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metric line. The image of a real interval [a, b] = {t ∈ R1 : a ≤ t ≤ b} under such a
mapping will be called a metric segment.

Assume that (X, ρ) contains a family M of metric lines such that for each pair
of distinct points x and y in X, there is a unique metric line in M which passes
through x and y. This metric line determines a unique metric segment joining x
and y. We denote this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point will be denoted by (1− t)x⊕ ty. We will say that X, or more precisely
(X, ρ,M), is a hyperbolic space if
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for all x, y and z in X. An equivalent requirement is that
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for all x, y, z and w in X. A set K ⊂ X is called ρ-convex if [x, y] ⊂ K for all x and
y in K.

It is clear that all normed linear spaces are hyperbolic in this sense. A discussion
of more examples of hyperbolic spaces and, in particular, of the Hilbert ball can be
found, for example, in [5, 11, 12, 17].

Let (X, ρ,M) be a complete hyperbolic space and let K be a nonempty, closed
and ρ-convex subset of X.

For each x ∈ K and each r > 0, set

B(x, r) = {y ∈ K : ρ(x, y) ≤ r}.
Denote by A the set of all mappings A : K → K such that

(1.1) ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ K.

Fix some θ ∈ K.
We equip the set A with the uniformity determined by the base

(1.2) U(n) = {(A,B) ∈ A×A : ρ(Ax,Bx) ≤ n−1 for all x ∈ B(θ, n)},
where n is a natural number. Clearly, the uniform space A is metrizable and
complete.

Let A ∈ A. The mapping A is called contractive if there exists a decreasing
function ϕ : [0,∞) → [0, 1] such that

ϕ(t) < 1 for all t > 0

and
ρ(Ax,Ay) ≤ ϕ(ρ(x, y))ρ(x, y) for all x, y ∈ K.

According to the Rakotch theorem [9], every contractive mapping possesses a unique
fixed point.

In previous papers of ours [14, 15] we studied the space A in the case where the
set K is bounded. Using the Baire category approach and the notion of porosity,
we showed that most elements of the space A are contractive. If the set K is
unbounded, it is known [18] that our results no longer hold. Nevertheless, in the
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present paper we prove a variant of our results for unbounded sets by showing that
most mappings in this class are contractive on all bounded subsets.

Suppose that A ∈ A and ϵ ≥ 0. A point x ∈ K is called an ϵ-approximate fixed
point of A if ρ(x,Ax) ≤ ϵ [7, 8, 10, 16, 17].

We say that A has the bounded approximate fixed point property (or the BAFP
property, for short) if there is a nonempty bounded set K0 ⊂ K such that for each
ϵ > 0, the mapping A has an ϵ-approximate fixed point in K0.

In [16] we proved the following result.

Proposition 1.1. Assume that A ∈ A and that K0 ⊂ K is a nonempty, bounded,
closed and ρ-convex subset of K such that

(1.3) A(K0) ⊂ K0.

Then A has the BAFP property.

Proposition 1.1 immediately implies the following result.

Proposition 1.2. Assume that K is bounded. Then any A ∈ A has the BAFP
property.

Obviously, Proposition 1.2 no longer holds if the set K is unbounded. For exam-
ple, if K is a Banach space and A is a translation operator, then A does not possess
the BAFP propery. Nevertheless, the following theorem is true [16].

Theorem 1.3. There exists an open and everywhere dense set F ⊂ A such that
each A ∈ F has the BAFP property.

Theorem 1.3 is the main result of [16], but actually in [16] we prove the following
stronger result, which will be used in the sequel.

Theorem 1.4. There exists an open and everywhere dense set F ⊂ A such that for
each A ∈ F , there exists a nonempty, bounded, closed and ρ-convex set KA ⊂ K
such that A(KA) ⊂ KA.

Now we are ready to state our main result. Its proof is given in Section 2.

Theorem 1.5. There exists a set F∗ ⊂ A which is a countable intersection of
open and everywhere dense sets in A such that for each A ∈ F∗, the following two
properties hold:

(i) there exists a unique point xA ∈ K such that AxA = xA;
(ii) for each r > 0, there exists a decreasing function ϕ : [0,∞) → [0, 1] such that

ϕ(t) < 1 for all t > 0

and

ρ(Ax,Ay) ≤ ϕ(ρ(x, y))ρ(x, y) for all x, y ∈ B(xA, r).

2. Proof of Theorem 1.5

We may assume without any loss of generality that K is not a singleton.
By Theorem 1.4, there exists an open and everywhere dense set F0 ⊂ A such

that the following property holds:
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(P1) for each A ∈ F0, there exists a nonempty, bounded, closed and ρ-convex set
KA ⊂ K such that A(KA) ⊂ KA.

Choose

κ ∈ (0, 1)

for which there exist two points u1, u2 ∈ K such that ρ(u1, u2) ≥ κ.
For each natural number n, denote by Fn the set of all A ∈ A such that

(2.1) sup{ρ(Ax,Ay)[ρ(x, y)]−1 : x, y ∈ B(θ, n), ρ(x, y) ≥ n−1κ} < 1.

Lemma 2.1. For each natural number n, the set Fn contains an open and every-
where dense set.

Proof. Let n be a natural number, A ∈ A and let k be a natural number. In order
to prove the lemma, it is sufficient to show that there exist Ã ∈ A and a natural
number p such that

(2.2) (A, Ã) ∈ U(k)
and

(2.3) {B ∈ A : (B, Ã) ∈ U(p)} ⊂ Fn.

To this end, choose γ ∈ (0, 1) such that

(2.4) γ(k + ρ(Aθ, θ)) < (2k)−1

and a natural number p such that

(2.5) p > n, 4p−1n < κγ.

Define

(2.6) Ãx = (1− γ)Ax⊕ γθ, x ∈ K.

By (2.6), we have for all x, y ∈ K,

ρ(Ãx, Ãy) = ρ((1− γ)Ax⊕ γθ, (1− γ)Ay ⊕ γθ)

≤ (1− γ)ρ(Ax,Ay) ≤ (1− γ)ρ(x, y).(2.7)

By (2.4) and (2.6), for all x ∈ B(θ, k), we have

ρ(Ãx,Ax) = ρ((1− γ)Ax⊕ γθ,Ax) ≤ γρ(Ax, θ) ≤ γρ(Ax,Aθ) + γρ(Aθ, θ)

≤ γρ(x, θ) + γρ(Aθ, θ) ≤ γk + γρ(Aθ, θ) < (2k)−1.

Thus (2.2) holds.
Assume now that B ∈ A satisfies

(2.8) (B, Ã) ∈ U(p).
Let

(2.9) x, y ∈ B(θ, n) with ρ(x, y) ≥ n−1κ.

It follows from (2.8), (2.9), (2.5) and (2.7) that

ρ(Bx,By) ≤ ρ(Bx, Ãx) + ρ(Ãx, Ãy) + ρ(Ãy,By)

< p−1 + ρ(Ãx, Ãy) + p−1 ≤ 2p−1 + (1− γ)ρ(x, y).
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When combined with (2.9) and (2.5), this implies that

ρ(Bx,By)[ρ(x, y)]−1 ≤ 2p−1nκ−1 + (1− γ) < 1− γ/2

and

sup{ρ(Bx,By)[ρ(x, y)]−1 : x, y ∈ B(θ, n), ρ(x, y) ≥ n−1κ} < 1− γ/2.

Thus B ∈ Fn and (2.3) holds. Lemma 2.1 is proved. �

Completion of the proof of Theorem 1.5
By Lemma 2.1, for any natural number n, there exists an open and everywhere

dense set F ′
n in A such that

(2.10) F ′
n ⊂ Fn.

Set

(2.11) F∗ = F0 ∩ (∩∞
n=1F ′

n).

Let
A ∈ F∗.

In order to complete the proof of Theorem 1.5, it is sufficient to show that properties
(i) and (ii) hold.

Since A ∈ F0, it follows from (P1) that there exists a nonempty, bounded, closed
and ρ-convex set KA ⊂ K such that

(2.12) A(KA) ⊂ KA.

Let n be a natural number such that

(2.13) KA ⊂ B(θ, n).

Since A ∈ Fn (see (2.1)), it follows from (2.13) that

sup{ρ(Ax,Ay)[ρ(x, y)]−1 : x, y ∈ KA, ρ(x, y) ≥ n−1κ}
≤ sup{ρ(Ax,Ay)[ρ(x, y)]−1 : x, y ∈ B(θ, n), ρ(x, y) ≥ n−1κ} < 1.

Since the above relation holds for any natural number n satisfying (2.13), we con-
clude that there exists a decreasing function ϕ : [0,∞) → [0, 1] such that

ϕ(t) < 1 for all t > 0,

ρ(Ax,Ay) ≤ ρ(x, y)ϕ(ρ(x, y)) for all x, y ∈ KA.

By [9], there is xA ∈ KA such that

(2.14) AxA = xA.

Assume that z ∈ K satisfies

(2.15) Az = z.

We claim that z = xA. Assume the contrary. Then there exists a natural number
n such that

(2.16) KA ⊂ B(θ, n), z ∈ B(θ, n), n−1κ < ρ(xA, z).

Since A ∈ Fn (see (2.1)), it follows from (2.14)–(2.16) that

1 > sup{ρ(Ax,Ay)[ρ(x, y)]−1 : x, y ∈ B(θ, n), ρ(x, y) ≥ n−1κ}



6 S. REICH AND A. J. ZASLAVSKI

≥ ρ(AxA, Az)[ρ(xA, z)]
−1 = 1,

a contradiction. The contradiction we have reached proves that z = xA and property
(i) holds.

Now we show that property (ii) holds.
Let r > 0. Since AxA = xA, we have

(2.17) A(B(xA, r)) ⊂ B(xA, r).

Let a natural number n satisfy

(2.18) B(xA, r) ⊂ B(θ, n).

The inclusion A ∈ Fn and (2.18) imply that

1 > sup{ρ(Ax,Ay)[ρ(x, y)]−1 : x, y ∈ B(θ, n), ρ(x, y) ≥ n−1κ}
≥ sup{ρ(Ax,Ay)[ρ(x, y)]−1 : x, y ∈ B(xA, r), ρ(x, y) ≥ n−1κ}.

Since the above relations hold for any natural number n satisfying (2.18), we con-
clude that there exists a decreasing function ϕ : [0,∞) → [0, 1] as in property (ii).
This completes the proof of Theorem 1.5.
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