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THE SP-ITERATION PROCESS FOR NONEXPANSIVE
MAPPINGS IN CAT(x) SPACES

PRASIT CHOLAMJIAK

ABSTRACT. We establish A-convergence results of a sequence generated by the
SP-iteration process for nonexpansive mappings in complete CAT(x) spaces. The
main results improve and extend some others appeared in the literature.

1. INTRODUCTION

Let K be a nonempty subset of a metric space (X,d) and T : K — K be a
mapping. Then T is nonexpansive if d(Tx, Ty) < d(z,y) for all z,y € K. The fixed
points set of 7', denoted by F(T), is the set {x € K : x = Tx}. The fixed point
theory in CAT(0) spaces for nonexpansive mappings was firstly studied by Kirk [10].
In [10], Kirk also proved the existence of fixed points for nonexpansive mappings
in a geodesic space of bounded curvature called a CAT (k) space (see Section 2 for
a definition). Since then there have been many researches concerning the existence
and the convergence of fixed points for nonlinear mappings in such spaces, see for
examples, [1, 3, 4, 7, 8, 9, 12, 15, 16, 17, 19, 20, 21].

Let us recall some effective iteration processes for solving a fixed point problem
in geodesic metric spaces. Mann iteration process was defined by x¢p € K and

(1.1) Tnt1 = @pTx, ® (1 —an)r,, n >0,

where {a,} is a sequence in [0, 1]. The A-convergence in the sense of Lim [13] for
(1.1) was investigated by Dhompongsa and Panyanak [5] (see also [6, 11]) in CAT(0)
spaces and subsequently by He et al. [8] in CAT(k) spaces.

Ishikawa iteration process was defined by z¢p € K and

Yn = BuTr,® (1 - /Bn)xna
(12) Tnt1 = anTyn S (1 - an)xn; n > 07

where {a,, } and {3,,} are sequences in [0, 1]. Its convergence was discussed in [5, 16]
for CAT(0) spaces and in [9] for CAT(x) spaces.

Recently, Phuengrattana and Suantai [18] defined the SP-iteration as follows:
rg € K and

Zn = 'YnTxn S (1 - 'Yn)xna
Yn = BnTZn @ (1 - ﬂn)zny
(1~3) Tnt1 = o Tyn @ (1 - an)ym n >0,
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where {a, }, {8,} and {v,} are sequences in [0, 1]. It was significantly shown in [18§]
that the convergence rate of (1.3) is better than those of Mann and Ishikawa for con-
tinuous functions. Very recently, the convergence theorem of (1.3) was subsequently
established by Sahin and Basarir [21] in CAT(0) spaces.

In this paper, motivated by Dhompongsa and Panyanak [5], He et al. [8], Phuen-
grattana and Suantai [18] and Jun [9], we focus in establishing A-convergence the-
orem for the SP-iteration in complete CAT (k) spaces with x > 0.

2. PRELIMINARIES AND LEMMAS

In this section, we provide some basic concepts, definitions and lemmas which
will be used in the sequel and can be found in [2].

Let (X, d) be a metric space and z,y € X with d(z,y) = [. A geodesic path from
x to y is an isometry c : [0,!] — X such that ¢(0) = z, ¢(l) = y. The image of a
geodesic path is called geodesic segment. The space (X, d) is said to be a geodesic
space if every two points of X are joined by a geodesic, and X is a uniquely geodesic
space if every two points of X are jointed by only one geodesic segment. We write
(1 —t)x @ty for the unique point z in the geodesic segment joining from z to y such
that d(x, z) = td(z,y) and d(y, z) = (1 — t)d(x,y) for t € [0,1]. A subset E of X is
said to be convex if E includes every geodesic segment joining any two of its points.

Let C be a positive number. A metric space (X, d) is called a C-geodesic space if
any two points of X with the distance less than C are joined by a geodesic. If this
holds in a convex set F/, then F is said to be C-convex. For a constant x, we denote
M, by the 2-dimensional, complete, simply connected spaces of curvature .

In what follows, we assume that « > 0 and define the diameter D, of M, by
D, = % for kK > 0 and D, = oo for kK = 0. It is known that any ball in X

with radius less than D, /2 is convex [2]. A geodesic triangle A(z,y,z) in the
metric space (X, d) consists of three points x,y, z in X (the vertices of A) and three
geodesic segments between each pair of vertices. For A(z,y, z) in a geodesic space
X satisfying
d(z,y) +d(y,z) + d(z,x) < 2D,

there exist points Z,y,z € M, such that d(x,y) = d.(Z,7), d(y,z) = dx(y,z) and
d(z,z) = d.(Z,T) where d, is the metric of M,.. We call the triangle having vertices
Z,y,zZ € My a comparison triangle of A(x,y,z). A geodesic triangle A(x,y, z) in
X with d(z,y) + d(y, z) + d(z,2) < 2D, is said to satisfy the CAT(k) inequality
if for any p,q € A(z,y,z) and for their comparison points p,q € A(Z,7, Z), then
d(p,q) < de(p, Q).

Definition 2.1. A metric space (X, d) is called a CAT (k) space if it is D4-geodesic
and any geodesic triangle A(z,y,z) in X with d(x,y) + d(y, z) + d(z,z) < 2D,
satisfies the CAT (k) inequality.

Since the results in CAT(x) spaces can be deduced from those in CAT(1) spaces,
we now sufficiently state lemmas on CAT(1) spaces.

Lemma 2.2 ([2]). Let (X,d) be a CAT(1) space and let F' be a closed and 7-convex
subset of X. Then for each point x € X such that d(z,F) < 7/2, there exists a
unique point y € F such that d(z,y) = d(z, F).
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Lemma 2.3 ([17]). For a positive number C with C' < 7 /2, let (X,d) be a CAT(1)
space and let p,x,y € X such that d(p,x) < C, d(p,y) < C and d(z,y) < C. Then
for any t € [0,1],

a((1 - ta, (1 - Opty) < 2 d(a,y).
sin C'

Lemma 2.4 ([14]). Let (X,d) be a CAT(1) space. Then there is a constant M >0
such that

@ (2, ty @ (1 — 1)2) < td(z,y) + (1 — )d(z, 2) — %tu _ Oy, 2)

for any t € [0,1] and any point x,y,z € X such that d(x,y) < w/4, d(z,z) < 7/4
and d(y, z) < w/2.

Let {x,} be a bounded sequence in X. For x € X, we set
r(z,{zn}) = limsupd(x, z,).

n—o0

The asymptotic radius r({z,}) of {x,} is given by
r({an}) = inf {r(z,{z,}) : © € X}
and the asymptotic center A({z,}) of {z,} is the set
A{za}) = {2 € X r({za}) = 1l {za])}.
Definition 2.5. A sequence {z,} in X is said to A-converge to z € X if x is the
unique asymptotic center of {u,} for every subsequence {u,} of {x,}.

In this case we write A — lim,,_,~ , = = and call = the A-limit of {x,}.

Definition 2.6. For a sequence {z,} in X, a point € X is a A-cluster point of
{zy} if there exists a subsequence of {z,} that A-converges to x.

Lemma 2.7 ([8]). Let (X,d) be a complete CAT(k) space and let p € X. Suppose
that a sequence {x,} in X A-converges to x such that r(p,{z,}) < Dy/2. Then

d(z,p) < lirginf d(xn, p).

Definition 2.8. Let (X, d) be a complete metric space and let F' be a nonempty
subset of X. Then a sequence {z,} in X is Fejér monotone with respect to F if

d(xnlea Q) S d('rrh Q)
foralln >0 and all g € F.

Lemma 2.9 ([8]). Let (X,d) be a complete CAT(1) space and let F' be a nonempty
subset of X. Suppose that the sequence {x,} in X is Fejér monotone with respect
to F' and the asymptotic radius v({x,}) of {zn} is less than w/2. If any A-cluster
point x of {x,} belongs to F, then {x,} A-converges to a point in F.

Lemma 2.10 ([22]). Let {an} and {b,} be sequences of nonnegative real numbers
satisfying the inequality

ap+1 < (1 + bn)an-
If 370 by < o0, then limy, o0 ar exists. Additionally, if there is a subsequence of
{an} which converges to 0, then lim,_,~ a, = 0.
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3. MAIN RESULTS

To complete our proof, we need the following crucial lemmas.

Lemma 3.1. Let (X,d) be a complete CAT(1) space and let T : X — X be a
nonexpansive mapping such that F(T) # (. Let {x,} be generated by (1.3) for
xo € X such that d(zo, F(T')) < w/4. Then there exists a unique point p in F(T)
such that d(yn,p) < d(zn,p) < d(zyn,p) < 7/4 for alln > 0.

Proof. From Theorem 3.4 in [17], we know that F'(T) is closed and m-convex. So, by
Lemma 2.2, there exists a unique point p in F(7T') such that d(zo, F'(T)) = d(zo,p).
Since d(T'wo, p) < d(wo,p) < /4 and By 4[p] is convex, we obtain

d(20,p) < v0d(Tx0,p) + (1 —10)d(z0, p) < d(z0,p) < 7/4

and since d(T'z9,p) < d(20,p) < 7/4 and By 4[p] is convex, we also obtain

d(yo,p) < Bod(Tz0,p) + (1 — Bo)d(20,p) < d(20,p) < /4.

Suppose that d(zx,p) < d(yk,p) < d(zg,p) < w/4 for k > 1. Since d(Tyk,p) <
d(yr,p) < 7/4 and By 4[p] is convex, we obtain

d(wp11,p) < ed(Tyr, p) + (1 — aw)d(ye, p) < d(yr, p) < /4.
Since d(Twy11,p) < d(wg11,p) < /4 and By 4[p] is convex, we obtain
d(2k11,P) < Ver1d(Tzpy1,p) + (1 = Yer1)d(@ps1,p) < d(@py1,p) < /4
and also
d(Yr+1,P) < Ber1d(Tzp41,p) + (1 — Brr1)d(2p+1,p) < d(2k41,p) < /4.

It follows that d(yg+1,p) < d(zk+1,p) < d(zk+1,p) < 7/4. By mathematical induc-
tion, we conclude that d(y,,p) < d(zn,p) < d(xn,p) < w/4 for all n > 0. O

Lemma 3.2. Let (X,d) be a complete CAT(1) space and let T : X — X be a
nonexpansive mapping such that F(T) # (. Let {x,} be generated by (1.3) for
xo € X such that d(xo, F(T)) < w/4. Then for alln >0,

d(xn+17 Txn—i—l) < (1 + 5n)d(xn7 Txn)
where 511 = OpYn <2 + 4(1si_nag')o> + ilﬁ;g and C = Qd(l'o, F(T))

Proof. Firstly, it is observed that

d(zn, xn) = ATy & (1 — ) Tn, Tn) = Ynd(Tn, Txy)
and

d(zn, Txy) = d(WTxn ® (1 — yn)Tn, Tan) = (1 — ) d(xn, Txy).

Hence we have

A(Yn,zn) = d(BpTzn ® (1 — Bn)zn, 2n)

= Bnd(Tzn, zyn)

Bn (d(Tzn, Tzy) + d(Txy, zn))
B (d(zn, zn) + d(Tn, 2,))
Bn ('ynd(xn,T:L‘n) +(1- 'yn)d(xn,Txn))

IA A
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= Bpd(zyn, Txy).
We next compute the following estimation:
d(TZps1,Tpt1) < d(Txn+1,T(anTzn ®(1- an)mn))
+ d(T(anTzn ®(1-— an)xn),Ta:n)
+ d(Txn, Tz,) + d(Tzn, anTz, ® (1 — ozn)xn)
+ d(anTzn @ (1 —ap)zy, :Un+1)

< Zd(anTzn D (1 —ap)zy, xn+1) + and(Tzy, )

+ d(xn, 2n) + (1 — an)d(T 2, zp)
= 2d(anTzn @ (1 —ap)zy, a:n+1) + d(Tzp, xy) + d(xn, 2,)
< Qd(anTzn D (1 — ap)zy, xn+1) + d(zp, Txy) + 2d(xn, 2,)

(3.1) = 2d(anTzn D (1 — ap)zy, xn+1) + (1 4+ 2y, )d(xp, Txy).

From Lemma 3.1 we observe that d(yn, Tyn), d(@n, TYn), d(n, yn), d(xn, Tzy,) and
d(Tyy, Tzy,) are all smaller than C. Since C' < 7/2, by Lemma 2.3, we obtain

d(mn+1, anTz, ® (1 — an)xn) < d(mnH, an Ty, @ (1 — an)xn)
+ d(anTyn @ (1 —ap)zn, anTz, ® (1 — an)xn)

sin(l — a,)C sin a,, C
< - .~ ny In . T TL?T n
- sin C' d(wn; yn) + sin C' d(Tyn, Tzn)
(1—ap)C anC
< ~ 7
- sin C' d(wn: yn) + sin C’d(ym 2n)
(1—ap)C B, C
. < — ny In . ) nj)-:
(32) - sin C' A&, yn) + sinC' d(@n, Tn)
From (3.1) and (3.2), we have
2(1 — a,,)C 205, 6,C
< T ZnPnz ,
d(Txpi1,Tns1) < e d(pn,Yn) + (1 + 27, + S C >d(:z:n,Tmn)
Multiplying by au,, we then obtain
(3.3)
200, (1 — ay)C 202 3,C
< _— .
and(Txpi1, Tne1) < e d(Tn,yn) + (an—|—2anfyn+ S C )d(xn,Tmn)

On the other hand, we compute the following estimation:
d(TTpt1,Tny1) < d(Txn+1, T(apTx, ® (1 — an)zn))
+ d(T(anTa:n ®(1- an)zn),Tzn)
+ d(Tzn,Txn) + d(Txy, anTx, & (1 — an)zn)
+ d(anTxn ®(1- an)zn,an)
2d(anT:En @ (1 —ap)zn, $n+1) + and(Txy, z,)
+ d(xn, 2n) + (1 — an)d(Txn, 2n)
= 2d(anTJ:n @ (1 — an)zn, a:n+1) + d(Txp, zn) + d(xp, 2p,)
= 2d(anTxn @ (1 —ap)zn, a:n+1) + (1 = yp)d(zy, Txy)
+ Ynd(xp, Tay)

IN
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(3.4) = 2d(anT:Un @ (1 —ap)zn, l’n+1) + d(zp, Tzy).

Also, by Lemma 3.1, we see that d(yn, Tyn), d(zn, TYn), d(zn,Yn), d(zn, Tzy) and
d(Txn,Tyy,) are all smaller than C'. Since C' < 7/2, by Lemma 2.3, we have

d(wn—i-ly anTxn S2) (1 - an)zn) < d(xn—f—la anTyn S2) (1 - an)zn)
+ d(anTyn @ (1 —ap)zn, e, ® (1 — ozn)zn)

sin(l — a,)C sin v, C
< - .~ ny ~n . T 7 T n
- sin C' Ay, 2n) + sin C' d(Tn; Tyn)
(1 —ap)C anC
< ~ 7
- sin C' Ay, 2n) + sin C’d(xn’ n)
(1 —ap)BnC a,C
. < - —_— .
(3 5) > sin C d(xna Txn) + sinC’d(xn’ yn)
From (3.4) and (3.5), we have
20, C 2(1 - an)ﬁnc
< 14— Txy,).
d(T.Z'n+1, xn-‘rl) > sinC d(xna Z/n) + < + SinC )d(l’n, T )
Multiplying by (1 — av,), we then obtain
200, (1 — ap)C
(1 - an>d(Txn+17 xn—i—l) S (smC)d@”’ yn)
2(1 — ay,)%3,C
Adding up (3.3) and (3.6) yields
4o, (1 — ) C
d(T55n+17 anrl) < ¥d($ny yn)

sinC

26,C [ 2
+ <1 + 20,7V, + s C (an +(1—ay) ))d(xn,Txn).
Noting d(l‘na yn) < d(l‘n, zn) + d(zna yn) < (ﬁn + ’Vn)d(xna Tl‘n)» we thus obtain

4oy (1 — ap)C
sin C'

+ (1 + 20, +

(ﬁn + 'Vn)d(xm T$n)

2,C
siﬂnc (ai +(1- an)Q))d(a:n,Twn)

4(1 — an)C) n 26,C
sin C' sin C'
This completes the proof. Il

d(Txpi1,2n41) <

= (1 + anYn (2 + )d(xn, Txy).

Lemma 3.3. Let (X,d) be a complete CAT(1) space and let T : X — X be a
nonexpansive mapping such that F(T) # 0. Let {x,} be generated by (1.3) for
xo € X such that d(xzg, F(T)) < w/4. Suppose that {a,}, {Bn} and {y.} satisfy
that (i) > 02 g om(l—ay) = 00, (it) Y 07§ anyn < 00 and (111) Y > 4 fn < 00. Then
lim,, o0 d(zp, Txy) = 0.

Proof. Using conditions (ii), (iii) and Lemma 3.2, we get that lim,, o d(zy, Tzy)
exists by Lemma 2.10. Let p be a unique point in F(T') such that d(zg,p) =
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d(xo, F(T)). Note that, by Lemma 3.1, d(yn,p) < d(zn,p) < d(zy,p) < w/4 for all
n > 0. So, from Lemma 2.4, there exists M > 0 such that

M
d2(xn+1,p) < andQ(Tyn,p) + (1 - an)d2(ynap) - 70571(1 - an)dz(Tynayn)

2
M

S dz(yrup) - ?an(l - an)dQ(Tyna yn>
M

< d(anp) = Son(l = an)d*(Tyn, yn).

This gives
[e.e]
Zan(l — ) d* (T, yn) < 0.
n=0

We see that, by condition (ii),

Z an(l - an)(d2(Tynv yn) + 'Yn) < Z (an(l - an)d2(Tynv yn) + an’}/n) < 0.
n=0 n=0

So, by condition (i), we have

lim inf (dQ(Tyn,yn) + ) = 0.

n—oo

Then there exists a subsequence {ny} of {n} such that
lim d(Tynkaynk) =0
k—o00
and limy_,c n,, = 0. So we obtain
d(Tl‘nk,:an) < d(T-Tnk,Tynk) + d(Tynkaynk) + d(ynkaxnk)
which implies that d(zy,,T2,,) — 0 as k — oo. Therefore, by Lemma 2.10, we
conclude that lim,, oo d(xp, Tzy) = 0. O

We are now ready to prove our main result.

Theorem 3.4. Let (X,d) be a complete CAT(k) space and let T : X — X be
a nonexpansive mapping such that F(T) # 0. Let {x,} be generated by (1.3) for
xo € X such that d(xo, F(T)) < Dy/4. Suppose that {an}, {Bn} and {y,} satisfy
that (i) Y07 g on(1—ay) = 00, (ii) > 07 g anyn < 00 and (i) Y2 B < 00. Then
{xn} A-converges to a fized point of T.

Proof. Without loss of generality, we assume that k = 1. Put Fy := F(T)N By a(0)-
Let g € Fy. Since d(Txo,q) < d(zg,q) and since the open ball in X with center ¢
and radius less than 7/2 is convex, we have
d(20,q) = d(v0Tzo ® (1 — y0)z0,q) < d(z0,q).
Since d(T'zp,q) < d(z0,q), we also have
d(yo, q) = d(BoTz0 ® (1 — Bo)z0,q) < d(20,9) < d(z0,q).

So we have
d(21,q) = d(cTyo & (1 — ao)yo, q) < d(zo,q).
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By mathematical induction, we can show that

d<xn+17Q) < d(xfu q) < d(.’IJo, q)

for all n > 0. Hence {z,} is a Fejér monotone sequence with respect to Fj.
In particular, choose p € F(T') such that d(zg,p) < 7/4. Then p € Fy and

(3.7) d(xnt1,p) < d(zn,p) < d(zo,p) < /4.

This shows that r({z,}) < m/4. Thus, by Lemma 2.9, we will show that any A-
cluster point of {z,} belongs to Fy. Let x € X be a A-cluster point of {x,}. Then
there exists a subsequence {z,, } of {z,} which A-converges to x. Using (3.7) we
have

r(p,{zn,}) < r(zo,p) < m/4.
Using Lemma 2.7, it follows that

d(l’, $0) < d(-ﬁU,p) + d(x()vp)
lim inf d(x,, , p) + d(z0,p)
k—o0
< /2.
This implies that x € By /5(z0). Using Lemma 3.3, we get that

IN

limsupd(Tx, zn,) < limsupd(Tz,Txy,)+ limsupd(Tzy,, , Tn,)

k—o0 k—o00 k—o00

< limsupd(x,zy,),
k—o0

which yields that Ta € A({zy,}) and Tz = z. Hence = € Fy. We thus complete
the proof. O

If v, = 0 for all n > 0, then we get a convergence result of a new two-step
iteration process in CAT (k) spaces.

Corollary 3.5. Let (X,d) be a complete CAT (k) space and let T : X — X be a
nonezpansive mapping such that F(T) # 0. For zo € X such that d(xo, F(T)) <
Dk /4. Let {x,} be generated by

Un = BuTxn® (1 - /Bn)xna
(3.8) Tnt1 = Tyn® (1 —an)yn, n>0.

Suppose that {co,} and {B,} satisfy that (i) > ;" o an(1—ay,) = 00 and (ii) Y o2 Bn <
0o. Then {x,} A-converges to a fized point of T

Remark 3.6. We point out that the iteration process (3.8) is different from Ishikawa
iteration process (1.2) studied by Jun [9]. So it is new in CAT (k) spaces.

If B, = v, = 0 for all n > 0, then we obtain Theorem 3.1 of He et al. [8].

Corollary 3.7 ([8]). Let (X,d) be a complete CAT(k) space and let T : X — X
be a nonexpansive mapping such that F(T) # (. Let {x,} be generated by (1.3) for
zo € X such that d(zo, F(T)) < Di /4. If {aw} satisfies that Y o2 o an(1—am) = o0,
then {x,} A-converges to a fixed point of T.

Remark 3.8. In the case k = 0, our results also hold in complete CAT(0) spaces.
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