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ABSTRACT. Given a nonempty, bounded, closed and convex subset K of a hy-
perbolic complete metric space, we studied in previous papers of ours the class
of nonexpansive self-mappings of K endowed with a natural metric. Using the
Baire category approach and the notion of porosity, we showed that most ele-
ments of this class are contractive. In the present paper we prove a variant of this
result for unbounded sets. Namely, we show that most nonexpansive mappings
are contractive on all bounded subsets.

1. INTRODUCTION AND PRELIMINARIES

For more than fifty years now, there has been considerable interest in the fixed
point theory of nonexpansive mappings in metric and Banach spaces. See, for
example, the papers and books by de Blasi and Myjak [2, 3], Goebel and Kirk
[4], Goebel and Reich [5] and Kirk [6], as well as the references mentioned therein.
This interest originates in the classical Banach theorem [1] regarding the existence
of a unique fixed point for a strict contraction. Since that seminal result, many
developments have taken place in this area. We mention, for instance, existence
results for fixed points of nonexpansive mappings which are not strictly contractive
[4, 5]. Such results were obtained for general nonexpansive mappings in special
Banach spaces, while for self-mappings of general complete metric spaces existence
results were established for, the so-called, contractive mappings [9]. For general
nonexpansive mappings in general Banach spaces the existence of a unique fixed
point was established in the generic sense, using the Baire category approach [2, 3,
13]. More precisely, in these papers the space A of all nonexpansive self-mappings
of a closed and convex set K in a Banach space was endowed with the natural
metric of uniform convergence on bounded subsets, and it was shown that there
exists a subset A" C A, which is a countable intersection of open and everywhere
dense subsets of A, such that every mapping in A’ has a unique fixed point. Note
that in [2, 3] the set K was assumed to be bounded, while in [13] this assumption
was removed.

Now let (X, p) be a metric space and let R! denote the real line. We say that a
mapping ¢ : B! — X is a metric embedding of R' into X if p(c(s),c(t)) = |s — t|
for all real s and t. The image of R' under a metric embedding will be called a
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metric line. The image of a real interval [a,b] = {t € R! : a <t < b} under such a
mapping will be called a metric segment.

Assume that (X, p) contains a family M of metric lines such that for each pair
of distinct points x and y in X, there is a unique metric line in M which passes
through = and y. This metric line determines a unique metric segment joining x
and y. We denote this segment by [z, y]. For each 0 < ¢t < 1, there is a unique point
z in [z, y| such that

p(x,z) = tp(x,y) and p(z,y) = (1 - t)p(x,y).
This point will be denoted by (1 — ¢)z @ ty. We will say that X, or more precisely
(X, p, M), is a hyperbolic space if

,0(13:@ 1y 1:): ® 12) < 1p(y z)
2 2772 27) — 277
for all x,y and z in X. An equivalent requirement is that
1 1 1 1 < 1

0(296 D5y qwd 22> < 5oz, w) + p(y, 2))
for all z,y,z and w in X. A set K C X is called p-convex if [x,y] C K for all x and
yin K.

It is clear that all normed linear spaces are hyperbolic in this sense. A discussion
of more examples of hyperbolic spaces and, in particular, of the Hilbert ball can be
found, for example, in [5, 11, 12, 17].

Let (X, p, M) be a complete hyperbolic space and let K be a nonempty, closed
and p-convex subset of X.

For each x € K and each r > 0, set

B(x,r)={y € K: p(z,y) <r}.
Denote by A the set of all mappings A : K — K such that
(1.1) p(Ax, Ay) < p(z,y) for all x,y € K.

Fix some 0 € K.
We equip the set A with the uniformity determined by the base

(1.2) Un)={(A,B) € Ax A: p(Az,Bz) <n ! for all z € B(0,n)},
where n is a natural number. Clearly, the uniform space A is metrizable and
complete.

Let A € A. The mapping A is called contractive if there exists a decreasing
function ¢ : [0,00) — [0, 1] such that

¢(t) <1lforallt>0

and

p(Az, Ay) < ¢(p(x,y))p(x,y) for all z,y € K.

According to the Rakotch theorem [9], every contractive mapping possesses a unique
fixed point.

In previous papers of ours [14, 15] we studied the space A in the case where the
set K is bounded. Using the Baire category approach and the notion of porosity,
we showed that most elements of the space A are contractive. If the set K is
unbounded, it is known [18] that our results no longer hold. Nevertheless, in the
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present paper we prove a variant of our results for unbounded sets by showing that
most mappings in this class are contractive on all bounded subsets.

Suppose that A € A and € > 0. A point x € K is called an e-approximate fixed
point of A if p(x, Ax) <€ [7, 8, 10, 16, 17].

We say that A has the bounded approximate fixed point property (or the BAFP
property, for short) if there is a nonempty bounded set Ky C K such that for each
€ > 0, the mapping A has an e-approximate fixed point in Kj.

In [16] we proved the following result.

Proposition 1.1. Assume that A € A and that Ky C K is a nonempty, bounded,
closed and p-convex subset of K such that

(1.3) A(Kp) C Kp.

Then A has the BAFP property.

Proposition 1.1 immediately implies the following result.

Proposition 1.2. Assume that K is bounded. Then any A € A has the BAFP
property.

Obviously, Proposition 1.2 no longer holds if the set K is unbounded. For exam-
ple, if K is a Banach space and A is a translation operator, then A does not possess
the BAFP propery. Nevertheless, the following theorem is true [16].

Theorem 1.3. There exists an open and everywhere dense set F C A such that
each A € F has the BAFP property.

Theorem 1.3 is the main result of [16], but actually in [16] we prove the following
stronger result, which will be used in the sequel.

Theorem 1.4. There exists an open and everywhere dense set F C A such that for
each A € F, there exists a nonempty, bounded, closed and p-convexr set K4 C K
such that A(Ka) C Ka.

Now we are ready to state our main result. Its proof is given in Section 2.

Theorem 1.5. There exists a set F. C A which is a countable intersection of
open and everywhere dense sets in A such that for each A € F,, the following two
properties hold:

(i) there exists a unique point x4 € K such that Axg = x4;

(ii) for each r > 0, there exists a decreasing function ¢ : [0,00) — [0, 1] such that

o(t) <1 forallt >0

and
p(Ax,Ay) < ¢(p($,y))p($,y) fO?" all x,y € B(.fA,?“).

2. PROOF OF THEOREM 1.5

We may assume without any loss of generality that K is not a singleton.
By Theorem 1.4, there exists an open and everywhere dense set Fy C A such
that the following property holds:
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(P1) for each A € Fy, there exists a nonempty, bounded, closed and p-convex set
K4 C K such that A(K4) C K4.
Choose
k€ (0,1)
for which there exist two points uj,us € K such that p(ui,u2) > k.
For each natural number n, denote by F,, the set of all A € A such that

(2.1)  sup{p(Az, Ay)[p(z,y)] " : @,y € B(0,n), p(z,y) >n 'k} < 1.

Lemma 2.1. For each natural number n, the set F, contains an open and every-
where dense set.

Proof. Let n be a natural number, A € A and let k be a natural number. In order
to prove the lemma, it is sufficient to show that there exist A € A and a natural
number p such that

(2.2) (A, A) e U(k)

and

(2.3) {Be A: (B,A) eU(p)} C Fn.
To this end, choose v € (0, 1) such that

(2.4) v(k + p(A6,0)) < (2k)~!
and a natural number p such that

(2.5) p>n, 4p~In < k.
Define

(2.6) Az =(1—-y)Az D0, z € K.

By (2.6), we have for all z,y € K,
p(Az, Ay) = p((1 — 7) Az @0, (1 — 7) Ay © +0)
(2.7) < (1 =7)p(Az, Ay) < (1 —v)p(z, y).
By (2.4) and (2.6), for all x € B(#, k), we have
p(Az, Az) = p((1 —~) Az & 70, Az) < vp(Az,0) < yp(Ax, AG) + yp(A0,0)
< yp(x,0) +vp(A0,0) < vk +vp(AB,0) < (2k)~".

Thus (2.2) holds.
Assume now that B € A satisfies

(2.8) (B,A) € U(p).
Let
(2.9) x,y € B(#,n) with p(z,y) > n k.

It follows from (2.8), (2.9), (2.5) and (2.7) that
p(Bz, By) < p(Bz, Az) + p(Az, Ay) + p(Ay, By)
<p '+ p(Az, Ay) +pt <27+ (1= y)p(a,y).
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When combined with (2.9) and (2.5), this implies that
p(Bx, By)[p(z,y)) " <2p 'nk ™t + (1 —7) <1—-7/2
and
sup{p(Bz, By)[p(z,y)] " : x,y € B(0,n), p(z,y) >n 'k} <1—7/2.
Thus B € F,, and (2.3) holds. Lemma 2.1 is proved. O

Completion of the proof of Theorem 1.5
By Lemma 2.1, for any natural number n, there exists an open and everywhere
dense set F, in A such that

(2.10) F! C Fn.
Set
(2.11) Fe=Fo N (ML Fy)-
Let
Ae F..

In order to complete the proof of Theorem 1.5, it is sufficient to show that properties
(i) and (ii) hold.

Since A € Fy, it follows from (P1) that there exists a nonempty, bounded, closed
and p-convex set K4 C K such that

(2.12) A(K4) C Ka.
Let n be a natural number such that
(2.13) Ki C B(0,n).

Since A € F,, (see (2.1)), it follows from (2.13) that
sup{p(Az, Ay)[p(z,y)] " : x,y € Ka, pla,y) >n" '}
< sup{p(Az, Ay)[p(z,y)] "+ z,y € B(0,n), plz,y) > n 'k} < 1.

Since the above relation holds for any natural number n satisfying (2.13), we con-
clude that there exists a decreasing function ¢ : [0,00) — [0, 1] such that

o(t) <1 forall t >0,

p(Az, Ay) < p(z,y)d(p(z,y)) for all z,y € Ka.
By [9], there is 4 € K4 such that

(2.14) Axpa = x4.
Assume that z € K satisfies
(2.15) Az = z.

We claim that z = x 4. Assume the contrary. Then there exists a natural number
n such that

(2.16) Ka C B(#,n), z€ B(0,n), n" 'k < p(z4, 2).
Since A € F,, (see (2.1)), it follows from (2.14)—(2.16) that
1> sup{p(Az, Ay)[p(z,y)] " : x,y € B(,n), pla,y) > n"'x}
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> p(A:L’A,AZ)[p({L‘A,Z)]_I =1,

a contradiction. The contradiction we have reached proves that z = x4 and property
(i) holds.

Now we show that property (ii) holds.

Let » > 0. Since Axy = x4, we have

(2.17) A(B(za,1)) C B(za,T).
Let a natural number n satisfy
(2.18) B(za,r) C B(6,n).

The inclusion A € F,, and (2.18) imply that

1> sup{p(Az, Ay)[p(z,y)] " : =,y € B(O,n), p(z,y) >n"'x}
> sup{p(Az, Ay)[p(x,y)] "' : @,y € B(za,r), plz,y) > n~ 'k}

Since the above relations hold for any natural number n satisfying (2.18), we con-
clude that there exists a decreasing function ¢ : [0,00) — [0,1] as in property (ii).
This completes the proof of Theorem 1.5.
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