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Z-BOUNDED HOLOMORPHIC FUNCTIONS

RICHARD M. ARON AND PILAR RUEDA

ABSTRACT. In this paper we undertake a study of the relationship between the
behavior of an entire mapping between complex Banach spaces and its Taylor
series expansion by means of ideals of operators. To accomplish this task we
introduce the concept of radius of Z—boundedness. We also provide a general
procedure to construct ideals of holomorphic mappings.

1. INTRODUCTION AND NOTATION

In this paper we consider the general problem of comparing the behavior of
holomorphic functions around the origin with their local behavior around other
points, whenever this behavior is related to properties given in terms of operator
ideals (see Section 2 for details). This is also connected to the problem of transferring
such a property from the function to its Taylor polynomials and viceversa. Gonzélez
and Gutiérrez [9] have obtained a positive solution to these problems for any closed
surjective ideal of operators. However, their results cannot be applied to non-closed
ideals and new techniques are required. In this paper we focus on this problem from
a new perspective that allows us to get some partial solutions. In order to clarify
our objectives, let us explain what the problems are by means of an example: the
ideal of p—compact operators.

In [1] the concept of p—compact holomorphic function was defined as a general-
ization of p—compact linear operators introduced by Sinha and Karn [16]. There,
the relation between p-compact holomorphic mappings and their Taylor series ex-
pansions was discussed.

A holomorphic function f : E — F between Banach spaces E and F' is said
to be p-compact at a point x € FE if there is a neighborhood V, of  in E such
that f(V,) is relatively p-compact in F. We shall say that f is p-compact if it is
p-compact at any x € F. It is clear that any linear operator which is p—compact at
the origin is actually p—compact at any point. This is also true for homogeneous
polynomials. The question, posed in [1], of whether this holds true for holomorphic
functions was recently answered in the negative by Lassalle and Turco [11].
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The question in the previous paragraph was motivated by the good behavior of
compact holomorphic mappings. A holomorphic function f : E — F' is said to
be compact if for all z € E, there exists a neighborhood V, such that f(V) is
relatively compact in F. In [4], the first author and R. M. Schottenloher proved
that a holomorphic mapping is compact if and only if there is a 0—neighborhood
Vo in E whose image is relatively compact in F. Further, f is compact if and only
if each of its Taylor coefficients at some x € E takes the ball of E to a relatively
compact set in F.

As usual, H(E; F) is the space of entire mappings from a Banach space E to
another Banach space F. Given f € H(E;F), let P,f(x) : E — F denote the
n—homogeneous polynomial of the Taylor series expansion of f at x € E. For
general background regarding holomorphic functions and homogeneous polynomials
we refer to [7] and [12].

Let £ denote the class of all continuous linear operators between Banach spaces.
For each E and F, L(E; F) has the usual sup norm ||.||. Recall that an operator ideal
7 is a subclass of £ such that for arbitrary Banach spaces F and F' the component
Z(E;F) :=ZNL(E;F) is a linear subspace of £(FE;F) which contains the finite
rank operators and satisfies the ideal property: If T € L(Ep; E), S € Z(E; F) and
R € L(F;Fy), then Ro SoT € I(Ey; Fy). An operator ideal Z and a function
t:Z — [0,00[ form a Banach operator ideal, denoted [Z, ], if:

(a) t(idc) = 1, where idc is the identity map on C.

(b) ¢ restricted to each component Z(FE; F) is a norm that makes Z(E; F) a
Banach space.

(c) U T € L(Ey;E), S € Z(E;F) and R € L(F; Fy), then ((RoSoT) <
[R]|(S)IT

An operator ideal Z is said to be closed if for all Banach spaces E and F, the
component Z(E; F') is a closed subspace of L(E; F') endowed with the sup norm |||,
that is, if [Z, ||.||] is a Banach ideal. An operator ideal Z is said to be surjective if
T belongs to Z(E; F') whenever T o S € I(Z; F) for any surjection S € L(Z; E).
Here, E, ' and Z are arbitrary Banach spaces. Equivalently, Z is surjective if T'
belongs to Z(E; F') whenever T'(Bg) C U(Byz) for some U € Z(Z; F'), where Br and
Bz denote the closed unit balls of F and Z respectively. Compact operators form
a closed surjective ideal of operators. For the general theory of operator ideals we
refer to [5] and [14].

In order to investigate whether the behavior of holomorphic functions around the
origin can spread to local behavior at other points of the domain, we move to a more
general setting: we consider (not necessarily closed) Banach ideals of operators Z.
For example, the ideal K, of p—compact operators is not closed whenever 1 < p <
00, as shown in [1, Example 1]. We consider /C,,(E; F) with its natural norm k, given
by ky(T) = inf{||(zn)n|lp}, where the infimum is taken over all sequences (xy), €
{p(F) such that T(Bg) C {>_, an®y | (an) € By }. The norm k;, was introduced
by Sinha and Karn [16] and characterized by Delgado, Pineiro and Serrano [6,
Proposition 3.15]. The ideal [ICp, kp] is a Banach ideal.
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Our techniques provide a method of defining ideals of holomorphic mappings
from a given operator ideal. This is based on the ideals of polynomials defined in [2]
combined with power series spaces.

2. THE RADIUS OF Z—BOUNDEDNESS

To initiate our task, we introduce the concept of Z—bounded holomorphic func-
tions and the radius of Z—boundedness.

Let Z be an operator ideal, and let F' be a Banach space. Let Cz(F') stand for
the collection of subsets A C F such that A C T'(Bz) for some Banach space Z and
some T' € I(Z; F). We will call any A € Cz(F) an Z—bounded set. All Z—bounded
sets are bounded. The family C7(F') was first considered in [17] (see also [3] and [9]).

Let E and F be Banach spaces and let z € E. An entire mapping f : E — F is
said to be locally Z—bounded (or just Z—bounded) at z if there is a neighborhood
Vz of x such that f(V;) € Cz(F). In the above definition different € E may
be associated with different Banach spaces Z. If f is locally Z—bounded at every
point of F then it is called locally T—bounded. In this case, for each x € E there
are a neighborhood V,, of x, a Banach space Z, and an operator T, € Z(E; F') such
that f(V;) C Ty(Bz,). If we consider a direct sum Z of all Z, (for instance the
{1-sum) then Z can be used for all z € E. However, in general the operators T,
must depend on z. Otherwise, if we assume that there exists an operator T such
that f(V;) C T(Bz) for all x € E then the entire function f would be bounded and
so constant as a consequence of Liouville’s theorem. Let Hz(F; F') denote the linear
space of all locally Z—bounded entire mappings from E to F. The subspace formed
by k—homogeneous locally Z—bounded polynomials is denoted Pr(*E;F). It is
easy to prove that a k-homogeneous polynomial P : F — F is locally Z—bounded
if and only if P(Bg) € Cz(F).

Given P € Pz(™E; F), we have

(2.1) P(Br) € T(By)
for some Banach space Z and some T € Z(Z; F'). If [Z,.] is a Banach ideal define
| P||z := inf «(T)

where T varies among those operators in Z for which (2.1) holds. Notice that
I(E;F) c Pr(*E; F) =: L7(E; F) C L(E; F)
and
1T < [Tz < «(T)
for all T € Z(FE; F'). With this notation, it is clear that Z(E; F') = Lz(E; F) if and
only if Z is surjective.
It is proved in [3] that [Pz, || - ||z] is a Banach ideal of polynomials.

Given an entire mapping f € H(F; F') which is Z—bounded at a point x € F, we
define the radius of Z—boundedness of f at x by

rz(f;x) :==sup{t > 0: f(x +tBg) € Cz(F)}.

This definition is motivated by the radius of boundedness of an entire mapping.
Given an arbitrary entire mapping f : E — F and A C E, we shall write || f|l4 :=
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supgea || f(x)]]. Recall that if f : E'— F' is an entire mapping and = € E, the radius
of boundedness of f at x is given by
r(fix) = sup{t > 0: || fllo2B, < o0}

and coincides with the radius of uniform convergence of f at x defined by

r(fiz) = sup {t >0 hﬁan(‘” +y) - ipkf(@(y)HtBE B 0}'

k=0
Indeed, it is well known that

(2.2) r(f;) !

= E)
limsup,, || P f ()|

where the norm here denotes the usual sup norm.

In order to establish the relation between the radius of Z—boundedness of an
entire mapping and its radius of boundedness (or uniform convergence) we need
the following characterization of surjective closed ideals (compare with [9, Proposi-
tion 3]

Lemma 2.1. Let T be an operator ideal. The following are equivalent:

(1) Z is surjective and for every Banach space F, if A C F is such that for
every € > 0 there is an Z—bounded set A. € Cz(F) with A C A+ €Bp, then
Ae COr(F).

(2) For all Banach spaces E and F, if T € L(E; F) is such that for every e >0
there is a Banach space Ze and an operator T, € Z(Z¢; F) with T(Bg) C
T«(Bz.) + €Bp, then T € Z(E; F).

(3) T is surjective and closed.

Proof. (1)=(2): Let E and F' be Banach spaces and let T' € L(E; F') be such that
for every € > 0 there is a Banach space Z, and an operator T, € Z(Z,; F') so that

T(BE) C Tg(BZE) + eBp.

As T.(Bz,.) is an ZT—bounded set in F', by (1) it follows from the above inclusion
that T'(Bg) € Cz(F). Since Z is surjective, we conclude that 7' € Z(E; F).
(2)=(3): Clearly Z is surjective. Let us see that it is closed. Suppose that
T € L(E;F) is the uniform limit of a sequence (1), in Z(E;F). We have to
prove that T' € Z(E; F'). Given ¢ > 0 there exists a positive integer ng such that
|T — T,,|| < € for all n > ng. Then, | T(z) — T),(x)|| <€, for all 2 € Bg. Hence,

T(BE) C Tno(BE) + eBp.

It follows from (2) that T' € Z(E; F).
(3)=(1): This is a consequence of [9, Proposition 3].
U

Lemma 2.1 can be thought as a generalization to arbitrary ideals of well-known
characterizations of compact sets and compact operators. Indeed, the ideal of com-
pact operators is surjective and closed. In that case, (1) turns out to be the char-
acterization of compact sets in Banach spaces, whereas (2) is the characterization
of compact linear operators.
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Theorem 2.2. Let L be an operator ideal.

(1) rz(f;2) <r(f;x), for all f € Hr(E;F) and all x € E.
(2) If T is closed and surjective then r(f;x) = r(f;z), for all f € Hz(E; F)
and all x € E.

Proof. (1) If t < rz(f;x) then f(x +tBg) € Cz(F). Hence f(z + tBg) is bounded.
Thus t < r(f;x). This proves that rz(f;x) < r(f;x).
(2) It suffices to prove that r(f;xz) < rz(f;z). If t < r(f;x) then

flx+y) = ZPkf

uniformly in y € tBg. Hence, given € > 0 there exists a positive integer mg such
that

(2.3) 740 - Y P <
k=0

for all y € tBg and all m > my.
On the other hand, since Z is closed and surjective, being f € Hz(FE; F) it follows
from [9, Proposition 5] that Py.f(z) € Pz(*E; F) for all k. Then, for each m

(2.4) Ap = Puf(z)(tBp) ZtkPk f(x)(Bg) € Cz(F).
From (2.3) and (2.4)

fa+y) = |f+y) - ZPkf )] + [ZPkf y)] € Br+ Ay,

for all y € tBg. Then, by Lemma 2.1
f(z+tBg) € Cz(F).
Hence t < rz(f;x). Thus r(f;x) < rz(f;x). O

In [11, Example 3.7] an entire function f € H(¢1;¢,), 1 < p < oo, is constructed
such that 7(f;0) = oo but rr,(f;0) = 0. The proof of part (2) cannot be adapted
to surjective ideals that are non-closed as a consequence of Lemma 2.1. Despite
this, there are some particular situations in which r(f;x) = rz(f;x) regardless of
the ideal 7 as is seen in the next proposition. We need a preliminary lemma.

Given a subset A C E, the closed absolutely convex hull of A is denoted by T'(A).

Lemma 2.3. Let 7 be an operator ideal and F be a finite dimensional Banach
space. Then A € Cz(F) if and only if A is bounded.

Proof. We only prove the non-trivial implication. Assume that A C F' is bounded.
The operator T': ¢1(A) — F given by

x:pEA th

r€A
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is then well-defined. As F' is finite dimensional, T' has finite rank. Then T belongs
to Z(¢1(A); F'). Since

A CT(A) =T(By,(a)
we conclude that A € Cz(F). O

Proposition 2.4. Let E and F be Banach spaces and let T be an operator ideal.
If F is finite dimensional, then any entire mapping f : E — F belongs to Hz(E; F)
and r(f;x) = rz(f;x) for any x € E.

Proof. The first assertion follows from the fact that any entire mapping is locally
bounded, i.e. for any x € E there exists a neighborhood V,, of x such that f(V) is
bounded. Indeed, by Lemma 2.3 f(V,) € Cz(F') and then f € Hz(E;F). On the

other hand, using again the Lemma,
r(f;x) = sup{t>0: f(x +tBg) is bounded }
= sup{t >0: f(x +tBg) € Cz(F)}
= rz(f; )
O

In [3] the authors constructed the ideal Pz of Z-bounded polynomials. Proposition
2.4 provides a general procedure to construct ideals of holomorphic mappings in the
following sense. Let Hz be the class of all Z-bounded holomorphic functions. For
Banach spaces E and F', the component Hz(E; F') satisfies the following conditions:

(i) Hz(E; F) is a linear subspace of H(E; F') containing the holomorphic map-
pings whose range is contained in a finite dimensional subspace.

(ii) The ideal property: if w € L(G;E), f € Hz(E;F) and t € L(F; H), then
the composition t o f ow is in Hz(G; H).

An operator ideal [Z,:] is said to satisfy Condition I" if the closed absolutely
convex hull of any Z—bounded set is Z—bounded. Condition I" was introduced by
the authors in [3], where it was proved that if Z is surjective and satisfies Condition
I" then the ideal of polynomials Pz coincides with the ideal obtained by composition
with Z. The authors are unaware of any examples of operator ideals that fail to
satisfy Condition I'.

For the sake of completeness we prove the next proposition (see, e.g, [4, Propo-
sition 3.4]).

Proposition 2.5. Let 7 be an operator ideal that satisfies Condition I' and let E
and F be Banach spaces. If f € H(E;F) is locally T—bounded at x € E then
P.f(z) € Pr(*E; F) for all k.

Proof. Let t, > 0 be such that f(z + t,Bg) € Cz(F). By Condition T, T'(f(z +
tzBg)) € Cz(F). From [15, Lemma 3.1]

Py f(2)(t:Bp) C T(f(z + t2BE))
for all k. It follows that Py f(z) € Pr(*E; F) for all k. O
Corollary 2.6. Let T be an operator ideal that satisfies Condition I' and let E and

F be Banach spaces. If f € Hz(E;F) then Pf(x) € Pr(*E;F) for all k and all
xec k.
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The above result generalizes [9, Proposition 5(c)|, which is proved for surjective
closed ideals. By [9, Proposition 3(d)] any surjective closed ideal fulfills Condition
I'. However, K, is an example of a surjective ideal that fulfills Condition I' and it
is not closed.

Let (Z,,)n be a sequence of Banach spaces and let R > 0. We denote by Ag((Z,,)n)
the space of all sequences (zy,), € I1,Z, such that

oo
Pr((2n)n) = ZT"H%H < o0,
n=0
for all 0 < r < R. It is well known that Ar((Z,)n) is a Fréchet space when endowed

with the topology generated by the family of seminorms {p, : 0 < r < R}.
Let

Dpr :={(zn)n € Ar((Zn)n) : 2n € R"Bg, for all n}.

We denote by Z the linear span of the absolutely convex set Dg, and we endow
Z with its Minkowski functional given by

Ppg((Zn)n) = Inf{A > 0: (2,)n € ADRg}.
Then Z is a Banach space and Z = UysogADg.

Theorem 2.7. Let [Z,1] be a Banach operator ideal that satisfies Condition I' and
let E and F be Banach spaces. If f € H(E; F) is locally T—bounded at x € E then

(2.5) ro(f;z) = !

<.
lim sup,, || P f(z)l|7
Proof. By Proposition 2.5, P, f(x) € Pr(*E; F) for all k. Write

1
L :=limsup || P, f(2)||7 -
n

We start by proving rz(f;x) > 1. Since the result is trivial if L = co, we may
assume L < oo and take 0 < s < % Fix r so that s < r < % Since L < % there

1
exists a positive integer mg such that for all m > mo, ||Pnf(z)||y < . Consider

¢ = max{r|PLf(z)llz + 1,r?| Pof ()2 + 1, 7™ || Pong f(2)llz + 1}

Then || Py, f(z)||z < & for all m. So, if we consider the map M; : E — E, M(y) :=
sy, it follows that || Py, f(z) o M|z < (7)™, for all m. From this inequality, we
see that for each m there exist a Banach space Z,,, and an operator 1), € Z(Z; F)
such that

(2'6) me(x)(SBE) - Tm(BZm)
and
(2.7) U(T) < c(g)m.

Taking R = 1, consider A1((Zy)n), D1 and Z as above.
For each n define S, : Z7 — F by

Sn((2)7) = Tulzn) = T o mn((25);5),
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where m, is the projection on the n*"—coordinate. By the ideal property, S, €
Z(Z; F).
Consider now the map T : Z — F' given by

[e.9]

T(M(zn)n) == AD_ Tulzn) = > Su(Mz));,)
n=0 n=0

for any A > 0 and any (zy,), € Di. Then by (2.7)

3 uSa) <3 T < Zc(;)” < 0.
n=0 n=0 n=0

Since [Z, (] is a Banach space, we conclude that T' € Z(Z; F).

On the other hand, by (2.6) we have
s\m
1P f(z) 0 M| < [|Tnl| < (T < c(;) .

Then, .
|Pnf @)y < o(2)

for all y € Bp. Hence the Taylor series Y ~_ P, f(x) converges uniformly on sBg
and

f@+sBg) = 3 Puf(z)(sBp)
m=0
C Y Tw(Bz,)
m=0

o0
C Z T o (Bz)
m=0

= T(By).

Thus, s < rz(f;x). This shows that
1

TI(f; .1‘) > 1
limsup,, [P f(z)7

We now prove the reverse inequality, r7(f;z) < % Let 0 < A < rz(f;x). Then
f(z + ABg) € Cz(F'). Condition I' implies now that

I(f(z + ABg)) € Cz(F).
Therefore, there exists a Banach space Z and an operator T' € Z(Z; F') such that
[(f(z + ABg)) C T(Bgz).
By [15, Lemma 3.1], P f(z)(ABg) C T(f(x+ABg)) for all k. Then, APy f(z)(Bg) C
1 1
T(Bz). Hence \¥||P,f(x)|z < (T). Thus, ||Pyf(z)||k < “DE . Since this is valid
for all k it follows that

1
limkSUP [1Pef ()7 <

> =
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This proves that
1
rr(fiz) < L
limsup,, || Py f(x)||2

g

Whenever 7 is taken as the class £ of all continuous linear operators, then Cz(F')
is the collection of all bounded sets in a Banach space F. In that case the ra-
dius of L-boundedness is the radius of boundedness and Theorem 2.7 reduces to
Hadamard’s formula. So, the radius of Z-boundedness is a generalization of the
radius of boundedness for arbitrary ideals Z. In [11] a particular case of 77 has been
independently introduced for the ideal Z = K, of p—compact operators. The radius
of K,-boundedness is defined as

1

i, (f37) = ' -
lim sup,, ||Pnf(93)||/%p

and called the p—compact radius of convergence. Since K, satisfies Condition I,
Theorem 2.7 shows that ric, as defined is a particular case of our general concept.

Theorem 2.7 allows us to consider the radius of Z-boundedness as a radius of
convergence in the following sense. Given a Banach space F, define the map M, :
E — E, My(y) := sy.

Corollary 2.8. Let [Z,:] be a Banach operator ideal that satisfies Condition I and
let E and F be Banach spaces. If f € H(E; F) is locally T—bounded at x € E then

rz(f;x) = sup {7“ >0: Z | P f(x)]|zr" < oo}
n=0
= sup {r >0: Z | Pnf(z) o My||z < oo}
n=0

Proof. The first equality follows from Theorem 2.7 and the classical Hadamard’s
formula. The second one follows from the straightforward fact that ||P,f(x) o
M|z = r"|[Pof(2)llz-

The ideas of the proof of Theorem 2.7 permit us to prove the following converse
to Proposition 2.5.

Theorem 2.9. Let [Z,.] be a Banach ideal of operators. Let E and F be Banach
spaces, f € H(E;F) and v € E. If Ppf(x) € Pr(™E;F) for all m and there
exists R > 0 such that > 7" o || Pnf(2)]|zr™ < 0o for all 0 < r < R then f is locally
Z—bounded at x.

Proof. We will proceed as in the proof of Theorem 2.7. Consider 0 < r < R such
that f(z+y) => oo Pmf(x)(y) uniformly for y € rBg. We may assume without
loss of generality that 0 < r < 1. Let € > 0. Since P, f(x) € Pz(™E; F), there exist
a Banach space Z,,, and an operator T),, € Z(Z,,; F') such that

(2'8> me(x)(BE> C Tm(BZm)
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and

(2.9) UTm) <[P f(z)llz + €.
As above, consider A1((Z,)n), D1 and Z, and for each n define S,, : Z — F by
Sn((25)5) = r"Tn(2n) = 1" Ty o mp((25)5),

(which differs slightly from the analogous operator in the proof of Theorem 2.7).
This enables us to define T': Z — F as

= " Su(A(z);) =AY " T(zn)
n=0 n=0

and to conclude that T'€ 7 (Z ; F). Indeed,

Z <Z’I“ (T, <Z || Pnf (z)]|z + €er™) < oo,

n=0
which proves that T := ano Sn € I(Z; F)
To conclude the argument, let us prove that f(x +rBg) C T(Bz). By (2.8) we
have

fla+ry) = Zme Zr T(Bz,,) C T(D1) C T(Bg),

for all y € Bg. We have proved that f(a: —{—TBE) € Cz(F) and therefore f is locally
Z—bounded at . O

Corollary 2.10. Let [Z,:] be a Banach ideal of operators. Let E and F be Banach
spaces and f € H(E; F). If for every x € E, P, f(z) € Pz("E; F) for all m and
there exists R > 0 such that > .7 o ||[Paf(2)||zr™ < oo for all 0 < r < R, then
feH(EF).

Let us apply Theorem 2.9 to prove that, given a Banach ideal of operators [Z, (],
any holomorphic mapping defined on a finite dimensional domain is Z-bounded.

Example 2.11. Let [Z,:] be a Banach ideal of operators that satisfies Condition I'.
Let E and F be Banach spaces. If F is finite dimensional then H(E; F) = Hz(E; F).
Moreover, rz(f;0) = oo for all f € H(E; F).

Proof. For simplicity let us prove the claim for £ = C. Let f : C — F be an entire
mapping. Then f can be written as f(z) = >.,7 ,an2" for z € C, where a,, € F for
all n. The Taylor polynomials at 0 are P, f(0)(z) = an2™ and so they have finite
rank. Then P,f(0) € Pz("C;F). Let us prove that |P,f(0)|lz < |a,| for all n.
Consider the linear operator T), : C — F given by T,(z) = anz. As T, has finite
rank, T,, € Z(C; F) and
U(Ty) < ag|.
Since P, f(0)(Bc) C T (Bc) we have that

P2 f0)llz < u(Tn) < fan].

SR <3 Janl < oo,
n=0 n=0

Then
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Applying Theorem 2.9 we get that f is locally Z—bounded at 0 and by Theorem
2.7

1 1
rz(f;0) = T2 T =%
lim sup, | P, f () limsup, las|
We conclude that rz(f;0) = oo and so f € Hz(C; F). O

As a particular case of Example 2.11 we get [1, Proposition 2|, where it is shown
with different techniques that every entire mapping f : £ — F is p-compact for
each 1 < p < oo whenever F is finite dimensional.

For [Z, ] satisfying Condition I', the description of the radius of Z-boundedness
given in Corollary 2.8 can be used to endow the space Hz(E; F') with a Hausdorff
locally convex topology with “very good” properties. Take a strictly decreasing null
sequence (Ry,), and consider the Fréchet space Ag, ((Pz("™E; F))n) of all sequences
(Pr)m € II°_oPz(™E; F) such that pr((Pm)m) = D pe_o | Pmllzr™ < oo for all
0 <r < R,. The topology on Agr, ((Pz("™E;F))n) is generated by the family of
seminorms {p, : 0 <r < R,}.

To simplify notation, we will write Ag (E; F) := Ag, (Pz(™E; F))m). The topol-
ogy of Ar, (E; F) restricted to Pr(™FE; F) coincides with the topology induced by
the norm || ||z, and the sequence of Fréchet spaces (Ar, (E; F)),, is increasing. Then
the map that takes each f € Hz(FE; F) to the sequence (P, f(0)), is an injection of
Hz(E; F) into U,AR, (E; F). Moreover, for R; small enough we can consider that
Hz(E; F) N AR, (E;F) # 0, for all n > 1. Therefore, we can consider the strict
inductive limit of the sequence of Fréchet spaces (Ag,(E;F))n, which we denote
Az(E; F). That is, Az(E; F) := U,AR, (E; F) and is endowed with the finest lo-
cally convex topology with respect to which each canonical injection Ag, — Az
is continuous. It is easy to check that the space Az does not depend on the se-
quence (Ry,),. We denote this strict inductive limit topology on Az(E; F') by 77. In
other words, (Az(E; F'),7) is an LF-space. We recall that the strict inductive limit
topology induces the original topology on each of the component spaces Ag, (E; F).
In particular 77 induces the norm ||.||z on each Pz(™E; F'). We refer to [13] for the
basic properties of strict inductive limits. Thus, we can now endow Hz(E; F') with
the restriction of 7z.

Example 2.12. (i) Let [Z,:] be an arbitrary Banach ideal. By Proposition
2.4, Pz(ME) = P(ME) for all m. In [8] it is proved that Agr((P(™E))n) is

topologically isomorphic to the space Hy(R Bg) of all holomorphic functions
of bounded type, that is, the space of all holomorphic functions on R Bg

that are bounded on r B, for every 0 < r < R. (Here Bp denotes the open
unit ball of E.)

(ii) The vector case follows when Z is the class of all bounded linear operators.
In this case, Agr((P(™E; F))m) is topologically isomorphic to the space of
all holomorphic mappings of bounded type, Hy(R Bg;F). We also have

Hz(E;F) = H(E;F) whereas Az(E; F) = U,Hy(R, Bg;F). A base of
neighborhoods of 0 for 77 in H(E; F) is given by all absolutely convex sets
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U in H(E; F) for which there exist sequences (ry,), and (€,), of positive
numbers decreasing to 0 such that U,{f € H(E;F) : sup,e,, g, If(@)] <
en} CU.
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