [1].

Definition 4.1. Let us consider, again, C ⊆ Rp and Q ⊆ Rm two closed and
convex cones, with nonempty interiors. Let x̄ be ∈ Rn. The pair of vector functions
(f, g) is said to be (C,Q)-W-pseudoinvex-I at x̄ if there exists a vector function
η : Rn × Rn × Rp×n × Rm×n → Rn such that for all x ∈ Rn

(4.1) f(x)− f(x̄) ∈ −int C ⇒

{
ξη(x, x̄, ξ, ζ) ∈ −int C

ζη(x, x̄, ξ, ζ) ∈ −int Q
,

∀ξ ∈ ∂f(x̄), ∀ζ ∈ ∂g(x̄).

Definition 4.2. Let us consider, again, C ⊆ Rp and Q ⊆ Rm two closed and
convex cones, with nonempty interiors. Let x̄ be ∈ Rn. The pair of vector functions
(f, g) is said to be (C,Q)-W-pseudoinvex-II at x̄ if there exists a vector function
η : Rn × Rn × Rp×n × Rm×n → Rn such that for all x ∈ Rn

(4.2) f(x)− f(x̄) ∈ C0 ⇒

{
ξη(x, x̄, ξ, ζ) ∈ −int C

ζη(x, x̄, ξ, ζ) ∈ −int Q
,

∀ξ ∈ ∂f(x̄), ∀ζ ∈ ∂g(x̄).

In relation to these definitions, we say that (f, g) is (C,Q)-W-pseudoinvex-I(II)
at x̄ on a subset D ⊆ Rn if the definition above is fulfilled for x ∈ D instead
of Rn. We say that (f, g) is (C,Q)-W-pseudoinvex-I(II) on a subset D ⊆ Rn if
(f, g) is (C,Q)-W-pseudoinvex-I(II) at x̄ on D, for all x̄ ∈ D. We say that (f, g) is
(C,Q)-W-pseudoinvex-I(II), if it is on Rn.
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Remark 4.3. Observe that if the constraints given by g are removed, then (C,Q)-
W-pseudoinvexity-I and II coincide with the (int C, int C)-pseudoinvex and (C0, int C)-
pseudoinvex classes of functions, respectively, introduced in [1].

Our outline is to find and formulate classes of vector functions that make up our
nondifferentiable vector problem (VPC), such that any class of functions which is
characterized by having every weak critical point as a C-weakly efficient solution of
(VPC) must be equivalent to these classes of functions. For that, we will need the
following generalized alternative result (see [7, 16]):

Lemma 4.4. Let A be an element of Rp×n. C∗ is the dual cone to C. Then one
and only one of the following statements is true:

(i) There exists u ∈ Rn such that Au <C 0.
(ii) There exists y ∈ C∗, y ̸= 0, such that yTA = 0.

Theorem 4.5. Every weak critical point is a C-weakly efficient solution of (VPC)
if and only if (f, g) is (C,Q)-W-pseudoinvex-I on X0.

Proof. (i) Let us begin with the proof of the sufficiency of the (C,Q)-W-pseudoinvex-
Iity on X0 of (f, g). So, let x̄ be a weak critical point and (f, g) be (C,Q)-W-
pseudoinvex-I on X0. We have to prove that x̄ is C-weakly efficient solution of
(VPC). For that, let us suppose that x̄ is not C-weakly efficient solution of (VPC).
Then, there exists x ∈ X0 such that f(x)− f(x̄) ∈ −C \ {0}. Since (f, g) is (C,Q)-
W-pseudoinvex-I on X0, there exists a vector function η such that

(4.3)

{
ξη(x, x̄, ξ, ζ) ∈ −int C

ζη(x, x̄, ξ, ζ) ∈ −int Q
,

for all ξ ∈ ∂f(x̄) and for all ζ ∈ ∂g(x̄). Further, by assumption, we have that x̄ is
a weak critical point, and then there exist λ ∈ C∗, µ ∈ Q∗ not both zero such that

(4.4) 0 ∈ λT f∂(x̄) + µT g∂(x̄),

that is, there exist ξ ∈ ∂f(x̄), ζ ∈ ∂g(x̄), such that

(4.5) λT ξ + µT ζ = 0.

Multiplying (4.5) by η(x, x̄, ξ, ζ), we get

(4.6) (λT ξ + µT ζ)η(x, x̄, ξ, ζ) = 0

On the other hand, since λ ∈ C∗ and ξη(x, x̄, ξ, ζ) ∈ −int C, it is known (see [7])
that

(4.7) λT ξη(x, x̄, ξ, ζ) < 0,

and the same for µ ∈ Q∗ and ζη(x, x̄, ξ, ζ) ∈ −int Q,

(4.8) µT ζη(x, x̄, ξ, ζ) < 0.

Now, adding (4.7) and (4.8), it follows

(4.9) λT ξη(x, x̄, ξ, ζ) + µT ζη(x, x̄, ξ, ζ) < 0,
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which stands in contradiction with (4.6). Therefore, x̄ is a C-weakly efficient solu-
tion of (VPC). Thus, we have proved that (C,Q)-W-pseudoinvexity-I on X0 of (f, g)
is a sufficient property for all weak critical point to be a C-weakly efficient solution
of (VPC). Now, we prove that, moreover, (C,Q)-W-pseudoinvexity-I is necessary in
order that every weak critical point is a C-weakly efficient solution of (VPC).

(ii) For that, let us assume this last, i.e., every weak critical point is a C-weakly
efficient solution; and let us suppose that there exist two points x and x̄ in X0,
such that f(x) − f(x̄) ∈ −C \ {0}, since otherwise (f, g) would be (C,Q)-W-
pseudoinvexity-I on X0, and the result would be proved. This means that x̄ is
not a C-weakly efficient solution, and by the assumptions, x̄ is not a weak critical
point, that is, given any ξ ∈ ∂f(x̄) and ζ ∈ ∂g(x̄), the following equation

(4.10) λT ξ + µT ζ = 0

has no solution λ ∈ C∗, µ ∈ Q∗, not both zero. (4.10) can be written as follows:

[λµ]

[
ξ
ζ

]
= 0.

By Lemma 4.4, there exists u ∈ Rn such that[
ξ
ζ

]
u ∈ (−int C ×−int Q),

which can be written as follows,

(4.11)

{
ξ u ∈ −int C

ζ u ∈ −int Q.

If we define η(x, x̄, ξ, ζ) = u ∈ Rn, and replace u by η in (4.11), we get

(4.12)

{
ξη(x, x̄, ξ, ζ) ∈ −int C

ζη(x, x̄, ξ, ζ) ∈ −int Q.

Therefore, we have proved that (f, g) is (C,Q)-W-pseudoinvex-I on X0. □

In a similar way, (C,Q)-W-pseudoinvexity-II is the minimal property of the func-
tions involved in our vector problem (VPC) in order that all weak critical points
are C-efficient solutions, such as we have as follows. Its proof is analogous to the
previous one.

Theorem 4.6. Every weak critical point is a C-efficient solution of (VPC) if and
only if (f, g) is (C,Q)-W-pseudoinvex-II on X0.

Let us note again, that no additional requirements have been needed, such as, for
instance, C-generalized invexity (see [31, 32]). Further, this characterization result
can be considered a generalization of those given by Arana et al. [1,2], Cambini [8,9],
Cambini and Martein [11] and Cambini and Carosi [10] to the nondifferenctiable
case, and to the conic relations. In fact, (C,Q)-W-pseudoinvexity is the minimal
property of the involved functions in (VPC) we need to obtain C-weakly efficient
solutions from weak critical points.

From the previous results, we obtain the following consequence.
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Corollary 4.7. If there is no weak critical point for (VPC), then (f, g) is (C,Q)-
W-pseudoinvex-I and II on X0.

Example 4.8. Let us consider the following constrained vector optimization prob-
lem:

(VEx) C-Minimize (x+ 1, x3 − 5)
subject to
−(−x3, 8) ∈ Q,

where f = (f1, f2) = (x + 1, x3 − 5) : R → R2, g = (g1, g2) = (−x3, 8) : R → R2.
These functions are differentiable, so ∂f(x) and ∂g(x) reduce to ∇f(x) and ∇g(x),
respectively. It follows that ∇f(x) = (1, 3x2) and ∇g(x) = (−3x2, 0). The cones
are defined as follows:

C = {(x, y) ∈ R2 : 4x+ y ≥ 0 and x+ 3y ≥ 0}
and

Q = {(x, y) ∈ R2 : 5x+ y ≤ 0 and 5x− y ≤ 0}.
Then, by easy operations,

C∗ = {(x, y) ∈ R2 : 3x− y ≥ 0 and − x+ 4y ≥ 0}
and

Q∗ = {(x, y) ∈ R2 : x+ 5y ≤ 0 and x− 5y ≤ 0}.
Let us show that there exists no weak critical point for (VEx). For that, let us
calculate the values for λ = (λ1, λ2) ∈ C∗ and µ = (µ1, µ2) ∈ Q∗ not both zero such
that the equation (3.7) is fulfilled, that is, such that

(4.13) λ1 + 3λ2x
2 − 3µ1x

2 + 0µ2 = 0.

Observe that (1, 3x2) belongs to the first orthant, in whose interior C∗ is strictly
contained, and (−3x2, 0) belongs to the interior of Q∗, for all x ̸= 0. Then, on one
hand, λ1 + 3λ2x

2 > 0, and on the other hand, −3µ1x
2 + 0µ2 > 0, for all x ̸= 0.

Adding these two inequalities, with x ̸= 0, we have that

λ1 + 3λ2x
2 − 3µ1x

2 + 0µ2 > 0,

for all λ = (λ1, λ2) ∈ C∗, µ = (µ1, µ2) ∈ Q∗ not both zero, in contradiction with
(4.13). The case x = 0 provides g(0) = (0, 8), with −g(0) = (0,−8) /∈ Q, what
means that x = 0 is not a feasible solution of (VEx). Therefore, there is no weak
critical point for our vector problem. In consequence, by Corollary 4.7, (f, g) is
(C,Q)-W-pseudoinvex-I and II on the feasible set.

5. Duality

Duality is a classical and fine approach to get optimal vector solutions for our
(VPC), by solving another vector optimization problem. So, and following, we pro-
pose a duality between our multiobjective problem (VCP) and an associated and
dual problem of the Mond-Weir [27] type, defined for the multiobjective case by
Egudo and Hanson [18], but with the convenient modifications suited to nondiffer-
entiability and the partical orders induced by cones. For this purpose, we have the
dual of (VPC), formulated as follows:
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(DV PC) C-Maximize f(u)
subject to
0 ∈ λT∂f(ū) + µT∂g(ū),
λ ∈ C∗, µ ∈ Q∗, (λ, µ) ̸= 0,
u ∈ Rn.

Let us denote U0 the feasible set of (DVPC). Observe that this dual problem
is formulated in terms of maximization instead of minimization. It implies that
we have to reconsider the definition of C-efficient and C-weakly efficient solution
for this type of problems. But it is natural and easy. It is enough to say that
ū ∈ U0 is a C-weakly efficient solution of (DVPC) is there exists no u ∈ U0 such
that f(ū)− f(u) ∈ −int C is not verified. That is, just the reverse definition for a
minimization process. And the same for C-efficient solution of (DVPC).

Let us begin with weak duality for the study of C-weakly efficient solutions.

Theorem 5.1 (Weak Duality). Let x be a feasible point for (VPC), and (u, λ, µ) a
feasible point for (DVPC). If (f, g) is (C,Q)-W-pseudoinvex-I, then f(x)− f(u) ∈
−int C is not verified.

Proof. Let us suppose (f, g) is (C,Q)-W-pseudoinvex-I with respect to a vector
function η. Let x be a feasible point for (VPC), and (u, λ, µ) a feasible point for
(DVPC), that is, x ∈ X0, u ∈ U0, such that f(x)−f(u) ∈ −int C, if not, the result
would be proved. Since u ∈ U0, there exist λ ∈ C∗, µ ∈ Q∗, not both zero, such
that

(5.1) 0 ∈ λT f∂(u) + µT g∂(u),

that is, there exist ξ ∈ ∂f(u), ζ ∈ ∂g(u), such that

(5.2) λT ξ + µT ζ = 0.

Multiplying (5.2) by η(x, u, ξ, ζ), we get

(5.3) (λT ξ + µT ζ)η(x, u, ξ, ζ) = 0

On the other hand, since λ ∈ C∗ and µ ∈ Q∗, and ξη(x, u, ξ, ζ) ∈ −int C and
ζη(x, u, ξ, ζ) ∈ −int Q, it follows (see [7]) that

(5.4) λT ξη(x, u, ξ, ζ) < 0, µT ζη(x, u, ξ, ζ) < 0.

Now, adding these two inequalities in (5.4), it follows

(5.5) λT ξη(x, u, ξ, ζ) + µT ζη(x, u, ξ, ζ) < 0,

which stands in contradiction with (5.3), and therefore, f(x) − f(u) ∈ −int C is
not verified. □

Thanks to the weak duality result we can now prove the strong duality result as
follows.

Theorem 5.2 (Strong Duality). Let (f, g) be (C,Q)-W-pseudoinvex-I. If x̄ is a
C-weakly efficient solution for (VPC), then there exist λ, µ, such that (x̄, λ, µ) is a
C-weakly efficient solution for (DVPC).
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Proof. Let us suppose that x̄ is a C-weakly efficient solution for (VPC). Then, by
Theorem 3.7, there exist λ ∈ C∗, µ ∈ Q∗, not both zero, such that

0 ∈ λT f∂(u) + µT g∂(u).

Then x̄ is a feasible point for (DPVC), and from the weak duality theorem it
follows that the vector inequality f(x̄) − f(u) ∈ −int C is not verified, where u
is a feasible point for (DPVC). Therefore, x̄ is a C- weakly efficient solution of
(DPVC). □

The converse result is also verified as we demonstrate below.

Theorem 5.3 (Converse Duality). Let (f, g) be (C,Q)-W-pseudoinvex-I on X0,
and x̄ a feasible point for (VPC). If (x̄, λ, µ) is a feasible point for (DVPC), then x̄
is a C-weakly efficient solution of (VPC).

Proof. Let us suppose that x̄ is a feasible point for (VPC). If (x̄, λ, µ) is a feasible
point for (DVPC), then λ ∈ C∗, µ ∈ Q∗, not both zero, such that

0 ∈ λT f∂(u) + µT g∂(u),

and therefore x̄ is a weak critical point. Since (f, g) is (C,Q)-W-pseudoinvex-I on
X0, from Theorem 4.5 it follows that x̄ is a C-weakly efficient solution of (VPC). □

We proceed as before for the study of C-efficient solutions. For that, we require
(C,Q)-W-pseudoinvexity-II. The proofs of the following duality results are very
similar to the previous and respective theorems.

Theorem 5.4 (Weak Duality). Let x be a feasible point for (VPC), and (u, λ, µ) a
feasible point for (DVPC). If (f, g) is (C,Q)-W-pseudoinvex-II, then f(x)− f(u) ∈
−C0 is not verified.

Theorem 5.5 (Strong Duality). Let (f, g) be (C,Q)-W-pseudoinvex-II. If x̄ is a C-
efficient solution for (VPC), then there exists λ, µ, such that (x̄, λ, µ) is a C-efficient
solution for (DVPC).

Theorem 5.6 (Converse Duality). Let (f, g) be (C,Q)-W-pseudoinvex-II on X0,
and x̄ a feasible point for (VPC). If (x̄, λ, µ) is a feasible point for (DVPC), then x̄
is a C-efficient solution of (VPC).

6. Conclusions

In nondifferentiable multiobjective mathematical programming problems, with an
induced partial conic order, new necessary optimality conditions have been obtained.
New classes of vector valued locally Lipschitz generalized invex functions have been
proposed for a suitable study of minimal solutions. In this regard, the introduced
functions allow to characterize that every weak critical point is a minimal solution.
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