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where {αn}, {βn} and {γn} are sequences in [0, 1]. It was significantly shown in [18]
that the convergence rate of (1.3) is better than those of Mann and Ishikawa for con-
tinuous functions. Very recently, the convergence theorem of (1.3) was subsequently
established by Şahin and Başarır [21] in CAT(0) spaces.

In this paper, motivated by Dhompongsa and Panyanak [5], He et al. [8], Phuen-
grattana and Suantai [18] and Jun [9], we focus in establishing ∆-convergence the-
orem for the SP-iteration in complete CAT(κ) spaces with κ ≥ 0.

2. Preliminaries and lemmas

In this section, we provide some basic concepts, definitions and lemmas which
will be used in the sequel and can be found in [2].

Let (X, d) be a metric space and x, y ∈ X with d(x, y) = l. A geodesic path from
x to y is an isometry c : [0, l] → X such that c(0) = x, c(l) = y. The image of a
geodesic path is called geodesic segment. The space (X, d) is said to be a geodesic
space if every two points of X are joined by a geodesic, and X is a uniquely geodesic
space if every two points of X are jointed by only one geodesic segment. We write
(1− t)x⊕ ty for the unique point z in the geodesic segment joining from x to y such
that d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y) for t ∈ [0, 1]. A subset E of X is
said to be convex if E includes every geodesic segment joining any two of its points.

Let C be a positive number. A metric space (X, d) is called a C-geodesic space if
any two points of X with the distance less than C are joined by a geodesic. If this
holds in a convex set E, then E is said to be C-convex. For a constant κ, we denote
Mκ by the 2-dimensional, complete, simply connected spaces of curvature κ.

In what follows, we assume that κ ≥ 0 and define the diameter Dκ of Mκ by
Dκ = π√

κ
for κ > 0 and Dκ = ∞ for κ = 0. It is known that any ball in X

with radius less than Dκ/2 is convex [2]. A geodesic triangle ∆(x, y, z) in the
metric space (X, d) consists of three points x, y, z in X (the vertices of ∆) and three
geodesic segments between each pair of vertices. For ∆(x, y, z) in a geodesic space
X satisfying

d(x, y) + d(y, z) + d(z, x) < 2Dκ,

there exist points x̄, ȳ, z̄ ∈ Mκ such that d(x, y) = dκ(x̄, ȳ), d(y, z) = dκ(ȳ, z̄) and
d(z, x) = dκ(z̄, x̄) where dκ is the metric of Mκ. We call the triangle having vertices
x̄, ȳ, z̄ ∈ Mκ a comparison triangle of ∆(x, y, z). A geodesic triangle ∆(x, y, z) in
X with d(x, y) + d(y, z) + d(z, x) < 2Dκ is said to satisfy the CAT(κ) inequality
if for any p, q ∈ ∆(x, y, z) and for their comparison points p̄, q̄ ∈ ∆̄(x̄, ȳ, z̄), then
d(p, q) ≤ dκ(p̄, q̄).

Definition 2.1. A metric space (X, d) is called a CAT(κ) space if it is Dκ-geodesic
and any geodesic triangle ∆(x, y, z) in X with d(x, y) + d(y, z) + d(z, x) < 2Dκ

satisfies the CAT(κ) inequality.

Since the results in CAT(κ) spaces can be deduced from those in CAT(1) spaces,
we now sufficiently state lemmas on CAT(1) spaces.

Lemma 2.2 ([2]). Let (X, d) be a CAT(1) space and let F be a closed and π-convex
subset of X. Then for each point x ∈ X such that d(x, F ) < π/2, there exists a
unique point y ∈ F such that d(x, y) = d(x, F ).
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Lemma 2.3 ([17]). For a positive number C with C ≤ π/2, let (X, d) be a CAT(1)
space and let p, x, y ∈ X such that d(p, x) ≤ C, d(p, y) ≤ C and d(x, y) ≤ C. Then
for any t ∈ [0, 1],

d
(
(1− t)p⊕ tx, (1− t)p⊕ ty

)
≤ sin tC

sinC
d(x, y).

Lemma 2.4 ([14]). Let (X, d) be a CAT(1) space. Then there is a constant M > 0
such that

d2
(
x, ty ⊕ (1− t)z

)
≤ td2(x, y) + (1− t)d2(x, z)− M

2
t(1− t)d2(y, z)

for any t ∈ [0, 1] and any point x, y, z ∈ X such that d(x, y) ≤ π/4, d(x, z) ≤ π/4
and d(y, z) ≤ π/2.

Let {xn} be a bounded sequence in X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf
{
r(x, {xn}) : x ∈ X

}
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{
x ∈ X : r({xn}) = r(x, {xn})

}
.

Definition 2.5. A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the
unique asymptotic center of {un} for every subsequence {un} of {xn}.

In this case we write ∆− limn→∞ xn = x and call x the ∆-limit of {xn}.

Definition 2.6. For a sequence {xn} in X, a point x ∈ X is a ∆-cluster point of
{xn} if there exists a subsequence of {xn} that ∆-converges to x.

Lemma 2.7 ([8]). Let (X, d) be a complete CAT(κ) space and let p ∈ X. Suppose
that a sequence {xn} in X ∆-converges to x such that r(p, {xn}) < Dκ/2. Then

d(x, p) ≤ lim inf
n→∞

d(xn, p).

Definition 2.8. Let (X, d) be a complete metric space and let F be a nonempty
subset of X. Then a sequence {xn} in X is Fejér monotone with respect to F if

d(xn+1, q) ≤ d(xn, q)

for all n ≥ 0 and all q ∈ F .

Lemma 2.9 ([8]). Let (X, d) be a complete CAT(1) space and let F be a nonempty
subset of X. Suppose that the sequence {xn} in X is Fejér monotone with respect
to F and the asymptotic radius r({xn}) of {xn} is less than π/2. If any ∆-cluster
point x of {xn} belongs to F , then {xn} ∆-converges to a point in F .

Lemma 2.10 ([22]). Let {an} and {bn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + bn)an.

If
∑∞

n=1 bn < ∞, then limn→∞ an exists. Additionally, if there is a subsequence of
{an} which converges to 0, then limn→∞ an = 0.
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3. Main results

To complete our proof, we need the following crucial lemmas.

Lemma 3.1. Let (X, d) be a complete CAT(1) space and let T : X → X be a
nonexpansive mapping such that F (T ) ̸= ∅. Let {xn} be generated by (1.3) for
x0 ∈ X such that d(x0, F (T )) ≤ π/4. Then there exists a unique point p in F (T )
such that d(yn, p) ≤ d(zn, p) ≤ d(xn, p) ≤ π/4 for all n ≥ 0.

Proof. From Theorem 3.4 in [17], we know that F (T ) is closed and π-convex. So, by
Lemma 2.2, there exists a unique point p in F (T ) such that d(x0, F (T )) = d(x0, p).
Since d(Tx0, p) ≤ d(x0, p) ≤ π/4 and Bπ/4[p] is convex, we obtain

d(z0, p) ≤ γ0d(Tx0, p) + (1− γ0)d(x0, p) ≤ d(x0, p) ≤ π/4

and since d(Tz0, p) ≤ d(z0, p) ≤ π/4 and Bπ/4[p] is convex, we also obtain

d(y0, p) ≤ β0d(Tz0, p) + (1− β0)d(z0, p) ≤ d(z0, p) ≤ π/4.

Suppose that d(zk, p) ≤ d(yk, p) ≤ d(xk, p) ≤ π/4 for k ≥ 1. Since d(Tyk, p) ≤
d(yk, p) ≤ π/4 and Bπ/4[p] is convex, we obtain

d(xk+1, p) ≤ αkd(Tyk, p) + (1− αk)d(yk, p) ≤ d(yk, p) ≤ π/4.

Since d(Txk+1, p) ≤ d(xk+1, p) ≤ π/4 and Bπ/4[p] is convex, we obtain

d(zk+1, p) ≤ γk+1d(Txk+1, p) + (1− γk+1)d(xk+1, p) ≤ d(xk+1, p) ≤ π/4

and also

d(yk+1, p) ≤ βk+1d(Tzk+1, p) + (1− βk+1)d(zk+1, p) ≤ d(zk+1, p) ≤ π/4.

It follows that d(yk+1, p) ≤ d(zk+1, p) ≤ d(xk+1, p) ≤ π/4. By mathematical induc-
tion, we conclude that d(yn, p) ≤ d(zn, p) ≤ d(xn, p) ≤ π/4 for all n ≥ 0. �
Lemma 3.2. Let (X, d) be a complete CAT(1) space and let T : X → X be a
nonexpansive mapping such that F (T ) ̸= ∅. Let {xn} be generated by (1.3) for
x0 ∈ X such that d(x0, F (T )) ≤ π/4. Then for all n ≥ 0,

d(xn+1, Txn+1) ≤ (1 + δn)d(xn, Txn)

where δn = αnγn

(
2 + 4(1−αn)C

sinC

)
+ 2βnC

sinC and C = 2d(x0, F (T )).

Proof. Firstly, it is observed that

d(zn, xn) = d(γnTxn ⊕ (1− γn)xn, xn) = γnd(xn, Txn)

and
d(zn, Txn) = d(γnTxn ⊕ (1− γn)xn, Txn) = (1− γn)d(xn, Txn).

Hence we have

d(yn, zn) = d(βnTzn ⊕ (1− βn)zn, zn)

= βnd(Tzn, zn)

≤ βn
(
d(Tzn, Txn) + d(Txn, zn)

)
≤ βn

(
d(zn, xn) + d(Txn, zn)

)
= βn

(
γnd(xn, Txn) + (1− γn)d(xn, Txn)

)
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= βnd(xn, Txn).

We next compute the following estimation:

d(Txn+1, xn+1) ≤ d
(
Txn+1, T (αnTzn ⊕ (1− αn)xn)

)
+ d

(
T (αnTzn ⊕ (1− αn)xn), Txn

)
+ d(Txn, T zn) + d

(
Tzn, αnTzn ⊕ (1− αn)xn

)
+ d

(
αnTzn ⊕ (1− αn)xn, xn+1

)
≤ 2d

(
αnTzn ⊕ (1− αn)xn, xn+1

)
+ αnd(Tzn, xn)

+ d(xn, zn) + (1− αn)d(Tzn, xn)

= 2d
(
αnTzn ⊕ (1− αn)xn, xn+1

)
+ d(Tzn, xn) + d(xn, zn)

≤ 2d
(
αnTzn ⊕ (1− αn)xn, xn+1

)
+ d(xn, Txn) + 2d(xn, zn)

= 2d
(
αnTzn ⊕ (1− αn)xn, xn+1

)
+ (1 + 2γn)d(xn, Txn).(3.1)

From Lemma 3.1 we observe that d(yn, T yn), d(xn, T yn), d(xn, yn), d(xn, T zn) and
d(Tyn, T zn) are all smaller than C. Since C ≤ π/2, by Lemma 2.3, we obtain

d
(
xn+1, αnTzn ⊕ (1− αn)xn

)
≤ d

(
xn+1, αnTyn ⊕ (1− αn)xn

)
+ d

(
αnTyn ⊕ (1− αn)xn, αnTzn ⊕ (1− αn)xn

)
≤ sin(1− αn)C

sinC
d(xn, yn) +

sinαnC

sinC
d(Tyn, T zn)

≤ (1− αn)C

sinC
d(xn, yn) +

αnC

sinC
d(yn, zn)

≤ (1− αn)C

sinC
d(xn, yn) +

αnβnC

sinC
d(xn, Txn).(3.2)

From (3.1) and (3.2), we have

d(Txn+1, xn+1) ≤ 2(1− αn)C

sinC
d(xn, yn) +

(
1 + 2γn +

2αnβnC

sinC

)
d(xn, Txn).

Multiplying by αn, we then obtain
(3.3)

αnd(Txn+1, xn+1) ≤
2αn(1− αn)C

sinC
d(xn, yn)+

(
αn+2αnγn+

2α2
nβnC

sinC

)
d(xn, Txn).

On the other hand, we compute the following estimation:

d(Txn+1, xn+1) ≤ d
(
Txn+1, T (αnTxn ⊕ (1− αn)zn)

)
+ d

(
T (αnTxn ⊕ (1− αn)zn), T zn

)
+ d

(
Tzn, Txn) + d(Txn, αnTxn ⊕ (1− αn)zn

)
+ d

(
αnTxn ⊕ (1− αn)zn, xn+1

)
≤ 2d

(
αnTxn ⊕ (1− αn)zn, xn+1

)
+ αnd(Txn, zn)

+ d(xn, zn) + (1− αn)d(Txn, zn)

= 2d
(
αnTxn ⊕ (1− αn)zn, xn+1

)
+ d(Txn, zn) + d(xn, zn)

= 2d
(
αnTxn ⊕ (1− αn)zn, xn+1

)
+ (1− γn)d(xn, Txn)

+ γnd(xn, Txn)
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= 2d
(
αnTxn ⊕ (1− αn)zn, xn+1

)
+ d(xn, Txn).(3.4)

Also, by Lemma 3.1, we see that d(yn, T yn), d(zn, T yn), d(zn, yn), d(zn, Txn) and
d(Txn, Tyn) are all smaller than C. Since C ≤ π/2, by Lemma 2.3, we have

d
(
xn+1, αnTxn ⊕ (1− αn)zn

)
≤ d

(
xn+1, αnTyn ⊕ (1− αn)zn

)
+ d

(
αnTyn ⊕ (1− αn)zn, αnTxn ⊕ (1− αn)zn

)
≤ sin(1− αn)C

sinC
d(yn, zn) +

sinαnC

sinC
d(Txn, T yn)

≤ (1− αn)C

sinC
d(yn, zn) +

αnC

sinC
d(xn, yn)

≤ (1− αn)βnC

sinC
d(xn, Txn) +

αnC

sinC
d(xn, yn).(3.5)

From (3.4) and (3.5), we have

d(Txn+1, xn+1) ≤ 2αnC

sinC
d(xn, yn) +

(
1 +

2(1− αn)βnC

sinC

)
d(xn, Txn).

Multiplying by (1− αn), we then obtain

(1− αn)d(Txn+1, xn+1) ≤ 2αn(1− αn)C

sinC
d(xn, yn)

+
(
1− αn +

2(1− αn)
2βnC

sinC

)
d(xn, Txn).(3.6)

Adding up (3.3) and (3.6) yields

d(Txn+1, xn+1) ≤ 4αn(1− αn)C

sinC
d(xn, yn)

+
(
1 + 2αnγn +

2βnC

sinC

(
α2
n + (1− αn)

2
))

d(xn, Txn).

Noting d(xn, yn) ≤ d(xn, zn) + d(zn, yn) ≤ (βn + γn)d(xn, Txn), we thus obtain

d(Txn+1, xn+1) ≤ 4αn(1− αn)C

sinC
(βn + γn)d(xn, Txn)

+
(
1 + 2αnγn +

2βnC

sinC

(
α2
n + (1− αn)

2
))

d(xn, Txn)

=
(
1 + αnγn

(
2 +

4(1− αn)C

sinC

)
+

2βnC

sinC

)
d(xn, Txn).

This completes the proof. �

Lemma 3.3. Let (X, d) be a complete CAT(1) space and let T : X → X be a
nonexpansive mapping such that F (T ) ̸= ∅. Let {xn} be generated by (1.3) for
x0 ∈ X such that d(x0, F (T )) ≤ π/4. Suppose that {αn}, {βn} and {γn} satisfy
that (i)

∑∞
n=0 αn(1−αn) = ∞, (ii)

∑∞
n=0 αnγn < ∞ and (iii)

∑∞
n=0 βn < ∞. Then

limn→∞ d(xn, Txn) = 0.

Proof. Using conditions (ii), (iii) and Lemma 3.2, we get that limn→∞ d(xn, Txn)
exists by Lemma 2.10. Let p be a unique point in F (T ) such that d(x0, p) =
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d(x0, F (T )). Note that, by Lemma 3.1, d(yn, p) ≤ d(zn, p) ≤ d(xn, p) ≤ π/4 for all
n ≥ 0. So, from Lemma 2.4, there exists M > 0 such that

d2(xn+1, p) ≤ αnd
2(Tyn, p) + (1− αn)d

2(yn, p)−
M

2
αn(1− αn)d

2(Tyn, yn)

≤ d2(yn, p)−
M

2
αn(1− αn)d

2(Tyn, yn)

≤ d2(xn, p)−
M

2
αn(1− αn)d

2(Tyn, yn).

This gives
∞∑
n=0

αn(1− αn)d
2(Tyn, yn) < ∞.

We see that, by condition (ii),
∞∑
n=0

αn(1− αn)
(
d2(Tyn, yn) + γn

)
≤

∞∑
n=0

(
αn(1− αn)d

2(Tyn, yn) + αnγn
)
< ∞.

So, by condition (i), we have

lim inf
n→∞

(
d2(Tyn, yn) + γn

)
= 0.

Then there exists a subsequence {nk} of {n} such that

lim
k→∞

d(Tynk
, ynk

) = 0

and limk→∞ γnk
= 0. So we obtain

d(Txnk
, xnk

) ≤ d(Txnk
, T ynk

) + d(Tynk
, ynk

) + d(ynk
, xnk

)

≤ 2d(ynk
, xnk

) + d(Tynk
, ynk

)

≤ 2(βnk
+ γnk

)d(xnk
, Txnk

) + d(Tynk
, ynk

),

which implies that d(xnk
, Txnk

) → 0 as k → ∞. Therefore, by Lemma 2.10, we
conclude that limn→∞ d(xn, Txn) = 0. �

We are now ready to prove our main result.

Theorem 3.4. Let (X, d) be a complete CAT(κ) space and let T : X → X be
a nonexpansive mapping such that F (T ) ̸= ∅. Let {xn} be generated by (1.3) for
x0 ∈ X such that d(x0, F (T )) < Dκ/4. Suppose that {αn}, {βn} and {γn} satisfy
that (i)

∑∞
n=0 αn(1−αn) = ∞, (ii)

∑∞
n=0 αnγn < ∞ and (iii)

∑∞
n=0 βn < ∞. Then

{xn} ∆-converges to a fixed point of T .

Proof. Without loss of generality, we assume that κ = 1. Put F0 := F (T )∩Bπ/2(x0).
Let q ∈ F0. Since d(Tx0, q) ≤ d(x0, q) and since the open ball in X with center q
and radius less than π/2 is convex, we have

d(z0, q) = d
(
γ0Tx0 ⊕ (1− γ0)x0, q

)
≤ d(x0, q).

Since d(Tz0, q) ≤ d(z0, q), we also have

d(y0, q) = d
(
β0Tz0 ⊕ (1− β0)z0, q

)
≤ d(z0, q) ≤ d(x0, q).

So we have
d(x1, q) = d

(
α0Ty0 ⊕ (1− α0)y0, q

)
≤ d(x0, q).
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By mathematical induction, we can show that

d(xn+1, q) ≤ d(xn, q) ≤ d(x0, q)

for all n ≥ 0. Hence {xn} is a Fejér monotone sequence with respect to F0.
In particular, choose p ∈ F (T ) such that d(x0, p) < π/4. Then p ∈ F0 and

(3.7) d(xn+1, p) ≤ d(xn, p) ≤ d(x0, p) < π/4.

This shows that r({xn}) < π/4. Thus, by Lemma 2.9, we will show that any ∆-
cluster point of {xn} belongs to F0. Let x ∈ X be a ∆-cluster point of {xn}. Then
there exists a subsequence {xnk

} of {xn} which ∆-converges to x. Using (3.7) we
have

r(p, {xnk
}) ≤ r(x0, p) < π/4.

Using Lemma 2.7, it follows that

d(x, x0) ≤ d(x, p) + d(x0, p)

≤ lim inf
k→∞

d(xnk
, p) + d(x0, p)

< π/2.

This implies that x ∈ Bπ/2(x0). Using Lemma 3.3, we get that

lim sup
k→∞

d(Tx, xnk
) ≤ lim sup

k→∞
d(Tx, Txnk

) + lim sup
k→∞

d(Txnk
, xnk

)

≤ lim sup
k→∞

d(x, xnk
),

which yields that Tx ∈ A
(
{xnk

}
)
and Tx = x. Hence x ∈ F0. We thus complete

the proof. �

If γn = 0 for all n ≥ 0, then we get a convergence result of a new two-step
iteration process in CAT(κ) spaces.

Corollary 3.5. Let (X, d) be a complete CAT(κ) space and let T : X → X be a
nonexpansive mapping such that F (T ) ̸= ∅. For x0 ∈ X such that d(x0, F (T )) <
DK/4. Let {xn} be generated by

yn = βnTxn ⊕ (1− βn)xn,

xn+1 = αnTyn ⊕ (1− αn)yn, n ≥ 0.(3.8)

Suppose that {αn} and {βn} satisfy that (i)
∑∞

n=0 αn(1−αn) = ∞ and (ii)
∑∞

n=0 βn <
∞. Then {xn} ∆-converges to a fixed point of T .

Remark 3.6. We point out that the iteration process (3.8) is different from Ishikawa
iteration process (1.2) studied by Jun [9]. So it is new in CAT(κ) spaces.

If βn = γn = 0 for all n ≥ 0, then we obtain Theorem 3.1 of He et al. [8].

Corollary 3.7 ([8]). Let (X, d) be a complete CAT(κ) space and let T : X → X
be a nonexpansive mapping such that F (T ) ̸= ∅. Let {xn} be generated by (1.3) for
x0 ∈ X such that d(x0, F (T )) < DK/4. If {αn} satisfies that

∑∞
n=0 αn(1−αn) = ∞,

then {xn} ∆-converges to a fixed point of T .

Remark 3.8. In the case κ = 0, our results also hold in complete CAT(0) spaces.



THE SP-ITERATION PROCESS 117

Acknowledgement

The author wishes to thank referees for valuable suggestions. This research was
supported by University of Phayao.

References
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