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In 1976, Caristi [4] obtained the following fixed point theorem on complete metric
spaces, known as Caristi’s fixed point theorem.

Theorem 2.1. Let X be a complete metric space with metric d. Let µ : X → R+

be a lower semicontinuous function and let f : X → X be a single valued map such
that for any x ∈ X

(2.1) d(x, f(x)) ≤ µ(x) − µ(f(x)).

Then f has a fixed point.

Among others, Bae [3] and Suzuki [16], also studied some Caristi’s fixed point
theorem.

A partial metric on nonempty set X is a function p : X×X → R+ (non-negative
real numbers) such that for all x, y, z ∈ X :

(a) p(x, y) = p(y, x)
(b) if p(x, x) = p(x, y) = p(y, y) then x = y
(c) p(x, x) ≤ p(x, y)
(d) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z).

The set X with partial metric p is called partial metric space ( in short, PMS ) and
is denoted by (X, p). Note that if p(x, y) = 0 then it follows from (a) and (b) that
x = y. But, if x = y then p(x, y) may be not 0.

Let X = R+, define p(x, y) = max{x, y} for all x, y ∈ X. Then (X, p) is a
PMS . Let X be the collection of all closed bounded intervals of reals. Define
p([a, b], [c, d]) = max{b, d} − min{a, c}. Then (X, p) is a PMS. Further, interest-
ing examples of PMS can be formed in [11].

Each partial metric p on X generates a T0 topology τp on X which has as a base
of the family of open p-balls Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x)+ ε} for all x ∈ X
and ε > 0.

If p is a partial metric on X, then the function ps : X ×X → R+ defined by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.

A sequence {xn} in a PMS (X, p) converges to a point x ∈ X if and only if
p(x, x)= lim

n→∞
p(x, xn). A sequence {xn} in a PMS (X, p) is called a Cauchy sequence

if lim
n,m→∞

p(xn, xm) < ∞ . A PMS (X, p) is said to be complete if every Cauchy

sequence {xn} in X converges to a point x ∈ X with respect to τp such that
p(x, x) = lim

n,m→∞
p(xn, xm).

Lemma 2.2 ([1, 7, 12]). Let (X, p) be a PMS.

(i) A sequence {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy
sequence in the metric space (X, ps).
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(ii) A PMS (X, p) is complete if and only if (X, ps) is complete. Further-
more, lim

n→∞
ps(xn, x) = 0 if and only if p(x, x) = lim

n→∞
p(xn, x) =

lim
n,m→∞

p(xn, xm).

Romaguera [15] proposed the following two alternatives to give an appropriate
notion of a Caristi mapping in partial metric spaces.

(i) A self mapping f of a partial metric space (X, p) is called a p-Caristi mapping
on X if there is a function µ : X → R+ which is lower semicontinuous for (X, p)
and satisfies

(2.2) p(x, fx) ≤ µ(x)− µ(fx)

for all x ∈ X.

(ii) A self mapping f of a partial metric space (X, p) is called a ps-Caristi mapping
on X if there is a function µ : X → R+ which is lower semicontinuous for (X, ps)
and satisfies (2.1).

A sequence {xn} in a PMS (X, p) is called 0-Cauchy if lim
n,m→∞

p(xn, xm) = 0 and

(X, p) is called 0-complete if every 0-Cauchy sequence in X converges to a point
z ∈ X with respect to τp, such that p(z, z) = 0. It is clear that every complete
PMS is 0-complete. Romaguera [15] proved that a partial metric space (X, p) is
0-complete if and only if every ps-Caristi mapping f on X has a fixed point.

Note that, the identity mapping on X is neither p-Caristi nor ps-Caristi mapping,
although it is a Caristi mapping for metric space. In [1], a new notation of Caristi
mapping has been introduced as follows.

A self mapping f of a partial metric space (X, p) is called a Caristi mapping on
X if there is a function µ : X → R+ which is a lower semicontinuous function for
(X, ps) and satisfies p(x, fx) ≤ p(x, x) + µ(x)− µ(fx) for all x ∈ X. The following
theorem characterizes the completeness of partial metric spaces.

Theorem 2.3 ([1]). A partial metric space (X, p) is complete if and only if every
Caristi mapping on X has a fixed point.

3. Main results

We prove multivalued version of the Caristi result in the setting of PMS.

Theorem 3.1. Let (X, p) be a complete PMS, µ : X → R+ be a lower semicontin-
uous function for (X, ps) such that for each x, y ∈ X,

(3.1) p (x, x) = p (x, y) implies µ(y) ≤ µ(x)

and let η : X → R+ be a function satisfying

(3.2) sup

{
η (x) : x ∈ X, µ (x) ≤ inf

z∈X
µ (z) + k

}
<∞
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for some k > 0. Let T : X → 2X be a multivalued map such that for each x ∈ X
there exists ux ∈ T (x) satisfying

(3.3) p (x, ux) ≤ p (x, x) + η (x) {µ (x)− µ (ux)}.

Then T has a fixed point in X.

Proof. Define a function f : X → X by f (x) = ux ∈ T (x) ⊆ X. Note that for each
x ∈ X we have

p (x, f(x)) ≤ p (x, x) + η (x) {µ (x)− µ (f(x))}.

Now, if η (x) > 0, then it follows that,

µ (f(x)) ≤ µ (x) .

If η (x) = 0, then p (x, f(x)) ≤ p (x, x), but by the definition of PMS, it follows
that p (x, x) ≤ p (x, f(x)), so we get p (x, x) = p (x, f(x)). Due to hypotheses (3.2),
it follows that

(3.4) µ(f(x)) ≤ µ(x).

Put

S = {x ∈ X : µ (x) ≤ inf
z∈X

µ (z) + k}, β = sup
z∈S

η (z) <∞.

Note that S is nonempty set. Since (X, p) is complete, by Lemma 2.2 (X, ps) is
complete. By the lower semicontinuity of µ, it follows that S is closed subset of
(X, ps) and thus (X, ps) is complete. Due to Lemma 2.2 (S, p) is complete PMS.
Now we show that S is invariant under mapping f . Let a ∈ S, and f (a) = b ∈ T (a),
then we get

µ (f(a)) ≤ µ (a) ≤ inf
z∈X

µ (z) + k,

which implies f (a) ∈ S, and thus f(S) ⊆ S. Define φ (x) = βµ (x) for all x ∈ S.
Note that φ is lower semicontinuous in ( S, ps). Also,

p (x, f (x)) ≤ p (x, x) + βµ (x)− βµ(f (x)).

So

p (x, f (x)) ≤ p (x, x) + φ (x)− φ(f (x)).

Thus, f is a Caristi mapping on S. So, by Theorem 2.3 there exists x0 ∈ S such
that x0 = f (x0) ∈ T (x0). �

Remark 3.2. If we consider p is an ordinary metric, then Theorem 3.1 reduces to
Theorem 2 of Suzuki [15], which a generalization of the Caristi fixed theorem.

In the sequel, we assume X is complete PMS with partial metric p and µ : X →
R+ is a lower semicontinuous function satisfying

p (x, x) = p (x, y) implies µ(y) ≤ µ(x).

Now, applying Theorem 3.1, we prove the following results.
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Theorem 3.3. Let T : X → 2X be a multivalued map such that for each x ∈ X
there exists ux ∈ T (x) satisfying

p (x, ux) ≤ p (x, x) + max{ψ (µ (x)) , ψ (µ (ux))}{µ (x)− µ (ux)},

where ψ : R+ → R+ is an upper semicontinuous function. Then T has a fixed point
in X.

Proof. Put t0 = inf
x∈X

µ(x). By the definition ψ, there exists some positive real

numbers r, r0 such that ψ(t) ≤ r0 for all t ∈ [t0, t0 + r]. Now, for all x ∈ X, we
define

g (x)= max{ψ (µ (x)) , ψ (µ (ux))}.

Clearly, g maps from X into R+. We note that µ (ux) ≤ µ (x) for all x ∈ X. Thus for
any x ∈ X with µ (x) ≤ t0+r, we have µ (ux) ≤ t0+r. Now, clearly g (x) ≤ r0 <∞
and hence we obtain

sup

{
g (x) : x ∈ X, µ (x) ≤ inf

z∈X
µ (z) + r

}
<∞ for some r > 0.

Thus, for any x ∈ X, there exists ux ∈ T (x) such that

p (x, ux) ≤ p (x, x) + g(x){µ (x)− µ (ux)}.

By Theorem 3.1, there exists x0 ∈ X such that x0 ∈ T (x0). �

Theorem 3.4. Let T : X → 2X be a multivalued map such that for each x ∈ X
there exists ux ∈ T (x) satisfying

p (x, ux) ≤ p (x, x) + ψ (µ (x)) {µ (x)− µ (ux)},

where ψ : R+ → R+ is nondecreasing function. Then T has a fixed point in X.

Proof. For each x ∈ X, define g (x) = ψ (µ (x)). Clearly g : X → R+. Since the
function ψ is nondecreasing, for any real number r > 0 we have

sup

{
g (x) : x ∈ X, µ (x) ≤ inf

z∈X
µ (z) + r

}
≤ ψ( inf

z∈X
µ (x) + r) <∞

for some r > 0. Thus, by Theorem 3.1, the result follows. �

Theorem 3.5. Let T : X → 2X be a multivalued map such that for each x ∈ X
there exists ux ∈ T (x) satisfying

p (x, ux) ≤ p (x, x) + ψ (µ (ux)) {µ (x)− µ (ux)},

where ψ : R+ → R+ is nondecreasing function. Then T has a fixed point in X.

Proof. Since for each x ∈ X, there exists ux ∈ T (x) such that µ(ux) ≤ µ(x). Since
the function ψ is nondecreasing, we have

ψ (µ (ux)) ≤ ψ (µ (x)) .

Thus the result follows from Theorem 3.4. �
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Theorem 3.6. Let T : X → 2X be a multivalued map such that for each x ∈ X
there exists ux ∈ T (x) satisfying p (x, ux) ≤ µ (x) for all x ∈ X and

p (x, ux) ≤ p (x, x) + ψ (p (x, ux)) {µ (x)− µ (ux)},

where ψ : R+ → R+ be an upper semicontinuous function. Then T has a fixed point
in X.

Proof. Define a function τ (x) = ψ (p (x, ux)), where τ : X → R+. For x ∈ X with
µ (x) ≤ inf

z∈X
µ (z) + 1, we have

τ (x) ≤ sup{ψ (t) : 0 ≤ t ≤ p (x, ux)}
≤ sup{ψ (t) : 0 ≤ t ≤ µ (x)}
≤ sup{ψ (t) : 0 ≤ t ≤ inf

z∈X
µ (z) + 1}.

Hence

sup

{
ψ (t) : x ∈ X,µ (x) ≤ inf

z∈X
µ (z) + 1

}
≤ max

{
ψ (t) : 0 ≤ t ≤ inf

z∈X
µ (z) + 1

}
<∞,

because ψ is upper semicontinuous. So, by Theorem 3.1, we obtain the desired
result. �

The following example shows that the condition (3.1) used in all our results, is
natural.

Example 3.1. Let X = R+. Define p : X ×X → R+ by

p(x, y) = max{x, y}, for all x, y ∈ X.

Then, (X, p) is a partial metric space, see; [1]. Define µ : X → R+ by µ(x) = 2x.
Then, the condition (3.1) holds, that is; p(x, x) = p(x, y) implies µ(y) ≤ µ(x).

Now we give an example in support of our main Theorem 3.1 .

Example 3.2. Let (X, p) be a PMS as in Example 3.1. Define non-negative real
valued functions µ and η on X by

µ(x) = 2x, η(x) =
1

1 + x
for all x, y ∈ X.

Then, clearly the conditions (3.1) and (3.2) are satisfied. Define a multivalued map
T : X → 2X by T (x) = [0, x). Then, T satisfies the condition (3.3) (e.g, take
ux = x

2 ). Thus, all the conditions of Theorem 3.1 are satisfied, it guarantees the
existence of fixed point of T . Note that x = 0 is the required fixed point.
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