&2 Pug
.
%

Journal of Nonlinear and Convex Analysis § Mdm P"“'Shas

Volume 16, Number 12, 2015, 2521-2538 \-u 9ﬂ’-) ISSN 1880-5221 ONLINE JOURNAL
! © Copyright 2015

Yok%

STRONG CONVERGENCE THEOREMS BY HYBRID METHODS
FOR SPLIT FEASIBILITY PROBLEMS IN HILBERT SPACES

SAUD M. ALSULAMI, ABDUL LATIF, AND WATARU TAKAHASHI

ABSTRACT. In this paper, motivated by the idea of the split feasibility problem
and results for solving the problem, we consider generalized split feasibility prob-
lems and then establish strong convergence theorems by two hybrid methods for
the problems. As applications, we get new strong convergence theorems which
are connected with fixed point problem and equilibrium problem.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset
of H. Let T be a mapping of C into H. We denote by F(T') the set of fixed points
of T'. For a constant a > 0, the mapping U : C' — H is said to be a-inverse strongly
monotone if

(& —y, Uz = Uy) > a|[Uz - Uyl|?
for all x,y € C. An a-inverse strongly monotone mapping is also Lipschitz con-
tinuous with a Lipschitz constant é A mapping T of C' into H is nonexpansive if
|Tu —Tv| < ||lu—wvl| for all u,v € C. If T : C'— H is a nonexpansive mapping,
then I — T is %-inverse strongly monotone, where [ is the identity mapping on H.
A nonexpansive mapping 7' : C — H with F(T') # () is quasi-nonexpansive; see, for
instance, [31]. A mapping S of C into H is nonspreading if

2||Su — Sv|* < [[Su— v + | Sv — ul]?
for all u,v € C; see [19, 20]. A mapping S of C into H is hybrid if
3[Su — Svll* < [[Su— vl + [|Sv —ul]* + u —v|?

for all u,v € C; see [32]. Recently, Kocourek, Takahashi and Yao [18] introduced
a broad class of nonlinear mappings which contains nonexpansive mappings, non-
spreading mappings and hybrid mappings in a Hilbert space. They called such
a mapping generalized hybrid; see Section 2. Moreover, Kawasaki and Takahashi
[17] defined a more wide class of nonlinear mappings than the class of generalized
hybrid mappings. A multi-valued operator B C H x H is said to be monotone if
(x—y,u—v) > 0forallx,y € H,u € Bx and v € By. A monotone operator B on H
is said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on H. Given set-valued operators B; : H; — 281, 1 < i <m,
and G; : Hy — 2H2 1 < j < n, respectively, and bounded linear operators
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Aj : Hi — Hy, 1 < j < n, the split common null point problem [7] is to find a
point z € Hy such that

2 € (N2 B710) N (Nf=, 471(G510)),

where B, 10 and Gj_lo are null point sets of B; and G, respectively. Let C and @ be
nonempty, closed and convex subsets of H; and Hs, respectively. Let A : Hy — Hy
be a bounded linear operator such that A # 0. Then the split feasibility peoblem [8]
is to find z € H; such that z € C N A~1Q. Putting B; = di¢ for all i, Gj = 0ig for
all j and A; = A for all j in the split common null point problem, we see that the
split feasibility peoblem is a special case of the split common null point problem,
where dic and dig are the subdifferentials of the indicator functions i¢ of C and ig
of @, respectively. Defining U = A*(I — Pg)A in the split feasibility peoblem, we
have that U : Hy — Hj is an inverse strongly monotone operator, where A* is the
adjoint operator of A and Pc and Pg are the metric projections of H; onto C' and
H, onto Q, respectively. Furthermore, if CNA~!Q is non-empty, then z € CNA™1Q
is equivalent to z = Po(I — AU)z, where A > 0.

In this paper, motivated by the idea of the split feasibility problem and results
for solving the problem, we consider generalized split feasibility problems and then
establish strong convergence theorems by two hybrid methods for the problems. As
applications, we get new strong convergence theorems which are connected with
fixed point problem and equilibrium problem.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product (-, ) and
norm || - ||. We denote the strong convergence and the weak convergence of {z,} to
x € H by x,, —» = and x,, — z, respectively. From [31], we know the following basic
equality. For x,y € H and A € R, we have

(2.1) Iha + (1= Nyl* = Allz]|* + (1= Myl = A = Nl — ]|
We also know that for z,y,u,v € H,
(2.2) 2(z —y,u—v) = |l —ol® + ly = ull® — [lz = ul* — [ly —]*.

Let C' be a nonempty, closed and convex subset of H and x € H. Then, we know
that there exists a unique nearest point z € C' such that ||z — z|| = infyec ||z — y||.
We denote such a correspondence by z = Pox. The mapping Pp is called the metric
projection of H onto C. It is known that Pg is nonexpansive and

(x — Pcx,Pcx —u) >0

for all z € H and u € C see [31] for more details.

For a sequence {C),} of nonempty, closed and convex subsets of a Hilbert space
H, define s-Li,,C,, and w-Ls,C),, as follows: z €s-Li,C), if and only if there exists
{zn} C H such that {x,} converges strongly to x and z,, € C, for all n € N.
Similarly, y €w-Ls,,C,, if and only if there exist a subsequence {Cy,} of {C},} and a
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sequence {y;} C H such that {y;} converges weakly to y and y; € Cy,, for all i € N.
If Cy satisfies

(2.3) Cy =s-Li,,Cy, =w-Ls,,C,,,

it is said that {C),} converges to Cj in the sense of Mosco [23] and we write Cy =M-
lim,, o, C,. It is easy to show that if {C},} is nonincreasing with respect to inclusion,
then {C),} converges to N2>, C,, in the sense of Mosco. For more details, see [23].
We know the following theorem by Tsukada [40].

Theorem 2.1 ([40]). Let H be a Hilbert space. Let {C,} be a sequence of nonempty,
closed and convexr subsets of H. If Cy =M-lim,, ., C),, exists and nonempty, then
for each x € H, {Pc,x} converges strongly to Pc,x, where Pc, and Pc, are the
mertic projections of H onto Cy, and Cy, respectively.

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. Then, a mapping T': C — H is called generalized hybrid [18] if there exist
a, B € R such that

(2.4) alTe = Tyl? + (1 = a)llz = Ty|* < BTz — y|* + (1 = Bz -yl

for all z,y € C. We call such a mapping an («, (3)-generalized hybrid mapping.
Notice that the mapping above covers several well-known mappings. For example,
an («a, ()-generalized hybrid mapping is nonexpansive for « = 1 and 8 = 0, non-
spreading for « = 2 and 8 = 1, and hybrid for a = % and 8 = % Kawasaki and
Takahashi [17] defined a more broad class of nonlinear mappings than the class of
generalized hybrid mappings. A mapping S from C into H is said to be widely

more generalized hybrid if there exist «, 5,7, d,¢,(,n € R such that
(2.5) al| Sz — Syl + Blla — Syl* + vl|Sz — y[I* + 8|z — y?
ez — Sz||* + Clly — SylI* +nll(z — Sz) — (y = Sy)|* < 0

for all z,y € C. Such a mapping S is called (o, 8,7, 9, ¢, (,n)-widely more general-
ized hybrid. An («, 8,7, 0, ¢, (,n)-widely more generalized hybrid mapping is gener-
alized hybrid in the sense of Kocourek, Takahashi and Yao [18] if a4+ = —y—d =1
and e = ( = n = 0. A generalized hybrid mapping with a fixed point is quasi-
nonexpansive. However, a widely more generalized hybrid mapping is not quasi-
nonexpansive generally even if it has a fixed point. We know the following theorem
from Kawasaki and Takahashi [17].

Theorem 2.2 ([17]). Let H be a Hilbert space, let C' be a nonempty, closed and
convex subset of H and let S be an («, 5,7,9,¢,(,n)-widely more generalized hybrid
mapping from C into itself which satisfies the following conditions (1) or (2):

(1) a+B+~v+6>0,a+vy+e+n>0and (+n>0;

(2) a+p+v+6>0,a+8+(+n>0andec+n>0.
Then S has a fized point if and only if there exists z € C such that {S"z : n =
0,1,...} is bounded. In particular, a fized point of S is unique in the case of o +
B+~ +3d >0 on the conditions (1) and (2).

The following lemmas for widely more generalized hybrid mappings are essencial
for proving our main theorems.
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Lemma 2.3 ([17]). Let H be a Hilbert space, let C' be a nonempty, closed and
convex subset of H and let S be an («, 3,7, 9,¢e,(,n)-widely more generalized hybrid
mapping from C into itself such that F(S) # 0 and it satisfies the conditions (1) or
(2):

(1) a+B8+~v+d>0,(+n>0and a+ 5 >0;

(2) a+B8+7+5>0,e+n>0 and a+~ > 0.

Then S is quasi-nonexpansive.

Lemma 2.4 ([11]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let S : C — H be an («, 8,7, 9, ,(,n)-widely more generalized
hybrid mapping. Suppose that it satisfies the following conditions (1) or (2):

(1) a+B8+~v+d>0anda+~v+e+n>0;
(2) a+p+~v+d6>0anda+ L+ (+n>0.

If v, — z and z, — Sz, — 0, then z € F(95).
From [37], we also have the following lemmas.

Lemma 2.5. Let Hy and Hy be Hilbert spaces. Let A : Hy — Hy be a bounded
linear operator such that A # 0. Let T : Hy — Hy be a monexpansive mapping.
Then a mapping A*(I —T)A : Hy — Hy is m—inveme strongly monotone.

Lemma 2.6. Let Hi and Hs be Hilbert spaces. Let B : Hi — 211 pe q mazimal
monotone mapping and let Jy = (I + AB)~! be the resolvent of B for A\ > 0. Let
T : Hy — Hs be a nonexpansive mapping and let A : Hy — Hs be a bounded linear
operator. Suppose that B~10N A~ F(T) # 0. Let \,7 > 0 and z € H. Then the
following are equivalent:

(i) z=J\(I —rA*(I-T)A)z;
(i) 0 € A*(I —T)Az + Bz;
(iii) z € BTN A~LF(T).

3. STRONG CONVERGENCE THEOREMS

In this section, using the hybrid method by Nakajo and Takahashi [24], we first
prove the following strong convergence theorem in Hilbert spaces.

Theorem 3.1. Let Hy and Ho be Hilbert spaces and let C be a nonempty, closed
and convex subset of Hy. Let B : Hy — 2H1 be a maximal monotone mapping such
that the domain of B is included in C and let Jy = (I + AB)~! be the resolvent of
B for A > 0. Let S be an (a, 8,7, 96,¢€,(,n)-widely more generalized hybrid mapping
from C into C which satisfies the conditions (1) or (2):

(1) a+B+~v+6>0,a+8>0and(+n>0;
(2) a+B8+v+5>0,a+y>0andec+n=>0.

Let T : Hy — Hsy be a nonexpansive mapping. Let A : Hi — Hy be a bounded
linear operator such that A # 0. Suppose that F(S)N B~ 10N A7 F(T) # 0. Let
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{zn} C Hy be a sequence generated by x € Hy,x1 = Pox and

zn = Iz, (I = MA (I —T)A)x,,

Yn = n®p + (1 — ap)Szp,
Cn={2€C:|lyn — 2[| < [Jzn — 2|},
Qn={z€C:(xy,—z,x—x,) >0},
Tni1 = Pe,ng,z, Vn €N,

\

where Pc,nq, is the metric projection of Hy onto Cp, N Qp, and {ay,} C [0,1] and
{A\n} C (0,00) satisfy

limsupa, <1 and 0 <liminf)\, <limsupA, < ——.

Then the sequence {z,} converges strongly to zo = Pp(g)np-10nA-1p(T)T, where
Pp(s)nB-10na-1F(T) S the metric projection of H onto F(S) N B7loNnA~F(T).

Proof. We have from Lemma 2.3 that S is quasi-nonexpansive. Then F'(S) is closed
and convex. We also know that B~10 N A='F(T) is closed and convex [28]. Then
F(S)NB~0NA~LF(T) is closed and convex. Thus there exists the mertic projection
Pr(s)nB-10na-1r() of H onto F(S)N B710N A71F(T). Since

lyn — 2% < [lzn — 2]
<:>”ynH2 - HanQ - 2<yn - xnvz> < 07

we have that C,,, @, and C, N @, are closed and convex for all n € N. We next

show that C, N Q,, is nonempty. Let z € F(S)N B~'0N A~'F(T). Since I — T

is 3-inverse strongly monotone and z = Jy,(I — A\, A*(I — T)A)z, we have from

0 < liminf,, oo Ay < limsup,, oo An < IIT}‘VH and Lemma 2.6 that for any n € N,

lzn — 2|1> = ||Jn, (T = M A*(I = T)A)x,, — Jy, (I — MyA* (I — T)A)z||?
< |lwn = ApA* (I — T)Axy, — 2z + M A (I — T)Az:H2
= ||zn — MA* (I — T) Az, — 2|
= ||&n — 2||* = 20n(@p — 2, A*(I = T)Axy) + (A0)? | A*(I — T) Az, ||?
(3.1) = ||@n — 2||> = 20 (Azp — Az, (I — T)Azy) + (An)? ||A*(I — T) Ay ||
< lan = 2|* = A [[(T = T) Az ||* + (M) (A*(I = T) Az, A*(I — T) Ay,
= ||&n — 2||* = A | (I = T) A ||* + (M) 2(AA*(I — T) Az, (I — T) Azy,)
<l = 2l = A I(T = T)Azn|* + (An)? [|AA|| |(T = T) Az |
= llzn — 2)1* + A [|[AA*| = 1) || (1 = T) Az |?

< ln — 2|
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Since S is quasi-nonexpansive, we have from (3.1) that
lyn — ZH2 = [Janzn + (1 — an)Szn — ZHQ
< apllen — 2 + (1 — an)l|Szn — 2|
< aplla, — ZHQ + (1= an)llzn — ZH2
< apllan — 2”2 + (1 —an)flzn — 2”2
= llan — 2.

Thus we have z € C,, and hence F(S)NB~!0NA~1F(T) c C,, for all n € N. Next,
we show by induction that F(S)N B~ 10N A~1F(T) c C,,NQ,, for all n € N. From
F(S)NB~'0N A~LF(T) C Q1, it follows that F(S) N B~0N A~ F(T) ¢ C; N Q.
Suppose that F(S)NB~0N A" F(T) € Cr N Qy for some k € N. We have from
Tr+1 = Poyng,® that

<517k+1 —Z,T — :Bk+1> >0, VzeCp,NAQg.
Since F(S)NB~0N A~IF(T) C Cy N Qg, we also have
(Tpp1 — 2,0 — 1) >0, Yz e F(S)NBONATLF(T).

This implies F(S) N B710 N A7'F(T) C Qpy1. Thus we have F(S) N B~l0N
A7LF(T) C Cki1NQpy1. By induction, we have F(S)NB~10NALF(T) C C,NQy,
for all n € N. This means that {z,} and {z,} are well-defined.

Since z, = Pg,x and z,4+1 = Pc,ng, & C Qn, we have from (2.2) that

0<2x—xp,Tn — Tpni1)
(3.2) =& = zns1|? = |z — zall® = |20 — Znga|?
<z — zppa|? — |z — 2%,

Then we get that

(3-3) Iz = zall? < llz = 24|
Furthermore, since z, = Pg,z and z € F(S)N B~10N A71F(T) C Q,, we have
(3-4) lz — 2]l < [z — 2%

We have from (3.3) and (3.4) that lim,,_, ||z — ,||? exists. This implies that {z,,}
is bounded. Hence, {y,}, {z,} and {Sz,} are also bounded. From (3.2), we have
that

20 = Zng1|* < |z — zna P = [l — 20| ?
and hence

(3.5) |xrn — Tnt1]] — 0.

From x,41 € Cy, we have that ||y, — znt1]| < ||zn — Znt1]|. From (3.5), we have
that ||y, — zp+1]| = 0. Then we have that

(3.6) lyn — @nll < lyn — Zpsa |l + [|#n41 — zall = 0.
From 0 < limsup,, .., an < 1 and

|z = ynll = |Tn — an®n — (1 — ) Szl = (1 — ap)||lzn — Szall,
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we have that
(3.7) |Szn — xn|| — 0.
Let us show that ||Sz, — z,|| — 0. It follows from (3.1) that
lyn — ZHQ = |lann + (1 — an)Szn — ZH2
< ap |lzn — ZH2 + (1 —an) llzn — Z||2
< ay [|r, — Z||2
+ (1= an){llzn — 2)1* + A (A [[AA®[| = 1) (T — T) Azn|*}
= ||lzn — 21> + (1 = an) An (A [[AA™]| — 1) [|(T — T) Az ||?
for all z € F(S)Nn B~'0N A~'F(T). Thus we have that
(1= an)An(1 = My [JAAS D) [[(1 = T) Az ||* < lzn — 2I° = llyn — 2|
= ([lon — 2|l + [lyn — 2[)Ulzn — 2l = lyn — 2|))
< (o = 2l + lyn — 21) |7 — ynll -

From ||y, — 2| — 0 and 0 < liminf, o0 Ay < limsup,,_,oo An < IITI‘VH’ we have
that

(3.8) nh—>120 (I —T)Ax,| = 0.
Since J),, is firmly nonexpansive, we have that
2lzn — 212 = 2 Ja, (I = A A*(I = T) Ay — I, (I = A A*(I = T) A)z?
< 2(zp — 2, (I = MA* (I = T)A)x), — 2)
= llzn = 2l + |1 = A A*(I = T)A)zy, — 2|
—llon = (I = A A*(I = T) A)zy|®
< |lzn = 2|* + ||z — 2|2
—Jlzn = (I = AA* (I = T) A |
= [lzn = 2[1> + ll2n = 201> = llz0 — @0 + Ma(A*(I = T) Ay |
= [lzn — ZH2 + llzn — ZHQ — l2n — anz
— 2\ (2 — @y, A*(I = T) Awy) — N2||A*(I — T) Ay
Therefore, we have that
12 = 21% < |z — 2II* = llzn — 2all?
— 2\ {20 — @, AN(I — T)Azy) — N2||A*(I — T) Az, ||%.
Then we have that
lyn — 2% <an @n — 2> + (1 = an) [|Sz0 — 2|
<an ||z = 2l* + (1 — an) [|2n — 2|
<an [|lzn — ZH2 + (1 —an){flzn — ZH2 — |l2n — anQ

Dz — @y A*(I = T)Azy) — M2 | A*(I — T) Az %}
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This means that
(1= an) ll2n = @al® < lln =27 = lyn — 2|
+ | AN = T) Ay | {200 |20 — @]l + N, | AT = T) Az}
< (lzn = 2l + llyn = 21) llzn — yall
+ A = T)Azn|| {2Xn [|20 — zall + X [|A™( = T) Az }.
Since lim,, o0 ||A*(I — T)Azy|| = 0, limy oo || — ynll = 0, and {yn}, {zn} and
{z,} are bounded, we have
(3.9) lim ||z, — 2,/ = 0.

n—oo
Since y, = apzy + (1 — ayp)Szy,, we have y, — Sz, = ap(z, — Sz,). Then, from
(3.7) we have
(3.10) lyn — Sznl|| = anllzn — Szp|| — 0.
Since
2n = Sznll < llzn — znll + [|#n — ynll + lyn — Szall,
from (3.6), (3.9) and (3.10) we have

(3.11) |z, — Szn|| — 0.

Since {xy, } is bounded, there exists a subsequence {z,,} C {z,} such that x,, — z*.
We have from (3.9) and z,, — z* that z,, — z*. From (3.11) and Lemma 2.4, we
have z* € F(S). Next, let us show z* € B~10N A~'F(T). From the definition of
Jy,, we have that

zn = JIx, (I = MA* (I —T)A)xy,
S (I = A (I -T)A)z, € (I + \yB)zp = zn + \yBzy,
& Xy — 2n — MAT(I = T)Ax, € \yBz,

& )\1n(93n —zp — MAY(I — T)Ax,) € Bz,.
Since B is monotone, we have that for (u,v) € B,
(zn — u, )il(xn —2p — MAT(I —T)Ax,) —v) >0
and hence
(3.12) (zn — u, ‘”””A_ T (AYI - T)Azy +v)) > 0.
From z,, — z* and A*(] — T)A?Uni — 0, we have that
(3.13) (z" —u,—v) > 0.

Since B is maximal monotone, we have that 0 € Bz*. Furthermore, since I — T is
%—inverse strongly monotone, we have that

(Azy, — Az*, (I = T)Axy,—(I —T)AZ") > % (I = T)Az,, — (I —T)Az*|*.

From w,, — 2* and (I — T)Ax,, — 0, we have that ||(I — T)Az*||> < 0 and hence
Az* € F(T). Therefore, 2* € B~10N A~LF(T).
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Put 2y = PF(S)QBflomAle(T)ZU. Since zg = PF(S)QB*IOOA*IF(T):U € C,NQ, and
ZTny1 = Po,ng,r, we have that

(3.14) = @nal* < [l — 201
Since || - ||? is weakly lower semicontinuous, from z,,, — z* we have that
lz = 21 = ll2[|* — 2{z, %) + |77

< liminf(||z|% — 2(z, zn,) + [|zn, ||?)
71— 00

= liminf ||z — z,, ||
1—00

< [l — zof*.

From the definition of zy, we have z* = z3. Then we obtain x,, — z5. We finally
show that xz,, — z9. We have

20 — all? = l120 — 212 + 12 — 2all? + 2(20 — 7,2 — 2}, ¥ € N,
Using (3.14), we have that
limsup ||zg — 2,||? = limsup(||z0 — 2||> + ||z — 2 ||* + 2(20 — 2,2 — 2,.))
n—oo n—oo

< limsup(|lzo — z|* + |z — 20]|* + 2(20 — =, — z))
n—oo

= |20 — || + ||z — 20| + 2(20 — @,z — 20)
=0.

Thus we obtain lim, |20 — Zn|| = 0. Therefore {z,,} converges strongly to zy.
This completes the proof. O

Next, we prove a strong convergence theorem by the shrinking projection method
[34] for generalized split feasibility problems in Hilbert spaces.

Theorem 3.2. Let Hi and Ho be Hilbert spaces and let C be a nonempty, closed
and convex subset of Hy. Let B : Hy — 291 be a mazimal monotone mapping such
that the domain of B is included in C and let Jy = (I + AB)~! be the resolvent of
B for A > 0. Let S be an (o, 8,7, 96,¢,(,n)-widely more generalized hybrid mapping
from C into C which satisfies the conditions (1) or (2):

(1) a+B8+~v+d>0,a+8>0and (+n>0;

(2 a+8+7v+5>0,a+y>0andec+n>0.
Let T : Hy — Hy be a nonexpansive mapping. Let A : Hi — Hs be a bounded linear
operator such that A # 0. Suppose that F(S)N B 0N AT F(T) # 0. Let C; = C
and let {x,} be a sequence in Hy generated by x € Hy,x1 = Pox and

on = I (T = M A* (I = T) A)a,
Yn = QpZp + (1 - an)SZn7
Crny1 =12 € Cn : [lyn — 2|l < [lzn — 2|},

Tny1 = Po,.z, Vn €N,
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where Pc, ,, is the metric projection of Hy onto Cpy1, and {a,} C [0,1] and {\,} C
(0,00) are sequences such that

liminfa, <1 and 0 <liminf ), <limsup ), <

Then the sequence {x,} converges strongly to zy = PrsynB-1ona-1r(T)T, where
Prp(s)nB-10na-1F(T) 8 the metric projection of H onto F(S)N B7loNnA~F(T).

Proof. As in the proof of Theorem 3.1, F(S)NB~'0NA~LF(T) is closed and convex.
Thus there exists the mertic projection of H onto F(S) N B~10 N A~1F(T). We
show that C, are closed and convex for all n € N. It is obvious from assumption
that C1 = C' is closed and convex. Suppose that Cy, is closed and convex. We know
that for z € C},
lye — 201 < llax — 2|
=yl = ekl = 2(yx — 21, 2) < 0.
Then Cg41 is closed and convex. By induction, C), are closed and convex for all
n € N. Next, we show that F(S)N B~ 10N A™'F(T) c C, for all n € N. Tt
is obvious from assumption that F(S) N B~'0 N A~'F(T) C C;. Suppose that
F(S)NB 10N A7YF(T) C Cy for some k € N. Put 2z, = Jy, (I — \A*(I —T)A)xy,
and take z € F(S)NB~'0N A™LF(T) C Ck. As in the proof of Theorem 3.1, we
have that
2k — 2|1 = || In, (T = MeA (I = T)A)zy, — Jn, (I — MA (I — T)A)z|)?
(3.15) < g = 2l + AeO [|[AA™] = 1) I(1 = T) Aay |
< flax = 2|
and
ly — zII” = llowar + (1 — o) Sz — 2|
< g — 2|
Hence we have z € Cyy1. By induction, we have that F(S)NB~10nA~'1F(T) c C,
for all n € N. Since C,, is nonempty, closed and convex, there exists the metric
projection Pg, of H onto C,,. Thus {z,} is well-defined.

Since {C,} is a nonincreasing sequence of nonempty, closed and convex subsets
of H with respect to inclusion, it follows that

oo

(3.16) 0# F(S)NB'0NA'F(T) C M- lim Cy = (1] Ch.

n—oo ne1
Put Cp = ,2; Cpn. Then, by Theorem 2.1, we have that { Pc,, z} converges strongly
to o = P,z ie.,

xn = Pc,x — x0.

To complete the proof, it is sufficient to show that zo = Pp(g)np-10na-1r(1)Z-
Since z,, = Pg,« and x,41 = Pg, ., € Cpq1 C Cp, we have from (2.2) that

(3.17) 0<2(x—ap, Ty — Tpt1)
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= |lo = zp41])? = e — za]? = llon — 2t
< lz = 21 — llz — 2.

Then we get that

(3.18) o= 2l < 2 — s 2
Furthermore, since z,, = Pg,x and z € F(S)NB~10N A~'F(T) C C,, we have
(3.19) lz = za® <l — 2]

Thus we have that lim,, .« ||z — ,||? exists. This implies that {x,} is bounded.
Hence, {yn}, {zn} and {Sz,} are also bounded. From (3.17), we have

20 = Zng1|? < |z — zpga||* = [lz — 2] .
Thus we have that
(3.20) |20 — Tny1]|® — 0.

From 2,41 € Cpt1, we also have that ||y, — zpt1]| < [|n — Znt1]. Then we get
that ||y, — zn+1|| — 0. Using this, we have

(3.21) lyn — ol < lyn — Totall + [ 21 — 20l = 0.

From 0 < liminf, .o o, < 1, we have a subsequence {ay,} of {a;,} such that
oy, —+vand 0 <y < 1. From

|2 = Ynll = |0 — an®n — (1 — ) Szl = (1 — o) ||z — Szall,
we have that
(3.22) 1820, — zn,|| = 0.

Using (3.22), let us show ||Sz,, — 2zn,|| — 0. As in the proof of Theorem 3.1, we
have that for any z € F(S)NB~10N A~ F(T),

[yn — 2”2 = [lanzn + (1 — an)Sz, — ZH2
< ay lzn — Z||2 + (1 —an) llzn — Z||2
<l = 211* + (1 = an)Au(An [AA%]| = 1) [|(1 = T) Az |
Thus we have
(1 = an)An(1=An [[AA™]) [[(1 - T)AanQ < lzn — ZH2 —llyn — ZHQ
= (lzn = 2l + llyn — 2ID(l2n = 2l = llyn — =)
< (lzn = 20 + llyn — 2D llzn — ynll -
From ||y, — || = 0 and a,,, — 7y, we have that
(3.23) lim [|(I = T)Axy,| = 0.
i—00
Since J), is firmly nonexpansive, as in the proof of Theorem 3.1, we have that
2|zn — 2|12 = 2|| I, (I = Mg A* (T = T)A)zy, — Iy, (I — MNyA* (I = T)A)z|?
< llzn = 2% + llen = 21° = llzn — za?

— 20 (2 — Ty, A*(I — T) Azy,) — N2 ||A*(I — T) Az,
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and hence
l2n — 22 < ln — 212 = 20 — 2l
— 20 (zn — xp, AY(I = T)Axy) — )\721||A*(I — T)Aq:n|]2.
Furthermore, as in the proof of Theorem 3.1, we have
9 = 2I1% San llan — 21 + (1 — an) 120 — =1
<[l — 21 = (1= @) 20 = 2all” = Ma2(1 = ) [|A*(I = T) Ay |
— 2 (1 — ) (2 — @, A*(I = T) Axyy).
This means that
(1= an) llzn = zal® < ll2n — 21> = [lgn — 2|
+ A = T) Ay {220 120 — 2ol + N5 [|A*(I = T) A |1}
< (len = 2l + lyn = 2l lzn — yall
+ AT = T) Ay {220 120 — 2ol + N || A*(I = T) Ay |}

Since lim; o0 ||(I — T)Azp,|| = 0, limp oo ||z — Ynl = 0, o, — v < 1 and {yn},
{zn} and {z,,} are bounded, we have

(3.24) lim ||zp, — @, || = 0.
n—oo

Since y, = apzy + (1 — ay)Sz,, we have y, — Sz, = ap(z, — Sz,). From (3.22) we
have

(3'25) Hynz - Sznz” = O‘ninni - SZMH — 0.

Since Hznz - Szm” < Hzm - xnzH + me - ymH + Hynz - SZMH7 from (3-21), (3'24)
and (3.25) we have

(3.26) 2, — Szn, || — 0.

Since xp, = Pc, * — xo, we have from (3.24) that z,, — z¢. Then z,, = x¢. From

(3.26) and Lemma 2.4 we have o € F(S). Let us show 29 € B~10N A~1F(T). As

in the proof of Theorem 3.1, we have for (u,v) € B,

Tp — Zn
)\n

from z,, — w0, ||[Tn, — 2n,|| = 0 and A*(I — T')Ax,, — 0, we have (z¢g —u,—v) >0

and hence 0 € Bxg. Furthermore, since I — T is %-inverse strongly monotone,

(3.27) (zn — u,

—(A*(I-T)Az, +v)) > 0.

1
(Azy, — Azo,(I = T)Azp, — (I — T)Axo) > 5 (I = T)Az,, — (I —T)Axz|*.
From z,, = Pc, v — %o and (I — T)Az,, — 0, we have that (I — T)Azo =
0. This implies that Azg € F(T). Therefore, zo € B~10N A~ F(T). Thus we
have 29 € F(S)NB~0N A~ F(T). Put 2 = Pp(s)nB-10na-1F(T)T- Since zg =
PrsynB-10na-1r(1)% € Cpy1 and xpy1 = Pe, ., @, we have that

(3.28) lz = nal|* < [l — 20
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Thus we have that
|z — a;0H2 = lim |jz — a:nH2 < lx — Z()H2.
n—oo

Then we get z9p = z9. Hence {z,,} converges strongly to zy. This completes the
proof. O

4. APPLICATIONS

In this section, we give some applications. Let H be a Hilbert space and let f be
a proper, lower semicontinuous and convex function of H into (—oo,00]. Then the
subdifferential 0f of f is defined as follows:

Of(x) ={z € H: f(z) +(z,y —x) < f(y), Yy € H}

for all z € H. From Rockafellar [26], we know that 0f is maximal monotone. Let C
be a nonempty, closed and convex subset of H and let i be the indicator function

of C, i.e.,

o(x) 0, xeC,

ic(x) =

¢ oo, z¢C.
Since i¢ is a proper, lower semicontinuous and convex function on H, the subdiffer-
ential Ji¢ of i¢ is a maximal monotone operator. Thus we can define the resolvent
Jy of di¢ for XA > 0, i.e.,

I =1+ Aaic)_lx
for all z € H. We know from [31] that, for any x € H and u € C,

Oicu = Ncu and Jyzr = Pox,
where Ngou is the normal cone to C' at u, i.e.,
Neuw={z€ H:(z,v—u) <0, YveC}.

Now, using Theorem 3.1, we can obtain the following strong convergence theorem
in Hilbert spaces.

Theorem 4.1. Let Hy and Ho be Hilbert spaces and let C' be a nonempty, closed
and convex subset of Hy. Let S be an («,f,7,9,¢,(,n)-widely more generalized
hybrid mapping from C into C which satisfies the conditions (1) or (2):

(1) a+B+~7+6>0,a+>0and {+n>0;
(2) a+B8+v+5>0,a+y>0andec+n>0.

Let T : Hy — Hy be a nonexpansive mapping. Let A : Hi — Hs be a bounded linear
operator such that A # 0. Suppose that F(S) NNATLF(T) # 0. Let {x,} C Hy be
a sequence generated by x € Hy,x1 = Pox and

(2, = Po(I = MA*(I — T)A)zy,
Yn = QnZp + (1 — ap)Szn,
Cn={2€C:|lyn — 2[| < [Jon — 2|},
Qn={z€C:{(xy—z,x—x,) >0},
( Tn+1 = PCann«T, Vn € N,
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where Pc,nq, 15 the metric projection of H onto Cy, N Qy, and {oy,} C [0,1] and
{An} C (0,00) satisfy

limsupa, <1 and 0 <liminf )\, <limsup\, <

Then {x,} converges strongly to 20 = Pp(g)na-1p(1)T; where Ppsyna-1p(7) 15 the
metric projection of H onto F(S)N A7LF(T).

Proof. Setting B = Oic in Theorem 3.1, we know that Jy, = P¢ for all A\, > 0.
Thus we obtain the desired result by Theorem 3.1. U

Similarly, using Theorem 3.2, we get the following theorem.

Theorem 4.2. Let Hy and Ho be Hilbert spaces and let C be a nonempty, closed
and convex subset of Hy. Let S be an («,,7,9,¢,(,n)-widely more generalized
hybrid mapping from C into C which satisfies the conditions (1) or (2):

(1) a+B+7+6>0,a+>0and {+n>0;

(2) a+B8+v+5>0,a+y>0andec+n=>0.
Let T : Hy — Hs be a nonexpansive mapping. Let A : Hy — Hs be a bounded linear
operator such that A # 0. Suppose that F(S)N A F(T) # 0. Let C1 = C and let
{zn} be a sequence in Hy generated by x € Hy,x1 = Pox and

zn = Po(I — MA*(I = T)A)xy,
Yn = QpTp + (1 - an)SZTw
Cry1 =12 € Cn : [lyn — 2|l < [lzn — 2]I},

Tny1 = Po, .z, VneN,

where Pc, ,, is the metric projection of Hy onto Cpy1, and {a,} C [0,1] and {\,} C
(0,00) are sequences such that

liminfa, <1 and 0 <liminf )\, <limsup ), <

Then the sequence {xn} converges strongly to zy = Pp(syna-1p)T, where
Pp(s)na-1r(1) is the metric projection of H onto F(S) N ALF(T).

Next, using Theorem 3.1, we consider the problem for finding a common solution
of an equilibrium problem and the sets of fixed points of two nonlinear mappings in
Hilbert spaces. Let C' be a nonempty, closed and convex subset of a Hilbert space
and let f: C' x C — R be a bifunction satisfying the following conditions:

(Al) f(z,z) =0 for all z € C;

(A2) f is monotone, i.e. f(z,y)+ f(y,x) <0 for all z,y € C;

(A3) for all z,y,z € C,

limsup f(tz + (1 —t)z,y) < f(z,y);
tl0

(A4) for all z € C, f(x,-) is convex and lower semicontinuous.

Then, the equilibrium problem (with respect to C) is to find & € C such that
(4.1) f(@,y) =0



STRONG CONVERGENCE THEOREMS 2535

for all y € C. The set of such solutions z is denoted by EP(f). The following lemma
appears implicitly in Blum and Oettli [4].

Lemma 4.3 (Blum and Oettli). Let C be a nonempty, closed and convex subset of
H and let f be a bifunction of C x C into R satisfying (A1) — (A4). Let r > 0 and
x € H. Then, there exists z € C such that

1
f(z,y)+;<y—z,z—1:>20, VyEC

The following lemma was also given in Combettes and Hirstoaga [9].

Lemma 4.4. Assume that f : C x C — R satisfies (A1) — (A44). For r > 0 and
x € H, define a mapping T, : H — C' as follows:

Trg;:{zeC:f(z,y)—i—?ln(y—z,z—@20, VyEC}.

Then, the following hold:

(1) T, is single-valued;
(2) T, is a firmly nonexpansive mapping, i.e., for all x,y € H,

|Tvx — Toy|l* < (Thw — Ty, @ — y);

(3) F(Tr) = EP(f))
(4) EP(f) is closed and conver.

We call such T, the resolvent of f for r > 0. Using Lemmas 4.3 and 4.4, we know
the following theorem from Takahashi, Takahashi and Toyoda [28]. See [2] for a
more general result.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let f : Cx C — R satisfy (A1) —(A4). Let Ay be a multivalued
mapping of H into itself defined by

Apo JEEH f(y) 2y —22), WeC}, zeC,
= 0, x¢C.

Then EP(f) = AJIlO and Ay is a mazimal monotone operator with D(Ay) C C.
Furthermore, for any x € H and r > 0, the resolvent T, of f coincides with the
resolvent of Ay; i.e.,

Tox = (I+rAp) ta.
Using Theorems 3.1 and 4.5, we obtain the following result.

Theorem 4.6. Let Hy and Ho be Hilbert spaces and let C' be a nonempty, closed and
convez subset of Hy. Let f be a bifunction of C' x C into R satisfying (A1) — (A4).
Let S be an («, 3,7,9,e,(,n)-widely more generalized hybrid mapping from C into
C' which satisfies the conditions (1) or (2):

(1) a+B+7+6>0,a+8>0 and {+n>0;
(2 a+8+v+5>0,a+y>0andec+n>0.



2536 S. M. ALSULAMI, A. LATIF, AND W. TAKAHASHI

Let T : Hy — Hy be a nonexpansive mapping. Let A : Hi — Hy be a bounded
linear operator such that A # 0. Suppose that F(S)NEP(f)N A~ F(T) # 0. Let
{zn} C Hy be a sequence generated by x € Hy,x1 = Pox and

zn =Ty, = A\A (I —T)A)zy,

Yn = onp + (1 — o) Sz,
Cn={2€C:|lyn — 2| < lzn — 2|},
Qn={2€C:(xy,—2z,x—x,) >0},
Tptl = Pcann:C, Vn € N,

(

where Pc,nq, 1is the metric projection of H onto Cy, N Qy, and {an} C (0,1) and
{An} C (0,00) satisfy

liminfa, <1 and 0 <liminf ), <limsup A, < .

Then {xn} converges strongly to zy =  Ppg)nep(fna-1rmT, where
Pp(s\nep(f)na-1r(r) 8 the metric projection of H onto F(S) N EP(f)N ATLR(T).
Proof. For the bifunction f : C x C — R, we can define Ay in Lemma 4.5. From

Theorem 4.5 we also know that Jy, = T), for all n € N. Thus we obtain the desired
result by Theorem 3.1. O

As in the proof of Theorem 4.6, we also get similar result from Theorems 3.2 and
4.5,

Theorem 4.7. Let Hi and Ho be Hilbert spaces and let C' be a nonempty, closed and
convex subset of Hy. Let f be a bifunction of C x C into R satisfying (Al) — (A4).
Let S be an («, 3,7,9d,e,(,n)-widely more generalized hybrid mapping from C into
C which satisfies the conditions (1) or (2):

(1) a+B+74+6>0,a+8>0and(+n>0;
(2) a+B8+v+5>0,a+y>0andec+n>0.

Let T : Hy — Hy be a nonexpansive mapping. Let A : Hi — Hs be a bounded linear
operator such that A # 0. Suppose that F(S)NEP(f)NATYF(T) #0. Let C;y = C
and let {x,} be a sequence in Hy generated by x € Hy,z1 = Pox and

zn =Th,(I = A\A (I —T)A)xy,

Yn = QT + (]— - an)Szny

Cni1=1{2 € Cn: |lyn — 2|l < |lzn — 2|1},

Tn+1 = Po,.,x, VneN,

+1b

where Pc, ,, is the metric projection of Hy onto Cyq1, and {a,} C [0,1] and {\,} C
(0,00) are sequences such that

liminfa, <1 and 0 <liminf )\, <limsup X\, < ——.
fi—00 n—00 n—ro0 |AA*||

Then the sequence {xn} converges strongly to zo = Pp(s)npp(f)na-1Fr ()T, where
Pr(synEP(f)nA-1F(T) is the metric projection of H onto F(S)NEP(f)N A~ F(T).
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