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Aj : H1 → H2, 1 ≤ j ≤ n, the split common null point problem [7] is to find a
point z ∈ H1 such that

z ∈
(
∩m
i=1 B

−1
i 0

)
∩ (∩n

j=1A
−1
j (G−1

j 0)
)
,

where B−1
i 0 and G−1

j 0 are null point sets of Bi and Gj , respectively. Let C and Q be
nonempty, closed and convex subsets of H1 and H2, respectively. Let A : H1 → H2

be a bounded linear operator such that A ̸= 0. Then the split feasibility peoblem [8]
is to find z ∈ H1 such that z ∈ C ∩A−1Q. Putting Bi = ∂iC for all i, Gj = ∂iQ for
all j and Aj = A for all j in the split common null point problem, we see that the
split feasibility peoblem is a special case of the split common null point problem,
where ∂iC and ∂iQ are the subdifferentials of the indicator functions iC of C and iQ
of Q, respectively. Defining U = A∗(I − PQ)A in the split feasibility peoblem, we
have that U : H1 → H1 is an inverse strongly monotone operator, where A∗ is the
adjoint operator of A and PC and PQ are the metric projections of H1 onto C and
H2 onto Q, respectively. Furthermore, if C∩A−1Q is non-empty, then z ∈ C∩A−1Q
is equivalent to z = PC(I − λU)z, where λ > 0.

In this paper, motivated by the idea of the split feasibility problem and results
for solving the problem, we consider generalized split feasibility problems and then
establish strong convergence theorems by two hybrid methods for the problems. As
applications, we get new strong convergence theorems which are connected with
fixed point problem and equilibrium problem.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product ⟨·, · ⟩ and
norm ∥ · ∥. We denote the strong convergence and the weak convergence of {xn} to
x ∈ H by xn → x and xn ⇀ x, respectively. From [31], we know the following basic
equality. For x, y ∈ H and λ ∈ R, we have

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

We also know that for x, y, u, v ∈ H,

(2.2) 2 ⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a nonempty, closed and convex subset of H and x ∈ H. Then, we know
that there exists a unique nearest point z ∈ C such that ∥x− z∥ = infy∈C ∥x− y∥.
We denote such a correspondence by z = PCx. The mapping PC is called the metric
projection of H onto C. It is known that PC is nonexpansive and

⟨x− PCx, PCx− u⟩ ≥ 0

for all x ∈ H and u ∈ C; see [31] for more details.
For a sequence {Cn} of nonempty, closed and convex subsets of a Hilbert space

H, define s-LinCn and w-LsnCn as follows: x ∈s-LinCn if and only if there exists
{xn} ⊂ H such that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N.
Similarly, y ∈w-LsnCn if and only if there exist a subsequence {Cni} of {Cn} and a
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sequence {yi} ⊂ H such that {yi} converges weakly to y and yi ∈ Cni for all i ∈ N.
If C0 satisfies

(2.3) C0 =s-LinCn =w-LsnCn,

it is said that {Cn} converges to C0 in the sense of Mosco [23] and we write C0 =M-
limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to inclusion,
then {Cn} converges to ∩∞

n=1Cn in the sense of Mosco. For more details, see [23].
We know the following theorem by Tsukada [40].

Theorem 2.1 ([40]). Let H be a Hilbert space. Let {Cn} be a sequence of nonempty,
closed and convex subsets of H. If C0 =M-limn→∞Cn exists and nonempty, then
for each x ∈ H, {PCnx} converges strongly to PC0x, where PCn and PC0 are the
mertic projections of H onto Cn and C0, respectively.

Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. Then, a mapping T : C → H is called generalized hybrid [18] if there exist
α, β ∈ R such that

(2.4) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping.
Notice that the mapping above covers several well-known mappings. For example,
an (α, β)-generalized hybrid mapping is nonexpansive for α = 1 and β = 0, non-
spreading for α = 2 and β = 1, and hybrid for α = 3

2 and β = 1
2 . Kawasaki and

Takahashi [17] defined a more broad class of nonlinear mappings than the class of
generalized hybrid mappings. A mapping S from C into H is said to be widely
more generalized hybrid if there exist α, β, γ, δ, ε, ζ, η ∈ R such that

α∥Sx− Sy∥2 + β∥x− Sy∥2 + γ∥Sx− y∥2 + δ∥x− y∥2(2.5)

+ε∥x− Sx∥2 + ζ∥y − Sy∥2 + η∥(x− Sx)− (y − Sy)∥2 ≤ 0

for all x, y ∈ C. Such a mapping S is called (α, β, γ, δ, ε, ζ, η)-widely more general-
ized hybrid. An (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping is gener-
alized hybrid in the sense of Kocourek, Takahashi and Yao [18] if α+β = −γ−δ = 1
and ε = ζ = η = 0. A generalized hybrid mapping with a fixed point is quasi-
nonexpansive. However, a widely more generalized hybrid mapping is not quasi-
nonexpansive generally even if it has a fixed point. We know the following theorem
from Kawasaki and Takahashi [17].

Theorem 2.2 ([17]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into itself which satisfies the following conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ + ε+ η > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β + ζ + η > 0 and ε+ η ≥ 0.

Then S has a fixed point if and only if there exists z ∈ C such that {Snz : n =
0, 1, . . .} is bounded. In particular, a fixed point of S is unique in the case of α +
β + γ + δ > 0 on the conditions (1) and (2).

The following lemmas for widely more generalized hybrid mappings are essencial
for proving our main theorems.
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Lemma 2.3 ([17]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid
mapping from C into itself such that F (S) ̸= ∅ and it satisfies the conditions (1) or
(2):

(1) α+ β + γ + δ ≥ 0, ζ + η ≥ 0 and α+ β > 0;
(2) α+ β + γ + δ ≥ 0, ε+ η ≥ 0 and α+ γ > 0.

Then S is quasi-nonexpansive.

Lemma 2.4 ([11]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let S : C → H be an (α, β, γ, δ, ε, ζ, η)-widely more generalized
hybrid mapping. Suppose that it satisfies the following conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0 and α+ γ + ε+ η > 0;
(2) α+ β + γ + δ ≥ 0 and α+ β + ζ + η > 0.

If xn ⇀ z and xn − Sxn → 0, then z ∈ F (S).

From [37], we also have the following lemmas.

Lemma 2.5. Let H1 and H2 be Hilbert spaces. Let A : H1 → H2 be a bounded
linear operator such that A ̸= 0. Let T : H2 → H2 be a nonexpansive mapping.
Then a mapping A∗(I − T )A : H1 → H1 is 1

2∥AA∗∥ -inverse strongly monotone.

Lemma 2.6. Let H1 and H2 be Hilbert spaces. Let B : H1 → 2H1 be a maximal
monotone mapping and let Jλ = (I + λB)−1 be the resolvent of B for λ > 0. Let
T : H2 → H2 be a nonexpansive mapping and let A : H1 → H2 be a bounded linear
operator. Suppose that B−10 ∩ A−1F (T ) ̸= ∅. Let λ, r > 0 and z ∈ H. Then the
following are equivalent:

(i) z = Jλ(I − rA∗(I − T )A)z;
(ii) 0 ∈ A∗(I − T )Az +Bz;
(iii) z ∈ B−10 ∩A−1F (T ).

3. Strong convergence theorems

In this section, using the hybrid method by Nakajo and Takahashi [24], we first
prove the following strong convergence theorem in Hilbert spaces.

Theorem 3.1. Let H1 and H2 be Hilbert spaces and let C be a nonempty, closed
and convex subset of H1. Let B : H1 → 2H1 be a maximal monotone mapping such
that the domain of B is included in C and let Jλ = (I + λB)−1 be the resolvent of
B for λ > 0. Let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into C which satisfies the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.

Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded
linear operator such that A ̸= 0. Suppose that F (S) ∩ B−10 ∩ A−1F (T ) ̸= ∅. Let
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{xn} ⊂ H1 be a sequence generated by x ∈ H1, x1 = PCx and

zn = Jλn(I − λnA
∗(I − T )A)xn,

yn = αnxn + (1− αn)Szn,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn is the metric projection of H1 onto Cn ∩ Qn, and {αn} ⊂ [0, 1] and
{λn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1

∥AA∗∥
.

Then the sequence {xn} converges strongly to z0 = PF (S)∩B−10∩A−1F (T )x, where

PF (S)∩B−10∩A−1F (T ) is the metric projection of H onto F (S) ∩B−10 ∩A−1F (T ).

Proof. We have from Lemma 2.3 that S is quasi-nonexpansive. Then F (S) is closed
and convex. We also know that B−10 ∩ A−1F (T ) is closed and convex [28]. Then
F (S)∩B−10∩A−1F (T ) is closed and convex. Thus there exists the mertic projection
PF (S)∩B−10∩A−1F (T ) of H onto F (S) ∩B−10 ∩A−1F (T ). Since

∥yn − z∥2 ≤ ∥xn − z∥2

⇐⇒∥yn∥2 − ∥xn∥2 − 2⟨yn − xn, z⟩ ≤ 0,

we have that Cn, Qn and Cn ∩ Qn are closed and convex for all n ∈ N. We next
show that Cn ∩ Qn is nonempty. Let z ∈ F (S) ∩ B−10 ∩ A−1F (T ). Since I − T
is 1

2 -inverse strongly monotone and z = Jλn(I − λnA
∗(I − T )A)z, we have from

0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1
∥AA∗∥ and Lemma 2.6 that for any n ∈ N,

∥zn − z∥2 = ∥Jλn(I − λnA
∗(I − T )A)xn − Jλn(I − λnA

∗(I − T )A)z∥2

≤ ∥xn − λnA
∗(I − T )Axn − z + λnA

∗(I − T )Az∥2

= ∥xn − λnA
∗(I − T )Axn − z∥2

= ∥xn − z∥2 − 2λn⟨xn − z,A∗(I − T )Axn⟩+ (λn)
2 ∥A∗(I − T )Axn∥2

= ∥xn − z∥2 − 2λn⟨Axn −Az, (I − T )Axn⟩+ (λn)
2 ∥A∗(I − T )Axn∥2(3.1)

≤ ∥xn − z∥2 − λn ∥(I − T )Axn∥2 + (λn)
2⟨A∗(I − T )Axn, A

∗(I − T )Axn⟩

= ∥xn − z∥2 − λn ∥(I − T )Axn∥2 + (λn)
2⟨AA∗(I − T )Axn, (I − T )Axn⟩

≤ ∥xn − z∥2 − λn ∥(I − T )Axn∥2 + (λn)
2 ∥AA∗∥ ∥(I − T )Axn∥2

= ∥xn − z∥2 + λn(λn ∥AA∗∥ − 1) ∥(I − T )Axn∥2

≤ ∥xn − z∥2 .
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Since S is quasi-nonexpansive, we have from (3.1) that

∥yn − z∥2 = ∥αnxn + (1− αn)Szn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥Szn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥zn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2

= ∥xn − z∥2.

Thus we have z ∈ Cn and hence F (S)∩B−10∩A−1F (T ) ⊂ Cn for all n ∈ N. Next,
we show by induction that F (S)∩B−10∩A−1F (T ) ⊂ Cn ∩Qn for all n ∈ N. From
F (S)∩B−10∩A−1F (T ) ⊂ Q1, it follows that F (S)∩B−10∩A−1F (T ) ⊂ C1 ∩Q1.
Suppose that F (S) ∩ B−10 ∩ A−1F (T ) ⊂ Ck ∩ Qk for some k ∈ N. We have from
xk+1 = PCk∩Qk

x that

⟨xk+1 − z, x− xk+1⟩ ≥ 0, ∀z ∈ Ck ∩Qk.

Since F (S) ∩B−10 ∩A−1F (T ) ⊂ Ck ∩Qk, we also have

⟨xk+1 − z, x− xk+1⟩ ≥ 0, ∀z ∈ F (S) ∩B−10 ∩A−1F (T ).

This implies F (S) ∩ B−10 ∩ A−1F (T ) ⊂ Qk+1. Thus we have F (S) ∩ B−10 ∩
A−1F (T ) ⊂ Ck+1∩Qk+1. By induction, we have F (S)∩B−10∩A−1F (T ) ⊂ Cn∩Qn

for all n ∈ N. This means that {xn} and {zn} are well-defined.
Since xn = PQnx and xn+1 = PCn∩Qnx ⊂ Qn, we have from (2.2) that

0 ≤ 2⟨x− xn, xn − xn+1⟩
= ∥x− xn+1∥2 − ∥x− xn∥2 − ∥xn − xn+1∥2(3.2)

≤ ∥x− xn+1∥2 − ∥x− xn∥2.
Then we get that

∥x− xn∥2 ≤ ∥x− xn+1∥2.(3.3)

Furthermore, since xn = PQnx and z ∈ F (S) ∩B−10 ∩A−1F (T ) ⊂ Qn, we have

∥x− xn∥2 ≤ ∥x− z∥2.(3.4)

We have from (3.3) and (3.4) that limn→∞ ∥x−xn∥2 exists. This implies that {xn}
is bounded. Hence, {yn}, {zn} and {Szn} are also bounded. From (3.2), we have
that

∥xn − xn+1∥2 ≤ ∥x− xn+1∥2 − ∥x− xn∥2

and hence

∥xn − xn+1∥ → 0.(3.5)

From xn+1 ∈ Cn, we have that ∥yn − xn+1∥ ≤ ∥xn − xn+1∥. From (3.5), we have
that ∥yn − xn+1∥ → 0. Then we have that

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ → 0.(3.6)

From 0 ≤ lim supn→∞ αn < 1 and

∥xn − yn∥ = ∥xn − αnxn − (1− αn)Szn∥ = (1− αn)∥xn − Szn∥,
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we have that

∥Szn − xn∥ → 0.(3.7)

Let us show that ∥Szn − zn∥ → 0. It follows from (3.1) that

∥yn − z∥2 = ∥αnxn + (1− αn)Szn − z∥2

≤ αn ∥xn − z∥2 + (1− αn) ∥zn − z∥2

≤ αn ∥xn − z∥2

+ (1− αn){∥xn − z∥2 + λn(λn ∥AA∗∥ − 1) ∥(I − T )Axn∥2}

= ∥xn − z∥2 + (1− αn)λn(λn ∥AA∗∥ − 1) ∥(I − T )Axn∥2

for all z ∈ F (S) ∩B−10 ∩A−1F (T ). Thus we have that

(1− αn)λn(1− λn ∥AA∗∥) ∥(I − T )Axn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2

= (∥xn − z∥+ ∥yn − z∥)(∥xn − z∥ − ∥yn − z∥)
≤ (∥xn − z∥+ ∥yn − z∥) ∥xn − yn∥ .

From ∥yn − xn∥ → 0 and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1
∥AA∗∥ , we have

that

(3.8) lim
n→∞

∥(I − T )Axn∥ = 0.

Since Jλn is firmly nonexpansive, we have that

2∥zn − z∥2 = 2∥Jλn(I − λnA
∗(I − T )A)xn − Jλn(I − λnA

∗(I − T )A)z∥2

≤ 2⟨zn − z, (I − λnA
∗(I − T )A)xn − z⟩

= ∥zn − z∥2 + ∥(I − λnA
∗(I − T )A)xn − z∥2

− ∥zn − (I − λnA
∗(I − T )A)xn∥2

≤ ∥zn − z∥2 + ∥xn − z∥2

− ∥zn − (I − λnA
∗(I − T )A)xn∥2

= ∥zn − z∥2 + ∥xn − z∥2 − ∥zn − xn + λn(A
∗(I − T )Axn)∥2

= ∥zn − z∥2 + ∥xn − z∥2 − ∥zn − xn∥2

− 2λn⟨zn − xn, A
∗(I − T )Axn⟩ − λ2

n∥A∗(I − T )Axn∥2.
Therefore, we have that

∥zn − z∥2 ≤ ∥xn − z∥2 − ∥zn − xn∥2

− 2λn⟨zn − xn, A
∗(I − T )Axn⟩ − λ2

n∥A∗(I − T )Axn∥2.
Then we have that

∥yn − z∥2 ≤αn ∥xn − z∥2 + (1− αn) ∥Szn − z∥2

≤αn ∥xn − z∥2 + (1− αn) ∥zn − z∥2

≤αn ∥xn − z∥2 + (1− αn){∥xn − z∥2 − ∥zn − xn∥2

− 2λn⟨zn − xn, A
∗(I − T )Axn⟩ − λn

2 ∥A∗(I − T )Axn∥2}.
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This means that

(1− αn) ∥zn − xn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2

+ ∥A∗(I − T )Axn∥ {2λn ∥zn − xn∥+ λ2
n ∥A∗(I − T )Axn∥}

≤ (∥xn − z∥+ ∥yn − z∥) ∥xn − yn∥
+ ∥A∗(I − T )Axn∥ {2λn ∥zn − xn∥+ λ2

n ∥A∗(I − T )Axn∥}.
Since limn→∞ ∥A∗(I − T )Axn∥ = 0, limn→∞ ∥xn − yn∥ = 0, and {yn}, {zn} and
{xn} are bounded, we have

(3.9) lim
n→∞

∥zn − xn∥ = 0.

Since yn = αnxn + (1 − αn)Szn, we have yn − Szn = αn(xn − Szn). Then, from
(3.7) we have

(3.10) ∥yn − Szn∥ = αn∥xn − Szn∥ → 0.

Since
∥zn − Szn∥ ≤ ∥zn − xn∥+ ∥xn − yn∥+ ∥yn − Szn∥,

from (3.6), (3.9) and (3.10) we have

(3.11) ∥zn − Szn∥ → 0.

Since {xn} is bounded, there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ z∗.
We have from (3.9) and xni ⇀ z∗ that zni ⇀ z∗. From (3.11) and Lemma 2.4, we
have z∗ ∈ F (S). Next, let us show z∗ ∈ B−10 ∩ A−1F (T ). From the definition of
Jλn , we have that

zn = Jλn(I − λnA
∗(I − T )A)xn

⇔ (I − λnA
∗(I − T )A)xn ∈ (I + λnB)zn = zn + λnBzn

⇔ xn − zn − λnA
∗(I − T )Axn ∈ λnBzn

⇔ 1

λn
(xn − zn − λnA

∗(I − T )Axn) ∈ Bzn.

Since B is monotone, we have that for (u, v) ∈ B,

⟨zn − u,
1

λn
(xn − zn − λnA

∗(I − T )Axn)− v⟩ ≥ 0

and hence

(3.12) ⟨zn − u,
xn − zn

λn
− (A∗(I − T )Axn + v)⟩ ≥ 0.

From zni ⇀ z∗ and A∗(I − T )Axni → 0, we have that

(3.13) ⟨z∗ − u,−v⟩ ≥ 0.

Since B is maximal monotone, we have that 0 ∈ Bz∗. Furthermore, since I − T is
1
2 -inverse strongly monotone, we have that

⟨Axni −Az∗, (I − T )Axni−(I − T )Az∗⟩ ≥ 1

2
∥(I − T )Axni − (I − T )Az∗∥2 .

From xni ⇀ z∗ and (I − T )Axni → 0, we have that ∥(I − T )Az∗∥2 ≤ 0 and hence
Az∗ ∈ F (T ). Therefore, z∗ ∈ B−10 ∩A−1F (T ).
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Put z0 = PF (S)∩B−10∩A−1F (T )x. Since z0 = PF (S)∩B−10∩A−1F (T )x ∈ Cn ∩Qn and
xn+1 = PCn∩Qnx, we have that

(3.14) ∥x− xn+1∥2 ≤ ∥x− z0∥2.

Since ∥ · ∥2 is weakly lower semicontinuous, from xni ⇀ z∗ we have that

∥x− z∗∥2 = ∥x∥2 − 2⟨x, z∗⟩+ ∥z∗∥2

≤ lim inf
i→∞

(∥x∥2 − 2⟨x, xni⟩+ ∥xni∥2)

= lim inf
i→∞

∥x− xni∥2

≤ ∥x− z0∥2.

From the definition of z0, we have z∗ = z0. Then we obtain xn ⇀ z0. We finally
show that xn → z0. We have

∥z0 − xn∥2 = ∥z0 − x∥2 + ∥x− xn∥2 + 2⟨z0 − x, x− xn⟩, ∀n ∈ N.

Using (3.14), we have that

lim sup
n→∞

∥z0 − xn∥2 = lim sup
n→∞

(∥z0 − x∥2 + ∥x− xn∥2 + 2⟨z0 − x, x− xn⟩)

≤ lim sup
n→∞

(∥z0 − x∥2 + ∥x− z0∥2 + 2⟨z0 − x, x− xn⟩)

= ∥z0 − x∥2 + ∥x− z0∥2 + 2⟨z0 − x, x− z0⟩
= 0.

Thus we obtain limn→∞ ∥z0 − xn∥ = 0. Therefore {xn} converges strongly to z0.
This completes the proof. □

Next, we prove a strong convergence theorem by the shrinking projection method
[34] for generalized split feasibility problems in Hilbert spaces.

Theorem 3.2. Let H1 and H2 be Hilbert spaces and let C be a nonempty, closed
and convex subset of H1. Let B : H1 → 2H1 be a maximal monotone mapping such
that the domain of B is included in C and let Jλ = (I + λB)−1 be the resolvent of
B for λ > 0. Let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into C which satisfies the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.

Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear
operator such that A ̸= 0. Suppose that F (S) ∩ B−10 ∩ A−1F (T ) ̸= ∅. Let C1 = C
and let {xn} be a sequence in H1 generated by x ∈ H1, x1 = PCx and

zn = Jλn(I − λnA
∗(I − T )A)xn,

yn = αnxn + (1− αn)Szn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, ∀n ∈ N,
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where PCn+1 is the metric projection of H1 onto Cn+1, and {αn} ⊂ [0, 1] and {λn} ⊂
(0,∞) are sequences such that

lim inf
n→∞

αn < 1 and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1

∥AA∗∥
.

Then the sequence {xn} converges strongly to z0 = PF (S)∩B−10∩A−1F (T )x, where

PF (S)∩B−10∩A−1F (T ) is the metric projection of H onto F (S) ∩B−10 ∩A−1F (T ).

Proof. As in the proof of Theorem 3.1, F (S)∩B−10∩A−1F (T ) is closed and convex.
Thus there exists the mertic projection of H onto F (S) ∩ B−10 ∩ A−1F (T ). We
show that Cn are closed and convex for all n ∈ N. It is obvious from assumption
that C1 = C is closed and convex. Suppose that Ck is closed and convex. We know
that for z ∈ Ck,

∥yk − z∥2 ≤ ∥xk − z∥2

⇐⇒∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, z⟩ ≤ 0.

Then Ck+1 is closed and convex. By induction, Cn are closed and convex for all
n ∈ N. Next, we show that F (S) ∩ B−10 ∩ A−1F (T ) ⊂ Cn for all n ∈ N. It
is obvious from assumption that F (S) ∩ B−10 ∩ A−1F (T ) ⊂ C1. Suppose that
F (S)∩B−10∩A−1F (T ) ⊂ Ck for some k ∈ N. Put zk = Jλk

(I − λkA
∗(I − T )A)xk

and take z ∈ F (S) ∩ B−10 ∩ A−1F (T ) ⊂ Ck. As in the proof of Theorem 3.1, we
have that

∥zk − z∥2 = ∥Jλk
(I − λkA

∗(I − T )A)xk − Jλk
(I − λkA

∗(I − T )A)z∥2

≤ ∥xk − z∥2 + λk(λk ∥AA∗∥ − 1) ∥(I − T )Axk∥2(3.15)

≤ ∥xk − z∥2

and

∥yk − z∥2 = ∥αkxk + (1− αk)Szk − z∥2

≤ ∥xk − z∥2.

Hence we have z ∈ Ck+1. By induction, we have that F (S)∩B−10∩A−1F (T ) ⊂ Cn

for all n ∈ N. Since Cn is nonempty, closed and convex, there exists the metric
projection PCn of H onto Cn. Thus {xn} is well-defined.

Since {Cn} is a nonincreasing sequence of nonempty, closed and convex subsets
of H with respect to inclusion, it follows that

(3.16) ∅ ̸= F (S) ∩B−10 ∩A−1F (T ) ⊂ M- lim
n→∞

Cn =

∞∩
n=1

Cn.

Put C0 =
∩∞

n=1Cn. Then, by Theorem 2.1, we have that {PCnx} converges strongly
to x0 = PC0x, i.e.,

xn = PCnx → x0.

To complete the proof, it is sufficient to show that x0 = PF (S)∩B−10∩A−1F (T )x.
Since xn = PCnx and xn+1 = PCn+1x ∈ Cn+1 ⊂ Cn, we have from (2.2) that

0 ≤ 2⟨x− xn, xn − xn+1⟩(3.17)
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= ∥x− xn+1∥2 − ∥x− xn∥2 − ∥xn − xn+1∥2

≤ ∥x− xn+1∥2 − ∥x− xn∥2.
Then we get that

∥x− xn∥2 ≤ ∥x− xn+1∥2.(3.18)

Furthermore, since xn = PCnx and z ∈ F (S) ∩B−10 ∩A−1F (T ) ⊂ Cn, we have

∥x− xn∥2 ≤ ∥x− z∥2.(3.19)

Thus we have that limn→∞ ∥x − xn∥2 exists. This implies that {xn} is bounded.
Hence, {yn}, {zn} and {Szn} are also bounded. From (3.17), we have

∥xn − xn+1∥2 ≤ ∥x− xn+1∥2 − ∥x− xn∥2.
Thus we have that

∥xn − xn+1∥2 → 0.(3.20)

From xn+1 ∈ Cn+1, we also have that ∥yn − xn+1∥ ≤ ∥xn − xn+1∥. Then we get
that ∥yn − xn+1∥ → 0. Using this, we have

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ → 0.(3.21)

From 0 ≤ lim infn→∞ αn < 1, we have a subsequence {αni} of {αn} such that
αni → γ and 0 ≤ γ < 1. From

∥xn − yn∥ = ∥xn − αnxn − (1− αn)Szn∥ = (1− αn)∥xn − Szn∥,
we have that

∥Szni − xni∥ → 0.(3.22)

Using (3.22), let us show ∥Szni − zni∥ → 0. As in the proof of Theorem 3.1, we
have that for any z ∈ F (S) ∩B−10 ∩A−1F (T ),

∥yn − z∥2 = ∥αnxn + (1− αn)Szn − z∥2

≤ αn ∥xn − z∥2 + (1− αn) ∥zn − z∥2

≤ ∥xn − z∥2 + (1− αn)λn(λn ∥AA∗∥ − 1) ∥(I − T )Axn∥2 .
Thus we have

(1− αn)λn(1−λn ∥AA∗∥) ∥(I − T )Axn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2

= (∥xn − z∥+ ∥yn − z∥)(∥xn − z∥ − ∥yn − z∥)
≤ (∥xn − z∥+ ∥yn − z∥) ∥xn − yn∥ .

From ∥yn − xn∥ → 0 and αni → γ, we have that

(3.23) lim
i→∞

∥(I − T )Axni∥ = 0.

Since Jλn is firmly nonexpansive, as in the proof of Theorem 3.1, we have that

2∥zn − z∥2 = 2∥Jλn(I − λnA
∗(I − T )A)xn − Jλn(I − λnA

∗(I − T )A)z∥2

≤ ∥zn − z∥2 + ∥xn − z∥2 − ∥zn − xn∥2

− 2λn⟨zn − xn, A
∗(I − T )Axn⟩ − λ2

n∥A∗(I − T )Axn∥2
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and hence

∥zn − z∥2 ≤ ∥xn − z∥2 − ∥zn − xn∥2

− 2λn⟨zn − xn, A
∗(I − T )Axn⟩ − λ2

n∥A∗(I − T )Axn∥2.

Furthermore, as in the proof of Theorem 3.1, we have

∥yn − z∥2 ≤αn ∥xn − z∥2 + (1− αn) ∥Szn − z∥2

≤∥xn − z∥2 − (1− αn) ∥zn − xn∥2 − λn
2(1− αn) ∥A∗(I − T )Axn∥2

− 2λn(1− αn)⟨zn − xn, A
∗(I − T )Axn⟩.

This means that

(1− αn) ∥zn − xn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2

+ ∥A∗(I − T )Axn∥ {2λn ∥zn − xn∥+ λ2
n ∥A∗(I − T )Axn∥}

≤ (∥xn − z∥+ ∥yn − z∥) ∥xn − yn∥
+ ∥A∗(I − T )Axn∥ {2λn ∥zn − xn∥+ λ2

n ∥A∗(I − T )Axn∥}.

Since limi→∞ ∥(I − T )Axni∥ = 0, limn→∞ ∥xn − yn∥ = 0, αni → γ < 1 and {yn},
{zn} and {xn} are bounded, we have

(3.24) lim
n→∞

∥zni − xni∥ = 0.

Since yn = αnxn + (1−αn)Szn, we have yn −Szn = αn(xn −Szn). From (3.22) we
have

(3.25) ∥yni − Szni∥ = αni∥xni − Szni∥ → 0.

Since ∥zni − Szni∥ ≤ ∥zni − xni∥ + ∥xni − yni∥ + ∥yni − Szni∥, from (3.21), (3.24)
and (3.25) we have

(3.26) ∥zni − Szni∥ → 0.

Since xni = PCni
x → x0, we have from (3.24) that zni → x0. Then zni ⇀ x0. From

(3.26) and Lemma 2.4 we have x0 ∈ F (S). Let us show x0 ∈ B−10 ∩A−1F (T ). As
in the proof of Theorem 3.1, we have for (u, v) ∈ B,

(3.27) ⟨zn − u,
xn − zn

λn
− (A∗(I − T )Axn + v)⟩ ≥ 0.

from zni ⇀ x0, ∥xni − zni∥ → 0 and A∗(I − T )Axni → 0, we have ⟨x0 − u,−v⟩ ≥ 0
and hence 0 ∈ Bx0. Furthermore, since I − T is 1

2 -inverse strongly monotone,

⟨Axni −Ax0, (I − T )Axni − (I − T )Ax0⟩ ≥
1

2
∥(I − T )Axni − (I − T )Ax0∥2 .

From xni = PCni
x → x0 and (I − T )Axni → 0, we have that (I − T )Ax0 =

0. This implies that Ax0 ∈ F (T ). Therefore, x0 ∈ B−10 ∩ A−1F (T ). Thus we
have x0 ∈ F (S) ∩ B−10 ∩ A−1F (T ). Put z0 = PF (S)∩B−10∩A−1F (T )x. Since z0 =
PF (S)∩B−10∩A−1F (T )x ∈ Cn+1 and xn+1 = PCn+1x, we have that

(3.28) ∥x− xn+1∥2 ≤ ∥x− z0∥2.
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Thus we have that

∥x− x0∥2 = lim
n→∞

∥x− xn∥2 ≤ ∥x− z0∥2.

Then we get z0 = x0. Hence {xn} converges strongly to z0. This completes the
proof. □

4. Applications

In this section, we give some applications. Let H be a Hilbert space and let f be
a proper, lower semicontinuous and convex function of H into (−∞,∞]. Then the
subdifferential ∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}

for all x ∈ H. From Rockafellar [26], we know that ∂f is maximal monotone. Let C
be a nonempty, closed and convex subset of H and let iC be the indicator function
of C, i.e.,

iC(x) =

{
0, x ∈ C,

∞, x /∈ C.

Since iC is a proper, lower semicontinuous and convex function on H, the subdiffer-
ential ∂iC of iC is a maximal monotone operator. Thus we can define the resolvent
Jλ of ∂iC for λ > 0, i.e.,

Jλx = (I + λ∂iC)
−1x

for all x ∈ H. We know from [31] that, for any x ∈ H and u ∈ C,

∂iCu = NCu and Jλx = PC x ,

where NCu is the normal cone to C at u, i.e.,

NCu = {z ∈ H : ⟨z, v − u⟩ ≤ 0, ∀v ∈ C}.

Now, using Theorem 3.1, we can obtain the following strong convergence theorem
in Hilbert spaces.

Theorem 4.1. Let H1 and H2 be Hilbert spaces and let C be a nonempty, closed
and convex subset of H1. Let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized
hybrid mapping from C into C which satisfies the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.

Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear
operator such that A ̸= 0. Suppose that F (S) ∩ ∩A−1F (T ) ̸= ∅. Let {xn} ⊂ H1 be
a sequence generated by x ∈ H1, x1 = PCx and

zn = PC(I − λnA
∗(I − T )A)xn,

yn = αnxn + (1− αn)Szn,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,
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where PCn∩Qn is the metric projection of H onto Cn ∩ Qn, and {αn} ⊂ [0, 1] and
{λn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1

∥AA∗∥
.

Then {xn} converges strongly to z0 = PF (S)∩A−1F (T )x, where PF (S)∩A−1F (T ) is the

metric projection of H onto F (S) ∩A−1F (T ).

Proof. Setting B = ∂iC in Theorem 3.1, we know that Jλn = PC for all λn > 0.
Thus we obtain the desired result by Theorem 3.1. □

Similarly, using Theorem 3.2, we get the following theorem.

Theorem 4.2. Let H1 and H2 be Hilbert spaces and let C be a nonempty, closed
and convex subset of H1. Let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized
hybrid mapping from C into C which satisfies the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.

Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear
operator such that A ̸= 0. Suppose that F (S) ∩ A−1F (T ) ̸= ∅. Let C1 = C and let
{xn} be a sequence in H1 generated by x ∈ H1, x1 = PCx and

zn = PC(I − λnA
∗(I − T )A)xn,

yn = αnxn + (1− αn)Szn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, ∀n ∈ N,

where PCn+1 is the metric projection of H1 onto Cn+1, and {αn} ⊂ [0, 1] and {λn} ⊂
(0,∞) are sequences such that

lim inf
n→∞

αn < 1 and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1

∥AA∗∥
.

Then the sequence {xn} converges strongly to z0 = PF (S)∩A−1F (T )x, where

PF (S)∩A−1F (T ) is the metric projection of H onto F (S) ∩A−1F (T ).

Next, using Theorem 3.1, we consider the problem for finding a common solution
of an equilibrium problem and the sets of fixed points of two nonlinear mappings in
Hilbert spaces. Let C be a nonempty, closed and convex subset of a Hilbert space
and let f : C × C → R be a bifunction satisfying the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

Then, the equilibrium problem (with respect to C) is to find x̂ ∈ C such that

f(x̂, y) ≥ 0(4.1)
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for all y ∈ C. The set of such solutions x̂ is denoted by EP (f). The following lemma
appears implicitly in Blum and Oettli [4].

Lemma 4.3 (Blum and Oettli). Let C be a nonempty, closed and convex subset of
H and let f be a bifunction of C ×C into R satisfying (A1)− (A4). Let r > 0 and
x ∈ H. Then, there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

The following lemma was also given in Combettes and Hirstoaga [9].

Lemma 4.4. Assume that f : C × C → R satisfies (A1) − (A4). For r > 0 and
x ∈ H, define a mapping Tr : H → C as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then, the following hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

We call such Tr the resolvent of f for r > 0. Using Lemmas 4.3 and 4.4, we know
the following theorem from Takahashi, Takahashi and Toyoda [28]. See [2] for a
more general result.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let f : C×C → R satisfy (A1)−(A4). Let Af be a multivalued
mapping of H into itself defined by

Afx =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, x ∈ C,

∅, x /∈ C.

Then EP (f) = A−1
f 0 and Af is a maximal monotone operator with D(Af ) ⊂ C.

Furthermore, for any x ∈ H and r > 0, the resolvent Tr of f coincides with the
resolvent of Af ; i.e.,

Trx = (I + rAf )
−1x.

Using Theorems 3.1 and 4.5, we obtain the following result.

Theorem 4.6. Let H1 and H2 be Hilbert spaces and let C be a nonempty, closed and
convex subset of H1. Let f be a bifunction of C ×C into R satisfying (A1)− (A4).
Let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
C which satisfies the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.
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Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded
linear operator such that A ̸= 0. Suppose that F (S) ∩ EP (f) ∩ A−1F (T ) ̸= ∅. Let
{xn} ⊂ H1 be a sequence generated by x ∈ H1, x1 = PCx and

zn = Tλn(I − λnA
∗(I − T )A)xn,

yn = αnxn + (1− αn)Szn,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn ∩ Qn, and {αn} ⊂ (0, 1) and
{λn} ⊂ (0,∞) satisfy

lim inf
n→∞

αn < 1 and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1

∥AA∗∥
.

Then {xn} converges strongly to z0 = PF (S)∩EP (f)∩A−1F (T )x, where

PF (S)∩EP (f)∩A−1F (T ) is the metric projection of H onto F (S)∩EP (f)∩A−1F (T ).

Proof. For the bifunction f : C × C → R, we can define Af in Lemma 4.5. From
Theorem 4.5 we also know that Jλn = Tλn for all n ∈ N. Thus we obtain the desired
result by Theorem 3.1. □

As in the proof of Theorem 4.6, we also get similar result from Theorems 3.2 and
4.5,

Theorem 4.7. Let H1 and H2 be Hilbert spaces and let C be a nonempty, closed and
convex subset of H1. Let f be a bifunction of C ×C into R satisfying (A1)− (A4).
Let S be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
C which satisfies the conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0.

Let T : H2 → H2 be a nonexpansive mapping. Let A : H1 → H2 be a bounded linear
operator such that A ̸= 0. Suppose that F (S)∩EP (f)∩A−1F (T ) ̸= ∅. Let C1 = C
and let {xn} be a sequence in H1 generated by x ∈ H1, x1 = PCx and

zn = Tλn(I − λnA
∗(I − T )A)xn,

yn = αnxn + (1− αn)Szn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, ∀n ∈ N,

where PCn+1 is the metric projection of H1 onto Cn+1, and {αn} ⊂ [0, 1] and {λn} ⊂
(0,∞) are sequences such that

lim inf
n→∞

αn < 1 and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1

∥AA∗∥
.

Then the sequence {xn} converges strongly to z0 = PF (S)∩EP (f)∩A−1F (T )x, where

PF (S)∩EP (f)∩A−1F (T ) is the metric projection of H onto F (S)∩EP (f)∩A−1F (T ).
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