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GENERALIZED CARISTI FIXED POINT RESULTS IN PARTIAL
METRIC SPACES

TARIK ALSIARY AND ABDUL LATIF

ABSTRACT. In this paper, we prove Caristi type fixed point results for multi-
valued maps in the setting of partial metric spaces. Our results improve and
generalize a number of known fixed point results.

1. INTRODUCTION

A number of extensions of the Banach contraction principle have appeared in
the literature. One of its most important extensions is known as Caristi’s fixed
point theorem. It is well-known that Caristi’s fixed point theorem is equivalent to
Ekland variational principle [5], which is nowadays an important tool in nonlinear
analysis. Many authors have studied and generalized Caristi’s fixed point theorem
to various directions. For example, see [3, 8,9, 10, 14, 16] and others. The existence
of fixed point for multivalued contractions was first studied by Nadler [13], in which
he established a multivalued version of the Banach contraction principle. While,
in [6] Jachymski proved that Nadler’s fixed point theorem yield from the Caristi’s
fixed point theorem.

In 1992, Matthews [11] introduced a notion of partial metric space which is a gen-
eralization of the usual metric spaces. Among others results, he proved the Banach
contraction principle for partial metric spaces. In fact, it is widely recognized that
partial metric spaces play an important role in constructing models in the theory
of computation. In the setting of partial metric spaces, an existence of fixed points
for various single-valued maps have been studied by many authors. Among others,
Karapinar [7] generalized Caristi fixed point theorem on partial metric spaces for
single-valued maps. While Acar-Altum [1, 2|, studied Bae and Suzuki type gen-
eralizations of Caristi fixed point theorem for partial metric space. In this paper,
we prove some results on the existence of fixed points for multivalued Caristi type
maps in the setting of partial metric spaces. Our results improve and extend the
corresponding known fixed point results.

2. PRELIMINARIES

Let X be a metric space with metric d. We use 2% to denote the collection of all
nonempty subsets of X. A point z € X is called a fixed point of amap f: X — X
(T:X —2%)ifx = f(z) (x € T(x)).
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In 1976, Caristi [4] obtained the following fixed point theorem on complete metric
spaces, known as Caristi’s fixed point theorem.

Theorem 2.1. Let X be a complete metric space with metric d. Let p: X — RT
be a lower semicontinuous function and let f : X — X be a single valued map such
that for any r € X

(2.1) d(z, f(z)) < p(z) — p(f(z)).
Then f has a fized point.

Among others, Bae [3] and Suzuki [16], also studied some Caristi’s fixed point
theorem.

A partial metric on nonempty set X is a function p : X x X — Rt (non-negative
real numbers) such that for all z,y,z € X :
(a) p(z,y) = p(y,x)
) if p(z,z) = p(x,y) = p(y,y) then z =y
c) p(z,z) < p(z,y)
d) p(z,z) + p(y,y) < p(z,y) + p(y; 2).

The set X with partial metric p is called partial metric space ( in short, PMS ) and
is denoted by (X, p). Note that if p(z,y) = 0 then it follows from (a) and (b) that
x =y. But, if x = y then p(x,y) may be not 0.

Let X = R, define p(z,y) = max{x,y} for all z,y € X. Then (X,p) is a
PMS . Let X be the collection of all closed bounded intervals of reals. Define
p(la, b, [c,d]) = max{b,d} — min{a,c}. Then (X,p) is a PMS. Further, interest-
ing examples of PMS can be formed in [11].

Each partial metric p on X generates a Ty topology 7, on X which has as a base
of the family of open p-balls By(z,e) = {y € X : p(x,y) < p(z,z)+¢} for all z € X
and € > 0.

If p is a partial metric on X, then the function p® : X x X — R defined by

is a metric on X.

A sequence {z,} in a PMS (X,p) converges to a point x € X if and only if
p(x,z)= li_)rn p(z,zy). A sequence {x,} in a PMS (X, p) is called a Cauchy sequence
n—oo

if lim p(z,,xm,) < oo . A PMS (X,p) is said to be complete if every Cauchy

n,Mm—00
sequence {z,} in X converges to a point z € X with respect to 7, such that

p(x,x) = . }riflloop(x”’ T).

Lemma 2.2 ([1, 7, 12]). Let (X,p) be a PMS.
(i) A sequence {xy} is a Cauchy sequence in (X, p) if and only if it is a Cauchy
sequence in the metric space (X, p®).
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(il) A PMS (X,p) is complete if and only if (X,p®) is complete. Further-

more, lim p*(zn,z) = 0  if and only if p(x,z) = lim p(z,,z) =
lim  p(n, Tm).
n,m—00

Romaguera [15] proposed the following two alternatives to give an appropriate
notion of a Caristi mapping in partial metric spaces.

(i) A self mapping f of a partial metric space (X, p) is called a p-Caristi mapping
on X if there is a function p : X — RT which is lower semicontinuous for (X, p)
and satisfies

(2.2) p(x, fx) < p(x) — p(fz)
for all z € X.

(ii) A self mapping f of a partial metric space (X, p) is called a p*-Caristi mapping
on X if there is a function y : X — R* which is lower semicontinuous for (X, p®)
and satisfies (2.1).

A sequence {z,} in a PMS (X, p) is called 0-Cauchy if 1111)1 p(xp, Tpy) = 0 and
n,M—00

(X,p) is called 0-complete if every 0-Cauchy sequence in X converges to a point
z € X with respect to 7, such that p(z,z) = 0. It is clear that every complete
PMS is 0-complete. Romaguera [15] proved that a partial metric space (X,p) is
0-complete if and only if every p®-Caristi mapping f on X has a fixed point.

Note that, the identity mapping on X is neither p-Caristi nor p*-Caristi mapping,
although it is a Caristi mapping for metric space. In [1], a new notation of Caristi
mapping has been introduced as follows.

A self mapping f of a partial metric space (X, p) is called a Caristi mapping on
X if there is a function p : X — RT which is a lower semicontinuous function for
(X, p®) and satisfies p(z, fx) < p(x,z) + p(z) — p(fz) for all x € X. The following
theorem characterizes the completeness of partial metric spaces.

Theorem 2.3 ([1]). A partial metric space (X,p) is complete if and only if every
Caristi mapping on X has a fixed point.

3. MAIN RESULTS
We prove multivalued version of the Caristi result in the setting of PMS.

Theorem 3.1. Let (X,p) be a complete PMS, p: X — R be a lower semicontin-
uous function for (X,p®) such that for each x,y € X,

(3.1) p(z,2)=p(z,y) implies pu(y) < p(x)
and let n: X — RT be a function satisfying

(3.2) sup {n(m) creX, px) < Zlg)f{,u(z) +k} < 00
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for some k > 0. Let T : X — 2% be a multivalued map such that for each x € X
there exists u, € T(x) satisfying

(3.3) p(@,uz) < p(,x)+n(x){u(@) —pu)}.
Then T has a fixed point in X.
Proof. Define a function f: X — X by f(z) = u, € T(z) C X. Note that for each

z € X we have
p(z, f(2) <p(z,2) +n(x){p(x) —n(fl@)}
Now, if n () > 0, then it follows that,

p(f(z) < p(x).

If n(xz) =0, then p(x, f(z)) < p(z,x), but by the definition of PMS, it follows
that p (z,z) < p(z, f(x)), so we get p (z,z) = p(z, f(x)). Due to hypotheses (3.2),
it follows that

(3-4) u(f (@) < plz).

Put

S={zxeX : pux)<inf u(z)+k}, B=supn(z)<oc.
zeX z€S

Note that S is nonempty set. Since (X, p) is complete, by Lemma 2.2 (X, p®) is
complete. By the lower semicontinuity of u, it follows that S is closed subset of
(X,p®) and thus (X,p®) is complete. Due to Lemma 2.2 (S,p) is complete PMS.
Now we show that S is invariant under mapping f. Let a € S, and f (a) = b € T'(a),
then we get

p(f(a)) < pla) < inf u(z) +k,

which implies f (a) €5, and thus f(S) C S. Define ¢ (x) = Su(z) forallz e S.
Note that ¢ is lower semicontinuous in ( S, p*). Also,

p(z, f(z) <p(z,2)+ Bu(z) — Bu(f (2)).
So
p(, f(z) <p(z,2)+e@) - of ()

Thus, f is a Caristi mapping on S. So, by Theorem 2.3 there exists xg € S such
that zg = f (CC()) € T(.’Eo) ]

Remark 3.2. If we consider p is an ordinary metric, then Theorem 3.1 reduces to
Theorem 2 of Suzuki [15], which a generalization of the Caristi fixed theorem.

In the sequel, we assume X is complete PMS with partial metric p and p: X —
RT is a lower semicontinuous function satisfying

p(z,x) =p(x,y) implies p(y) < p(x).

Now, applying Theorem 3.1, we prove the following results.
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Theorem 3.3. Let T : X — 2% be a multivalued map such that for each v € X
there exists u, € T(x) satisfying

p(2,ug) <p(2,2) + max{y (u(2)), 9 (1 (ue)) Hu (@) = p (ua)},

where ¢ : RT™ — RT is an upper semicontinuous function. Then T has a fized point
in X.

Proof. Put ty = in)f( w(xz). By the definition 1, there exists some positive real
xe

numbers r,ry such that (t) < ro for all ¢t € [ty,to + r]. Now, for all x € X, we
define

g (x) = max{¢ (u (2)) , ¢ (p (uz))}-

Clearly, g maps from X into R*. We note that p (u,) < p(z) for all z € X. Thus for
any ¢ € X with p(x) < tg+r, we have p (uy) < to+7r. Now, clearly g (z) < 7o < 00
and hence we obtain

sup{g(x): x € X, ,u(x)ﬁin}f(,u(z)—i—r}<oo for some r > 0.
z€

Thus, for any = € X, there exists u, € T'(x) such that

p(z,uz) < p(z,2) +g(x){n(x) — p(u)}
By Theorem 3.1, there exists xg € X such that xg € T'(zo). O

Theorem 3.4. Let T : X — 2% be a multivalued map such that for each x € X
there exists u, € T'(x) satisfying

p (2, ug) <p(2,) + ¢ (p (@) {p (@) — p(ua)},

where 1 : RT — R is nondecreasing function. Then T has a fized point in X.

Proof. For each x € X, define g(z) = ¢ (u(x)). Clearly g : X — R*T. Since the
function v is nondecreasing, for any real number r > 0 we have

sup{g<x>: re X, u(o) szig(u(zm} < (inf () +7) < oo

for some r > 0. Thus, by Theorem 3.1, the result follows. O

Theorem 3.5. Let T : X — 2% be a multivalued map such that for each x € X
there exists u, € T(x) satisfying

p(@,uz) < plz,2) + 9 (p(us)) {n(2) — p(ua)},
where 1 : RT — R is nondecreasing function. Then T has a fized point in X.

Proof. Since for each x € X, there exists u, € T'(x) such that pu(ug) < p(z). Since
the function 1 is nondecreasing, we have

Y (p(uz) <P (p()).
Thus the result follows from Theorem 3.4. O
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Theorem 3.6. Let T : X — 2% be a multivalued map such that for each z € X
there exists u, € T(x) satisfying p (z,uy) < p(x) for allx € X and

p(z,us) < p(z,2) + ¢ (p2,ue) {n(z) — p(ua)},

where 1 : RT — R™ be an upper semicontinuous function. Then T has a fized point
m X.

Proof. Define a function 7 (z) = ¢ (p (z,us)), where 7 : X — RT. For z € X with
w(z) < inf p(z) + 1, we have

zeX
sup{¢(t) : 0 <t < p(, uqz)}

sup{e) (1) : 0 < ¢ < pu(2)}
sup{¢ (t) : 0 <t < z1ela)f(,u (z) + 1}

7 (x)

INIA A

Hence

sup{zp(t):xeX,u(x)Sig)f{u(z)—i—l} §max{1b(t):0§t§ziél)f(u(z)+1}
< 00,

because v is upper semicontinuous. So, by Theorem 3.1, we obtain the desired
result. O

The following example shows that the condition (3.1) used in all our results, is
natural.

Example 3.1. Let X = R™". Define p: X x X — R by
p(z,y) = max{z,y}, forall z,ye€ X.

Then, (X,p) is a partial metric space, see; [1]. Define u : X — R by u(z) = 2.
Then, the condition (3.1) holds, that is; p(x,z) = p(z,y) implies u(y) < p(z).

Now we give an example in support of our main Theorem 3.1 .

Example 3.2. Let (X,p) be a PMS as in Example 3.1. Define non-negative real
valued functions p and n on X by

1
= 9z, =— forall m,ycX.
p@) =22, @)= — forall ay

Then, clearly the conditions (3.1) and (3.2) are satisfied. Define a multivalued map
T : X — 2% by T(x) = [0,2). Then, T satisfies the condition (3.3) (e.g, take
uz = 5). Thus, all the conditions of Theorem 3.1 are satisfied, it guarantees the
existence of fixed point of T'. Note that x = 0 is the required fixed point.
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