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The question in the previous paragraph was motivated by the good behavior of
compact holomorphic mappings. A holomorphic function f : E → F is said to
be compact if for all x ∈ E, there exists a neighborhood Vx such that f(Vx) is
relatively compact in F. In [4], the first author and R. M. Schottenloher proved
that a holomorphic mapping is compact if and only if there is a 0−neighborhood
V0 in E whose image is relatively compact in F. Further, f is compact if and only
if each of its Taylor coefficients at some x ∈ E takes the ball of E to a relatively
compact set in F.

As usual, H(E;F ) is the space of entire mappings from a Banach space E to
another Banach space F . Given f ∈ H(E;F ), let Pnf(x) : E → F denote the
n−homogeneous polynomial of the Taylor series expansion of f at x ∈ E. For
general background regarding holomorphic functions and homogeneous polynomials
we refer to [7] and [12].

Let L denote the class of all continuous linear operators between Banach spaces.
For each E and F, L(E;F ) has the usual sup norm ∥.∥. Recall that an operator ideal
I is a subclass of L such that for arbitrary Banach spaces E and F the component
I(E;F ) := I ∩ L(E;F ) is a linear subspace of L(E;F ) which contains the finite
rank operators and satisfies the ideal property: If T ∈ L(E0;E), S ∈ I(E;F ) and
R ∈ L(F ;F0), then R ◦ S ◦ T ∈ I(E0;F0). An operator ideal I and a function
ι : I → [0,∞[ form a Banach operator ideal, denoted [I, ι], if:

(a) ι(idC) = 1, where idC is the identity map on C.
(b) ι restricted to each component I(E;F ) is a norm that makes I(E;F ) a

Banach space.
(c) If T ∈ L(E0;E), S ∈ I(E;F ) and R ∈ L(F ;F0), then ι(R ◦ S ◦ T ) ≤

∥R∥ι(S)∥T∥.

An operator ideal I is said to be closed if for all Banach spaces E and F , the
component I(E;F ) is a closed subspace of L(E;F ) endowed with the sup norm ∥.∥,
that is, if [I, ∥.∥] is a Banach ideal. An operator ideal I is said to be surjective if
T belongs to I(E;F ) whenever T ◦ S ∈ I(Z;F ) for any surjection S ∈ L(Z;E).
Here, E, F and Z are arbitrary Banach spaces. Equivalently, I is surjective if T
belongs to I(E;F ) whenever T (BE) ⊂ U(BZ) for some U ∈ I(Z;F ), where BE and
BZ denote the closed unit balls of E and Z respectively. Compact operators form
a closed surjective ideal of operators. For the general theory of operator ideals we
refer to [5] and [14].

In order to investigate whether the behavior of holomorphic functions around the
origin can spread to local behavior at other points of the domain, we move to a more
general setting: we consider (not necessarily closed) Banach ideals of operators I.
For example, the ideal Kp of p−compact operators is not closed whenever 1 < p <
∞, as shown in [1, Example 1]. We consider Kp(E;F ) with its natural norm kp given
by kp(T ) = inf{∥(xn)n∥p}, where the infimum is taken over all sequences (xn)n ∈
ℓp(F ) such that T (BE) ⊂ {

∑
n anxn | (an) ∈ Bℓ′p}. The norm kp was introduced

by Sinha and Karn [16] and characterized by Delgado, Piñeiro and Serrano [6,
Proposition 3.15]. The ideal [Kp, kp] is a Banach ideal.
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Our techniques provide a method of defining ideals of holomorphic mappings
from a given operator ideal. This is based on the ideals of polynomials defined in [2]
combined with power series spaces.

2. The radius of I−boundedness

To initiate our task, we introduce the concept of I−bounded holomorphic func-
tions and the radius of I−boundedness.

Let I be an operator ideal, and let F be a Banach space. Let CI(F ) stand for
the collection of subsets A ⊂ F such that A ⊂ T (BZ) for some Banach space Z and
some T ∈ I(Z;F ). We will call any A ∈ CI(F ) an I−bounded set. All I−bounded
sets are bounded. The family CI(F ) was first considered in [17] (see also [3] and [9]).

Let E and F be Banach spaces and let x ∈ E. An entire mapping f : E → F is
said to be locally I−bounded (or just I−bounded) at x if there is a neighborhood
Vx of x such that f(Vx) ∈ CI(F ). In the above definition different x ∈ E may
be associated with different Banach spaces Z. If f is locally I−bounded at every
point of E then it is called locally I−bounded. In this case, for each x ∈ E there
are a neighborhood Vx of x, a Banach space Zx and an operator Tx ∈ I(E;F ) such
that f(Vx) ⊂ Tx(BZx). If we consider a direct sum Z of all Zx (for instance the
ℓ1-sum) then Z can be used for all x ∈ E. However, in general the operators Tx

must depend on x. Otherwise, if we assume that there exists an operator T such
that f(Vx) ⊂ T (BZ) for all x ∈ E then the entire function f would be bounded and
so constant as a consequence of Liouville’s theorem. Let HI(E;F ) denote the linear
space of all locally I−bounded entire mappings from E to F . The subspace formed
by k−homogeneous locally I−bounded polynomials is denoted PI(

kE;F ). It is
easy to prove that a k-homogeneous polynomial P : E → F is locally I−bounded
if and only if P (BE) ∈ CI(F ).

Given P ∈ PI(
mE;F ), we have

(2.1) P (BE) ⊂ T (BZ)

for some Banach space Z and some T ∈ I(Z;F ). If [I, ι] is a Banach ideal define

∥P∥I := inf ι(T )

where T varies among those operators in I for which (2.1) holds. Notice that

I(E;F ) ⊂ PI(
1E;F ) =: LI(E;F ) ⊂ L(E;F )

and

∥T∥ ≤ ∥T∥I ≤ ι(T )

for all T ∈ I(E;F ). With this notation, it is clear that I(E;F ) = LI(E;F ) if and
only if I is surjective.

It is proved in [3] that [PI , ∥ · ∥I ] is a Banach ideal of polynomials.
Given an entire mapping f ∈ H(E;F ) which is I−bounded at a point x ∈ E, we

define the radius of I−boundedness of f at x by

rI(f ;x) := sup{t > 0 : f(x+ tBE) ∈ CI(F )}.

This definition is motivated by the radius of boundedness of an entire mapping.
Given an arbitrary entire mapping f : E → F and A ⊂ E, we shall write ∥f∥A :=
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supx∈A ∥f(x)∥. Recall that if f : E → F is an entire mapping and x ∈ E, the radius
of boundedness of f at x is given by

r(f ;x) := sup{t > 0 : ∥f∥x+tBE
< ∞}

and coincides with the radius of uniform convergence of f at x defined by

r(f ;x) = sup
{
t > 0 : lim

n

∥∥∥f(x+ y)−
n∑

k=0

Pkf(x)(y)
∥∥∥
tBE

= 0
}
.

Indeed, it is well known that

(2.2) r(f ;x) =
1

lim supn ∥Pnf(x)∥
1
n

,

where the norm here denotes the usual sup norm.
In order to establish the relation between the radius of I−boundedness of an

entire mapping and its radius of boundedness (or uniform convergence) we need
the following characterization of surjective closed ideals (compare with [9, Proposi-
tion 3]:

Lemma 2.1. Let I be an operator ideal. The following are equivalent:

(1) I is surjective and for every Banach space F , if A ⊂ F is such that for
every ϵ > 0 there is an I−bounded set Aϵ ∈ CI(F ) with A ⊂ Aϵ+ ϵBF , then
A ∈ CI(F ).

(2) For all Banach spaces E and F , if T ∈ L(E;F ) is such that for every ϵ > 0
there is a Banach space Zϵ and an operator Tϵ ∈ I(Zϵ;F ) with T (BE) ⊂
Tϵ(BZϵ) + ϵBF , then T ∈ I(E;F ).

(3) I is surjective and closed.

Proof. (1)⇒(2): Let E and F be Banach spaces and let T ∈ L(E;F ) be such that
for every ϵ > 0 there is a Banach space Zϵ and an operator Tϵ ∈ I(Zϵ;F ) so that

T (BE) ⊂ Tϵ(BZϵ) + ϵBF .

As Tϵ(BZϵ) is an I−bounded set in F , by (1) it follows from the above inclusion
that T (BE) ∈ CI(F ). Since I is surjective, we conclude that T ∈ I(E;F ).

(2)⇒(3): Clearly I is surjective. Let us see that it is closed. Suppose that
T ∈ L(E;F ) is the uniform limit of a sequence (Tn)n in I(E;F ). We have to
prove that T ∈ I(E;F ). Given ϵ > 0 there exists a positive integer n0 such that
∥T − Tn∥ < ϵ for all n ≥ n0. Then, ∥T (x)− Tn0(x)∥ < ϵ, for all x ∈ BE . Hence,

T (BE) ⊂ Tn0(BE) + ϵBF .

It follows from (2) that T ∈ I(E;F ).
(3)⇒(1): This is a consequence of [9, Proposition 3].

□

Lemma 2.1 can be thought as a generalization to arbitrary ideals of well-known
characterizations of compact sets and compact operators. Indeed, the ideal of com-
pact operators is surjective and closed. In that case, (1) turns out to be the char-
acterization of compact sets in Banach spaces, whereas (2) is the characterization
of compact linear operators.
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Theorem 2.2. Let I be an operator ideal.

(1) rI(f ;x) ≤ r(f ;x), for all f ∈ HI(E;F ) and all x ∈ E.
(2) If I is closed and surjective then rI(f ;x) = r(f ;x), for all f ∈ HI(E;F )

and all x ∈ E.

Proof. (1) If t < rI(f ;x) then f(x+ tBE) ∈ CI(F ). Hence f(x+ tBE) is bounded.
Thus t ≤ r(f ;x). This proves that rI(f ;x) ≤ r(f ;x).

(2) It suffices to prove that r(f ;x) ≤ rI(f ;x). If t < r(f ;x) then

f(x+ y) =

∞∑
k=0

Pkf(x)(y)

uniformly in y ∈ tBE . Hence, given ϵ > 0 there exists a positive integer m0 such
that

(2.3)
∥∥∥f(x+ y)−

m∑
k=0

Pkf(x)(y)
∥∥∥ < ϵ

for all y ∈ tBE and all m ≥ m0.
On the other hand, since I is closed and surjective, being f ∈ HI(E;F ) it follows

from [9, Proposition 5] that Pkf(x) ∈ PI(
kE;F ) for all k. Then, for each m

(2.4) Am :=
m∑
k=0

Pkf(x)(tBE) =
m∑
k=0

tkPkf(x)(BE) ∈ CI(F ).

From (2.3) and (2.4)

f(x+ y) =
[
f(x+ y)−

m0∑
k=0

Pkf(x)(y)
]
+

[ m0∑
k=0

Pkf(x)(y)
]
∈ ϵBF +Am0

for all y ∈ tBE . Then, by Lemma 2.1

f(x+ tBE) ∈ CI(F ).

Hence t ≤ rI(f ;x). Thus r(f ;x) ≤ rI(f ;x). □

In [11, Example 3.7] an entire function f ∈ H(ℓ1; ℓp), 1 ≤ p < ∞, is constructed
such that r(f ; 0) = ∞ but rKp(f ; 0) = 0. The proof of part (2) cannot be adapted
to surjective ideals that are non-closed as a consequence of Lemma 2.1. Despite
this, there are some particular situations in which r(f ;x) = rI(f ;x) regardless of
the ideal I as is seen in the next proposition. We need a preliminary lemma.

Given a subset A ⊂ E, the closed absolutely convex hull of A is denoted by Γ(A).

Lemma 2.3. Let I be an operator ideal and F be a finite dimensional Banach
space. Then A ∈ CI(F ) if and only if A is bounded.

Proof. We only prove the non-trivial implication. Assume that A ⊂ F is bounded.
The operator T : ℓ1(A) → F given by

T ((tx)x∈A) :=
∑
x∈A

txx
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is then well-defined. As F is finite dimensional, T has finite rank. Then T belongs
to I(ℓ1(A);F ). Since

A ⊂ Γ(A) = T (Bℓ1(A))

we conclude that A ∈ CI(F ). □
Proposition 2.4. Let E and F be Banach spaces and let I be an operator ideal.
If F is finite dimensional, then any entire mapping f : E → F belongs to HI(E;F )
and r(f ;x) = rI(f ;x) for any x ∈ E.

Proof. The first assertion follows from the fact that any entire mapping is locally
bounded, i.e. for any x ∈ E there exists a neighborhood Vx of x such that f(Vx) is
bounded. Indeed, by Lemma 2.3 f(Vx) ∈ CI(F ) and then f ∈ HI(E;F ). On the
other hand, using again the Lemma,

r(f ;x) = sup{t > 0 : f(x+ tBE) is bounded }
= sup{t > 0 : f(x+ tBE) ∈ CI(F )}
= rI(f ;x)

□
In [3] the authors constructed the ideal PI of I-bounded polynomials. Proposition

2.4 provides a general procedure to construct ideals of holomorphic mappings in the
following sense. Let HI be the class of all I-bounded holomorphic functions. For
Banach spaces E and F , the component HI(E;F ) satisfies the following conditions:

(i) HI(E;F ) is a linear subspace of H(E;F ) containing the holomorphic map-
pings whose range is contained in a finite dimensional subspace.

(ii) The ideal property: if u ∈ L(G;E), f ∈ HI(E;F ) and t ∈ L(F ;H), then
the composition t ◦ f ◦ u is in HI(G;H).

An operator ideal [I, ι] is said to satisfy Condition Γ if the closed absolutely
convex hull of any I−bounded set is I−bounded. Condition Γ was introduced by
the authors in [3], where it was proved that if I is surjective and satisfies Condition
Γ then the ideal of polynomials PI coincides with the ideal obtained by composition
with I. The authors are unaware of any examples of operator ideals that fail to
satisfy Condition Γ.

For the sake of completeness we prove the next proposition (see, e.g, [4, Propo-
sition 3.4]).

Proposition 2.5. Let I be an operator ideal that satisfies Condition Γ and let E
and F be Banach spaces. If f ∈ H(E;F ) is locally I−bounded at x ∈ E then
Pkf(x) ∈ PI(

kE;F ) for all k.

Proof. Let tx > 0 be such that f(x + txBE) ∈ CI(F ). By Condition Γ, Γ(f(x +
txBE)) ∈ CI(F ). From [15, Lemma 3.1]

Pkf(x)(txBE) ⊂ Γ(f(x+ txBE))

for all k. It follows that Pkf(x) ∈ PI(
kE;F ) for all k. □

Corollary 2.6. Let I be an operator ideal that satisfies Condition Γ and let E and
F be Banach spaces. If f ∈ HI(E;F ) then Pkf(x) ∈ PI(

kE;F ) for all k and all
x ∈ E.
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The above result generalizes [9, Proposition 5(c)], which is proved for surjective
closed ideals. By [9, Proposition 3(d)] any surjective closed ideal fulfills Condition
Γ. However, Kp is an example of a surjective ideal that fulfills Condition Γ and it
is not closed.

Let (Zn)n be a sequence of Banach spaces and let R > 0. We denote by ΛR((Zn)n)
the space of all sequences (zn)n ∈ ΠnZn such that

pr((zn)n) :=

∞∑
n=0

rn∥zn∥ < ∞,

for all 0 < r < R. It is well known that ΛR((Zn)n) is a Fréchet space when endowed
with the topology generated by the family of seminorms {pr : 0 < r < R}.

Let

DR := {(zn)n ∈ ΛR((Zn)n) : zn ∈ RnBZn for all n}.
We denote by Z the linear span of the absolutely convex set DR, and we endow

Z with its Minkowski functional given by

pDR
((zn)n) = inf{λ > 0 : (zn)n ∈ λDR}.

Then Z is a Banach space and Z = ∪λ>0λDR.

Theorem 2.7. Let [I, ι] be a Banach operator ideal that satisfies Condition Γ and
let E and F be Banach spaces. If f ∈ H(E;F ) is locally I−bounded at x ∈ E then

(2.5) rI(f ;x) =
1

lim supn ∥Pnf(x)∥
1
n
I

.

Proof. By Proposition 2.5, Pkf(x) ∈ PI(
kE;F ) for all k. Write

L := lim sup
n

∥Pnf(x)∥
1
n
I .

We start by proving rI(f ;x) ≥ 1
L . Since the result is trivial if L = ∞, we may

assume L < ∞ and take 0 < s < 1
L . Fix r so that s < r < 1

L . Since L < 1
r there

exists a positive integer m0 such that for all m ≥ m0, ∥Pmf(x)∥
1
m
I < 1

r . Consider

c := max{r∥P1f(x)∥I + 1, r2∥P2f(x)∥I + 1, . . . , rm0∥Pm0f(x)∥I + 1}.
Then ∥Pmf(x)∥I < c

rm for all m. So, if we consider the map Ms : E → E, Ms(y) :=
sy, it follows that ∥Pmf(x) ◦ Ms∥I < c( sr )

m, for all m. From this inequality, we
see that for each m there exist a Banach space Zm and an operator Tm ∈ I(Zm;F )
such that

(2.6) Pmf(x)(sBE) ⊂ Tm(BZm)

and

(2.7) ι(Tm) < c(
s

r
)m.

Taking R = 1, consider Λ1((Zn)n), D1 and Z as above.
For each n define Sn : Z → F by

Sn((zj)j) := Tn(zn) = Tn ◦ πn((zj)j),



2546 R. M. ARON AND M. P. RUEDA

where πn is the projection on the nth−coordinate. By the ideal property, Sn ∈
I(Z;F ).

Consider now the map T : Z → F given by

T (λ(zn)n) := λ

∞∑
n=0

Tn(zn) =

∞∑
n=0

Sn(λ(zj)j , )

for any λ > 0 and any (zn)n ∈ D1. Then by (2.7)
∞∑
n=0

ι(Sn) ≤
∞∑
n=0

ι(Tn) ≤
∞∑
n=0

c(
s

r
)n < ∞.

Since [I, ι] is a Banach space, we conclude that T ∈ I(Z;F ).
On the other hand, by (2.6) we have

∥Pmf(x) ◦Ms∥ ≤ ∥Tm∥ ≤ ι(Tm) < c
(s
r

)m
.

Then,

∥Pmf(x)(sy)∥ < c
(s
r

)m

for all y ∈ BE . Hence the Taylor series
∑∞

m=0 Pmf(x) converges uniformly on sBE

and

f(x+ sBE) =

∞∑
m=0

Pmf(x)(sBE)

⊂
∞∑

m=0

Tm(BZm)

⊂
∞∑

m=0

Tm ◦ πm(BZ)

= T (BZ).

Thus, s ≤ rI(f ;x). This shows that

rI(f ;x) ≥
1

lim supn ∥Pnf(x)∥
1
n
I

.

We now prove the reverse inequality, rI(f ;x) ≤ 1
L . Let 0 < λ < rI(f ;x). Then

f(x+ λBE) ∈ CI(F ). Condition Γ implies now that

Γ(f(x+ λBE)) ∈ CI(F ).

Therefore, there exists a Banach space Z and an operator T ∈ I(Z;F ) such that

Γ(f(x+ λBE)) ⊂ T (BZ).

By [15, Lemma 3.1], Pkf(x)(λBE) ⊂ Γ(f(x+λBE)) for all k. Then, λ
kPkf(x)(BE) ⊂

T (BZ). Hence λk∥Pkf(x)∥I ≤ ι(T ). Thus, ∥Pkf(x)∥
1
k
I ≤ ι(T )

1
k

λ . Since this is valid
for all k it follows that

lim sup
k

∥Pkf(x)∥
1
k
I ≤ 1

λ
.
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This proves that

rI(f ;x) ≤
1

lim supn ∥Pnf(x)∥
1
n
I

.

□

Whenever I is taken as the class L of all continuous linear operators, then CL(F )
is the collection of all bounded sets in a Banach space F . In that case the ra-
dius of L-boundedness is the radius of boundedness and Theorem 2.7 reduces to
Hadamard’s formula. So, the radius of I-boundedness is a generalization of the
radius of boundedness for arbitrary ideals I. In [11] a particular case of rI has been
independently introduced for the ideal I = Kp of p−compact operators. The radius
of Kp-boundedness is defined as

rKp(f ;x) =
1

lim supn ∥Pnf(x)∥
1
n
Kp

and called the p−compact radius of convergence. Since Kp satisfies Condition Γ,
Theorem 2.7 shows that rKp as defined is a particular case of our general concept.

Theorem 2.7 allows us to consider the radius of I-boundedness as a radius of
convergence in the following sense. Given a Banach space E, define the map Ms :
E → E, Ms(y) := sy.

Corollary 2.8. Let [I, ι] be a Banach operator ideal that satisfies Condition Γ and
let E and F be Banach spaces. If f ∈ H(E;F ) is locally I−bounded at x ∈ E then

rI(f ;x) = sup
{
r > 0 :

∞∑
n=0

∥Pnf(x)∥Irn < ∞
}

= sup
{
r > 0 :

∞∑
n=0

∥Pnf(x) ◦Mr∥I < ∞
}

Proof. The first equality follows from Theorem 2.7 and the classical Hadamard’s
formula. The second one follows from the straightforward fact that ∥Pnf(x) ◦
Mr∥I = rn∥Pnf(x)∥I . □

The ideas of the proof of Theorem 2.7 permit us to prove the following converse
to Proposition 2.5.

Theorem 2.9. Let [I, ι] be a Banach ideal of operators. Let E and F be Banach
spaces, f ∈ H(E;F ) and x ∈ E. If Pmf(x) ∈ PI(

mE;F ) for all m and there
exists R > 0 such that

∑∞
n=0 ∥Pnf(x)∥Irn < ∞ for all 0 < r < R then f is locally

I−bounded at x.

Proof. We will proceed as in the proof of Theorem 2.7. Consider 0 < r < R such
that f(x+ y) =

∑∞
m=0 Pmf(x)(y) uniformly for y ∈ rBE . We may assume without

loss of generality that 0 < r < 1. Let ϵ > 0. Since Pmf(x) ∈ PI(
mE;F ), there exist

a Banach space Zm and an operator Tm ∈ I(Zm;F ) such that

(2.8) Pmf(x)(BE) ⊂ Tm(BZm)
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and

(2.9) ι(Tm) < ∥Pmf(x)∥I + ϵ.

As above, consider Λ1((Zn)n), D1 and Z, and for each n define Sn : Z → F by

Sn((zj)j) := rnTn(zn) = rnTn ◦ πn((zj)j),
(which differs slightly from the analogous operator in the proof of Theorem 2.7).
This enables us to define T : Z → F as

T (λ(zj)j) :=

∞∑
n=0

Sn(λ(zj)j) = λ

∞∑
n=0

rnTn(zn)

and to conclude that T ∈ I(Z;F ). Indeed,
∞∑
n=0

ι(Sn) ≤
∞∑
n=0

rnι(Tn) ≤
∞∑
n=0

(rn∥Pnf(x)∥I + ϵrn) < ∞,

which proves that T :=
∑∞

n=0 Sn ∈ I(Z;F ).
To conclude the argument, let us prove that f(x + rBE) ⊂ T (BZ). By (2.8) we

have

f(x+ ry) =

∞∑
m=0

Pmf(x)(ry) ∈
∞∑

m=0

rmTm(BZm) ⊂ T (D1) ⊂ T (BZ),

for all y ∈ BE . We have proved that f(x+ rBE) ∈ CI(F ) and therefore f is locally
I−bounded at x. □
Corollary 2.10. Let [I, ι] be a Banach ideal of operators. Let E and F be Banach
spaces and f ∈ H(E;F ). If for every x ∈ E, Pmf(x) ∈ PI(

mE;F ) for all m and
there exists R > 0 such that

∑∞
n=0 ∥Pnf(x)∥Irn < ∞ for all 0 < r < R, then

f ∈ HI(E;F ).

Let us apply Theorem 2.9 to prove that, given a Banach ideal of operators [I, ι],
any holomorphic mapping defined on a finite dimensional domain is I-bounded.
Example 2.11. Let [I, ι] be a Banach ideal of operators that satisfies Condition Γ.
Let E and F be Banach spaces. If E is finite dimensional thenH(E;F ) = HI(E;F ).
Moreover, rI(f ; 0) = ∞ for all f ∈ H(E;F ).

Proof. For simplicity let us prove the claim for E = C. Let f : C → F be an entire
mapping. Then f can be written as f(z) =

∑∞
n=0 anz

n for z ∈ C, where an ∈ F for
all n. The Taylor polynomials at 0 are Pnf(0)(z) = anz

n and so they have finite
rank. Then Pnf(0) ∈ PI(

nC;F ). Let us prove that ∥Pnf(0)∥I ≤ |an| for all n.
Consider the linear operator Tn : C → F given by Tn(z) = anz. As Tn has finite
rank, Tn ∈ I(C;F ) and

ι(Tn) ≤ |an|.
Since Pnf(0)(BC) ⊂ Tn(BC) we have that

∥Pnf(0)∥I ≤ ι(Tn) ≤ |an|.
Then

∞∑
n=0

∥Pnf(0)∥I ≤
∞∑
n=0

|an| < ∞.



I-BOUNDED HOLOMORPHIC FUNCTIONS 2549

Applying Theorem 2.9 we get that f is locally I−bounded at 0 and by Theorem
2.7

rI(f ; 0) ≥
1

lim supn ∥Pnf(0)∥
1
n
I

≥ 1

lim supn |an|
1
n

= ∞.

We conclude that rI(f ; 0) = ∞ and so f ∈ HI(C;F ). □
As a particular case of Example 2.11 we get [1, Proposition 2], where it is shown

with different techniques that every entire mapping f : E −→ F is p-compact for
each 1 ≤ p ≤ ∞ whenever E is finite dimensional.

For [I, ι] satisfying Condition Γ, the description of the radius of I-boundedness
given in Corollary 2.8 can be used to endow the space HI(E;F ) with a Hausdorff
locally convex topology with “very good” properties. Take a strictly decreasing null
sequence (Rn)n and consider the Fréchet space ΛRn((PI(

mE;F ))m) of all sequences
(Pm)m ∈ Π∞

m=0PI(
mE;F ) such that pr((Pm)m) :=

∑∞
m=0 ∥Pm∥Irm < ∞ for all

0 ≤ r < Rn. The topology on ΛRn((PI(
mE;F ))m) is generated by the family of

seminorms {pr : 0 < r < Rn}.
To simplify notation, we will write ΛRn(E;F ) := ΛRn((PI(

mE;F ))m). The topol-
ogy of ΛRn(E;F ) restricted to PI(

mE;F ) coincides with the topology induced by
the norm ∥·∥I , and the sequence of Fréchet spaces (ΛRn(E;F ))n is increasing. Then
the map that takes each f ∈ HI(E;F ) to the sequence (Pmf(0))m is an injection of
HI(E;F ) into ∪nΛRn(E;F ). Moreover, for R1 small enough we can consider that
HI(E;F ) ∩ ΛRn(E;F ) ̸= ∅, for all n ≥ 1. Therefore, we can consider the strict
inductive limit of the sequence of Fréchet spaces (ΛRn(E;F ))n, which we denote
ΛI(E;F ). That is, ΛI(E;F ) := ∪nΛRn(E;F ) and is endowed with the finest lo-
cally convex topology with respect to which each canonical injection ΛRn ↪→ ΛI
is continuous. It is easy to check that the space ΛI does not depend on the se-
quence (Rn)n. We denote this strict inductive limit topology on ΛI(E;F ) by τI . In
other words, (ΛI(E;F ), τI) is an LF -space. We recall that the strict inductive limit
topology induces the original topology on each of the component spaces ΛRn(E;F ).
In particular τI induces the norm ∥.∥I on each PI(

mE;F ). We refer to [13] for the
basic properties of strict inductive limits. Thus, we can now endow HI(E;F ) with
the restriction of τI .

Example 2.12. (i) Let [I, ι] be an arbitrary Banach ideal. By Proposition
2.4, PI(

mE) = P(mE) for all m. In [8] it is proved that ΛR((P(mE))m) is

topologically isomorphic to the spaceHb(R
◦

BE) of all holomorphic functions

of bounded type, that is, the space of all holomorphic functions on R
◦

BE

that are bounded on r
◦

BE for every 0 < r < R. (Here
◦

BE denotes the open
unit ball of E.)

(ii) The vector case follows when I is the class of all bounded linear operators.
In this case, ΛR((P(mE;F ))m) is topologically isomorphic to the space of

all holomorphic mappings of bounded type, Hb(R
◦

BE ;F ). We also have

HI(E;F ) = H(E;F ) whereas ΛI(E;F ) = ∪nHb(Rn

◦
BE ;F ). A base of

neighborhoods of 0 for τI in H(E;F ) is given by all absolutely convex sets
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U in H(E;F ) for which there exist sequences (rn)n and (ϵn)n of positive
numbers decreasing to 0 such that ∪n{f ∈ H(E;F ) : supx∈rnBE

∥f(x)∥ <
ϵn} ⊂ U .
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