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fixed point property if each weak∗ compact convex subset of E has the fixed point
property.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S, the mappings s→ as and s→ sa from S into S
are continuous. S is called left reversible if aS ∩ bS ̸= ∅ for any a, b ∈ S, where, in
general, K denotes the closure of the set K. Clearly abelian semigroups and groups
are left reversible. Let CB(S) be the C∗-algebra of bounded continuous complex-
valued functions on S and for a ∈ S, let ℓa be the left translation operator on CB(S)
be defined by (ℓaf)(t) = f(at) for all f ∈ CB(S) and for all t ∈ S. Then S is left
amenable if there is an m ∈ CB(S)∗ such that ∥m∥ = m(1) = 1 and m(ℓaf) = m(f)
for all f ∈ CB(S) and a ∈ S. If the topology on S is normal and S is left amenable,
then S is left reversible. In particular, if S is left amenable as a discrete semigroup ,
then S is left reversible. Left reversible semigroups have played an important role in
the study of common fixed point theorems and ergodic type theorems for semigroups
of nonexpansive mappings (see [9], [10], [13], [25], [31], [32], [38], [39], [41], [44], [47]).

Let S be a semitopological semigroup, and K be a topological space. An action
of S on K is a map ψ from S × K to K, denoted by ψ(s, k) = sk, s ∈ S,
k ∈ K, such that s1s2(k) = s1(s2k), for all s1, s2 ∈ S, and k ∈ K. The action is
separately continuous if ψ is continuous in each of the variables when the other
is kept fixed. Lau showed in [29, Corollary 3.3] that if E is a Banach space and
S = {Ts : s ∈ S} is a separately continuous representation of a left reversible
semitopological semigroup S as nonexpansive self-maps on a compact convex subset
K of E, then K contains a common fixed point for S.We say a Banach space E has
the weak fixed point property for left reversible semigroups if whenever S is a left
reversible semitopological semigroup and K is a nonempty weakly compact convex
subset of E for which the action of S on K (with the norm topology) is separately
continuous and nonexpansive, then K has a common fixed point for S. Similarly a
dual Banach space E has the weak∗ fixed point property for left reversible semigroups
if whenever S is a left reversible semitopological semigroup and K is a nonempty
weak∗ compact convex subset of E for which the action of S on K is separately
continuous and nonexpansive, then K has a common fixed point for S. In general,
a weakly compact convex set of a Banach space need not have the fixed point
property for left reversible semigroups, not even commutative semigroups. Indeed,
Alspach [1] (see also [9, Theorem 4.2], [10], [13]) showed there is a weakly compact
convex subset K in L1[0, 1] and an isometry T : K → K without a fixed point.
Hence if S = (N,+) and S = {Tn : n ∈ N}, then K does not have a common fixed
point for S. However, Bruck showed in [5] that a Banach space E having the weak
fixed point property has the weak fixed point property for commutative semigroups,
and Lim showed in [43] that a Banach space with weak normal structure has the
weak fixed point property for left reversible semigroups. For dual Banach spaces, it
is known (see [43], [44]) that ℓ1 and any uniformly convex Banach space have the
weak∗ fixed point property for left reversible semigroups.

Let K be a bounded closed convex subset of a Banach space E. A point x in K
is called a diametral point if

sup{∥x− y∥ : y ∈ K} = diam (K),
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where diam (K) denotes the diameter of K. The set K is said to have normal
structure if every nontrivial (i.e., contains at least two points) convex subset H of
K contains a non-diametral point of H (see [20] and [27]).

A Banach space E has weak normal structure if every nontrivial weakly compact
convex subset of E has normal structure. A dual Banach space E has weak∗ normal
structure if every nontrivial weak∗ compact convex subset of E has normal structure.

Kirk [27] proved that if E has the weak normal structure, then E has the weak
fixed point property.

A Banach space E is said to have property UKK (uniformly Kadec-Klee property)
if for any ε > 0 there is a 0 < δ < 1 such that whenever (xn) is a sequence in the
unit ball of E converging weakly to x and satisfying sep

(
(xn)

)
≡ inf {∥xn − xm∥ :

n ̸= m} > ε, then ∥x∥ ≤ δ. A dual Banach space E is said to have property UKK∗

(weak∗ uniformly Kadec-Klee property) if for any ε > 0 there is a 0 < δ < 1 such
that whenever A is a subset of the closed unit ball of E containing a sequence (xn)
with sep

(
(xn)

)
> ε, then there is an x in the weak∗ closure of A such that ∥x∥ ≤ δ.

The property UKK∗ was introduced by van Dulst and Sims [14]. They proved that
if E has property UKK∗, then E has weak∗ normal structure and hence has the
weak∗ fixed point property.

The following types of Kadec-Klee properties satisfied by a norm will be consid-
ered.

(a) A Banach space E is said to have the Kadec-Klee property (KK) if whenever
(xn) is a sequence in the unit ball of E that converges weakly to x, and
sep

(
(xn)

)
> 0, where

sep
(
(xn)

)
≡ inf {∥xn − xm∥ : n ̸= m},

then ∥x∥ < 1. This property, given in different form, is known as property
(H) in Day [8], property (A) in [7]. The definition as given above is due to
Huff [26].

(b) A Banach space E is said to have the uniformly Kadec-Klee property (UKK)
if for every ε > 0 there is a 0 < δ < 1 such that whenever (xn) is a sequence
in the unit ball of E converging weakly to x and sep

(
(xn)

)
> ε then ∥x∥ ≤ δ.

This property was introduced by Huff [26], who showed that property UKK
is strictly stronger than property KK. Van Dulst and Sims showed that a
Banach space with property UKK has property FPP [14].

Corresponding to each of the above properties there is a stronger property defined
by replacing the sequence in the above definitions by a net. We call these properties
the strong Kadec-Klee property (SKK) and the strong uniformly Kadec-Klee property
(SUKK). For dual Banach spaces we have the corresponding properties involving
the weak∗ topology, which we denote by KK∗, SKK∗, UKK∗ and SUKK∗. First,
properties KK∗ and SKK∗ are defined by replacing weak convergence by weak∗

convergence in the definition of properties KK and SKK, respectively. It is known
that a dual space which is locally uniformly convex has property SKK∗ and that a
space with property SKK∗ has the Radon-Nikodym property.

It is natural to define a property similar to UKK by replacing the weak conver-
gence by weak∗ convergence in UKK and calling it UKK∗. However, van Dulst and
Sims [14] found the following definition is more useful.
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(c) A dual Banach space E has property UKK∗ if for every ε > 0 there is
a 0 < δ < 1 such that whenever A is a subset of the closed unit ball of
E containing a sequence (xn) with sep

(
(xn)

)
> ε then there is an x in

weak∗-closure (A) such that ∥x∥ ≤ δ.

They proved that a dual Banach space with property UKK∗ has property FPP∗

[14]. Moreover, they observed that if the dual unit ball is weak∗ sequentially compact
then property UKK∗, as defined above, is equivalent to the condition obtained from
UKK by replacing weak convergence by weak∗ convergence. Finally, we define
property SUKK∗ as follows:

(d) A dual Banach space E has property SUKK∗ if for every ε > 0 there is
a 0 < δ < 1 such that whenever (xα) is a net is the unit ball of E that
converges to x in the weak∗ topology and sep

(
(xα)

)
> ε then ∥x∥ ≤ δ. It is

easy to see that property SUKK∗ implies property UKK∗.

We summarize the relationships among the various concepts in the following
diagram. We shall denote weak- (weak∗-) normal structure by w.n.s. (w∗.n.s.)
and quasi-weak- (weak∗-) normal structure by q.w.n.s. (q.w∗.n.s.).(See [35] for the
definitions.) It is understood that for some comparison to make sense we assume
that we are in a dual space.

SKK ⇐ SUKK ⇐ SUKK∗ ⇒ SKK∗ ⇒ q.w.n.s.
⇓ ⇓ ⇓ ⇓
KK ⇐ UKK ⇐ UKK∗ ⇒ KK∗

⇓ ⇓ ⇓
q.w.n.s ⇐ w.n.s. ⇐ w∗.n.s. ⇒ q.w∗.n.s. ⇒ q.w.n.s

⇓ ⇓
FPP ⇐ FPP∗

We now mention some examples which show that, generally, some of the above
implications cannot be reversed.

(1) Let X = (ℓ2⊕ℓ3⊕· · ·⊕ℓn⊕· · · )2 . Then, as noted by Huff [26], X is reflexive,
has property KK but not UKK. Moreover, we observe that (see also [7], [28]
and [49]) X is separable, and being reflexive, its unit ball is weakly (or
weak∗) metrizable. Thus in X we have SKK∗ ⇔ KK∗ ⇔ SKK ⇔ KK,
and SUKK∗ ⇔ UKK∗ ⇔ SUKK ⇔ UKK. So this same example shows
that SKK∗ or SKK does not imply SUKK or SUKK∗.

(2) Let ℓ2 be renormed according to [50]. Then, as proved by Smith and Turett
[50], ℓ2 with this new norm is reflexive and locally uniformly rotund but does
not have normal structure. Since the space is reflexive, normal structure is
equivalent to weak-normal structure as well as weak∗-normal structure. On
the other hand, since the space is locally uniformly rotund, it has property
SKK∗. Consequently we have a space that has property SKK∗ (or SKK) but
not weak∗- (or weak-) normal structure. Note also we have an example of a
space with quasi-weak∗-normal structure but not weak∗-normal structure.

Let H be a Hilbert space, and T (H) be the space of trace-class operators on
H. Lennard [42] showed that T (H) has property UKK∗. Consequently, T (H) has
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weak∗-normal structure. This answers affirmatively a question raised in [35]. See
also [21] for related results.

3. The measure algebra M(G) and other dual spaces

Let X be a locally compact Hausdorff space. Let C0(X) be the subspace of
CB(X) consisting of functions “vanishing at infinity,” and M(X) be the space of
bounded regular Borel measure on X, with the variation norm. Let Md(X) be the
subspace of M(X) consisting of the discrete measures on X. It is well known that
the dual of C0(X) can be identified with M(X), and that Md(X) is isometrically
isomorphic to ℓ1(X). See [24].

Recall that a topological space X is scattered (or dispersed) if X does not contain
any perfect subset. For more information on scattered spaces we refer the reader
to [39].

In what follows let G be a locally compact group. For f ∈ CB(G) we shall also
denote ℓxf (rxf) by xf (fx). The left orbit of f is defined by LO(f) = {xf : x ∈ G}.
Similarly we can define the right orbit RO(f) of f. We recall the definitions of the
following function spaces defined on G :

(a) LUC(G) = {f ∈ CB(G) : the map x → xf, x ∈ G, is continuous when
CB(G) has the norm topology}. This is the space of left uniformly contin-
uous functions (or the right uniformly continuous functions in the language
of [24]) on G.

(b) WAP (G) = {f ∈ CB(G) : LO(f) is relatively weakly compact in CB(G)}.
As is well known f ∈ WAP (G) if and only if RO(f) is relatively weakly
compact.

(c) AP (G) = {f ∈ CB(G) : LO(f) is relatively norm compact}. It is known
that f ∈ AP (G) if and only if RO(f) is relatively norm compact. Functions
in WAP (G)

(
AP (G)

)
are called weakly almost periodic (almost periodic).

For further information we refer the reader to [6].

Theorem 3.1. Let G be a locally compact group. Then the following statements
are equivalent.

(1) G is discrete.
(2) M(G) is isometrically isomorphic to ℓ1(G).
(3) M(G) has property SUKK∗.
(4) M(G) has property UKK∗.
(5) M(G) has property SKK∗.
(6) M(G) has property KK∗.
(7) Weak∗ convergence and weak convergence of sequences agree on the unit

sphere of M(G).
(8) M(G) has weak∗ normal structure.
(9) M(G) has weak∗-fixed point property
(10) M(G) has weak∗ fixed point property for left reversible semigroup.

Theorem 3.2. Let G be a locally compact group. Let N be a C∗-subalgebra of
WAP (G) containing C0(G) and the constants. Then the following statements are
equivalent:
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(1) G is finite.
(2) N∗ has property SUKK∗.
(3) N∗ has property SKK∗.
(4) N∗ has property UKK∗.
(5) N∗ has property KK∗.
(6) Weak∗ convergence and weak convergence for sequences agree on the unit

sphere of N∗.
(7) N∗ has weak∗-normal structure.

Remark 3.3. Let G be an infinite discrete group, and let N be the closed C∗-
subalgebra generated by C0(G) and the constants. Then N is isometrically isomor-
phic to C(∆), where ∆ is the one-point compactification of G. Since ∆ is scattered,
it follows from Theorem 3.1 that N∗ has property SUKK. However N∗ does not
have property KK∗ by Theorem 3.2. Thus SUKK does not imply KK∗.

Theorem 3.4. Let G be a locally compact group. Then

(1) Weak∗ convergence and weak convergence for sequences agree on the unit
sphere of LUC(G)∗ if and only if G is discrete.

(2) LUC(G)∗ has weak∗-normal structure if and only if G is finite.

Theorem 3.5. Let G be a locally compact group. Then AP (G)∗ has weak∗-normal
structure if and only if AP (G) is finite dimensional.

Remark 3.6. Results in this section are contained in [35], [22] and [23].
It should be noted that the implication of Theorem 3.1 (1)⇒ (4) follows from [44].

4. Fourier and Fourier-Stieltjes algebra

Let G be a locally compact group with a fixed left Haar measure λ. Let L1(G)
be the group algebra of G with convolution product.

A function ϕ : G → C is positive definite if for any x1, x2, . . . , xn ∈ G and
λ1, . . . , λn ∈ C,

n∑
i,j=1

λiλjϕ(xix
−1
j ) ≥ 0.

Denote the set of continuous positive definite functions on G by P (G), and the
set of continuous functions on G with compact support by C00(G). We define the
Fourier-Stieltjes algebra of G, denoted by B(G), to be the linear span of P (G).
Then B(G) is a Banach algebra with the norm of each ϕ ∈ B(G) defined by

∥ϕ∥ = sup
f∈L1(G),∥f∥∗≤1

∣∣∣ ∫ f(t)ϕ(t)dλ(t)
∣∣∣.

where ∥f∥∗ = sup{∥π(f)∥; where π is a *-representation of L1(G)}.
We define C∗(G), the group C∗-algebra of G, to be the completion of L1(G) with

respect to the norm
∥f∥∗ = sup ∥π(f)∥,

where the supremum is taken over all nondegenerate ∗-representations π of L1(G)
as a ∗-algebra of bounded operators on a Hilbert space. Let B

(
L2(G)

)
be the

set of all bounded operators on the Hilbert space L2(G) and ρ be the left regular
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representation of G, i.e., for each f ∈ L1(G), ρ(f) is the bounded operator in
B
(
L2(G)

)
defined by ρ(f)(h) = f ∗ h, the convolution of f and h in L2(G). Denote

by C∗
ρ(G) the completion of L1(G) with the norm ∥ρ(f)∥, f ∈ L1(G), and denote

by V N(G) the closure of {ρ(f) : f ∈ L1(G)} in the weak operator topology in
B
(
L2(G)

)
. In the case when G is left amenable, which is the case when G is compact,

then C∗(G) is isometric isomorphic to C∗
ρ(G).

The Fourier algebra of G, denoted by A(G), is defined to be the closed linear
span of P (G)∩C00(G). Clearly, A(G) = B(G) when G is compact. It is known that
C∗(G)∗ = B(G), where the duality is given by ⟨f, ϕ⟩ =

∫
f(t)ϕ(t)dλ(t), f ∈ L1(G),

ϕ ∈ B(G), and A(G)∗ = V N(G).
For more properties of the Fourier algebra A(G), the Fourier-Stieltjes algebra

B(G), the group C∗-algebra C∗(G) and the von Neumann algebra V N(G) we refer
the reader to Eymard’s paper [16] (see also [30] and [40]).

The group G is said to be an [AU ]-group if the von Neumann algebra generated
by every continuous unitary representation of G is atomic. It is said to be an
[AR]-group if the von Neumann algebra V N(G) is atomic. We have the following
inclusions

[compact] ⊆ [AU ] ⊆ [AR],

where [compact] denote the class of compact groups, etc. Moreover, these inclu-
sions are proper [52] (see also [2]). The group G is called an [IN ]-group if there
is a compact neighbourhood of the identity e in G which is invariant under inner
automorphisms; G is a [SIN ]-group if there is a base for the neighbourhood system
of e consisting of compact sets invariant under inner automorphisms (or equiva-
lently, the left and right uniformities on G are the same). Obviously [compact]
⊆ [SIN ] ⊆ [IN ] and the inclusions are also proper. Furthermore, all [IN ]-groups
are unimodular (see [17]).

For the undefined notations we refer the reader to the book [24].

Theorem 4.1. Let G be a locally compact group. The following are equivalent:

(a) G is compact.
(b) B(G) has the UKK∗ property.
(c) B(G) has weak∗ normal structure.
(d) B(G) has the weak∗ fixed point property for nonexpansive mappings.

Let C be a non-empty subset of a Banach space X and {Dα|α ∈ Λ} be a de-
creasing net of bounded non-empty subsets of X. For each x ∈ C, and α ∈ Λ,
let

rα(x) = sup{∥x− y∥
∣∣y ∈ Dα},

r(x) = lim
α
rα(x) = inf

α
rα(x),

r = inf {r(x)|x ∈ C}.
The set (possibly empty)

AC({Dα |α ∈ Λ}) = {x ∈ C | r(x) = r}
is called the asymptotic centre of {Dα |α ∈ Λ} with respect to C and r is the
asymptotic radius of {Dα |α ∈ Λ} with respect to C.

The notion of asymptotic centre is due to M. Edelstein [15]. See also [43].
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Definition 4.2. Let E be a dual Banach space. We say that E has the lim-sup
property for decreasing nets of bounded sets if the following property holds for any
decreasing net {Dα |α ∈ Λ} of bounded subsets of E, and any weak∗ convergent
bounded nets (φµ)u∈I with weak∗ limit φ :

(4.1) r(φ) + lim sup
µ

∥φµ − φ∥ = lim sup
µ

r(φµ),

i.e.:

(4.2)

lim
α

sup{∥φ− ψ∥
∣∣ψ ∈ Dα}+ lim sup

µ
∥φµ − φ∥

= lim sup
µ

lim
α

sup{∥φµ − ψ∥
∣∣ψ ∈ Dα}.

We say that E has the asymptotic centre property for decreasing nets of bounded
subsets if for any non-empty weak∗ closed convex subset C in E and any decreasing
net {Dα |α ∈ Λ} of bounded non-empty subsets of C, the asymptotic centre of
{Dα |α ∈ Λ} with respect to C is a non-empty norm compact convex subset of C.

The “lim-sup property” for sequences was introduced by T.C. Lim in [44]. It was
called “Lim’s condition” in [34] in honour of T.C. Lim.

Theorem 4.3. Let G be a locally compact group. The following are equivalent:

(a) G is compact.
(b) B(G) has the lim-sup property.
(c) B(G) has the asymptotic centre property.
(d) B(G) has the weak∗ fixed point property for left reversible semigroups.
(e) B(G) has the weak∗ fixed point property for nonexpansive mappings.
(f) ∥φ∥+ lim supµ ∥φµ −φ∥ = lim supµ ∥φµ∥ for any bounded net (φµ) in B(G)

which converges to φ ∈ B(G) in the weak∗ topology.
(g) For any net (φµ) in B(G) and any φ ∈ B(G) we have that ∥φµ −φ∥ → 0 if

and only if φµ → φ in the weak∗ topology and ∥φµ∥ → ∥φ∥.
(h) On the unit sphere of B(G) the weak∗ and the norm topology coincide.

We recall that a Banach space E is said to have the Radon-Nikodym property
(=RNP) if each closed convex subset D of E is dentable, i.e., for any ε > 0 there
exists an x in D such that x /∈ co

(
D\Bε(x)

)
, where Bε(x) = {y ∈ X : ∥x− y∥ < ε}

and coK is the closed convex hull of a set K ⊆ E. In general, there exists no
connection between the RNP and the fpp, given that the RNP is an “isomorphic
property” whereas the fpp is an “isometric property”. However, for the preduals of
von Neumann algebras we have the following. See also Lemma 1 in [35].

Theorem 4.4. Let M be a von Neumann algebra, and M∗ be its unique predual.
The following are equivalent:

(a) M is atomic (i.e. generated by its minimal projections (see [51])
(b) M∗ has the Radon Nikodym property
(c) M∗ has the weak fixed point property

Theorem 4.5. Let G be a locally compact group. The following are equivalent:

(a) A(G) has the weak fixed point property
(b) A(G) has the Radon Nikodym property
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(c) The left regular representation of G is atomic (i.e. direct sum of irreducible
unitary representations).

In this case A(G) has the weak fixed point property for left reversible semigroup.

Theorem 4.6. Let G be a locally compact group. The following are equivalent:

(a) B(G) has the weak fixed point property
(b) B(G) has the Radon Nikodym property.

A Banach space E is said to have the fixed point property if for every bounded
closed convex subset K of E and every non-expansive mapping T : K → K has a
fixed point. A well known result of Browder [4] shows that uniformly convex space
has the fixed point property.

Theorem 4.7. If G is a separable compact group, then A(G) can be renormed to
have the fixed point property.

Theorem 4.8. Let G be a locally compact group. If there is a non-zero closed ideal
of A(G) with the fixed point property, then G is discrete. In particular if A(G) has
the fixed point property, then G must be finite.

Theorem 4.9. The group C∗-algebra C∗(G) of a locally compact group G has the
fixed point property if and only if G is finite.

Theorem 4.10. Let G be a locally compact group. Then:

(a) V N(G) has the weak fixed point property if and only if G is finite
(b) The group C∗-algebra C∗(G) has the weak normal structure (i.e. every non-

trivial weakly compact subset of C∗(G) has normal structure) if and only if
G is finite.

5. Historical remarks and open problems

Remark 5.1.

(1) Theorem 4.1 (a) ⇒ (b) was proved in [35], (b) ⇒ (c) was proved in [14],
(c) ⇒ (d) was proved in [35], and (d) ⇒ (a) follows from Theorem 4.5 in [18].

(2) Theorem 4.3 (a) ⇒ (b), (b) ⇒ (c), (c) ⇒ (d), and (e) ⇒ (a) are proved
in [18] and (h) ⇒ (a) is in [3, Theorem 3.9]. For the case of separable [IN ]
group, Theorem 5.3 (a) ⇒ (d) ⇒ (e) is in [36]. The equivalence of (a) ⇒ (g)
is in [3] (see also [33] and [35]).

(3) Theorem 4.4 (a) ⇒ (b) is proved by [52]; (b) ⇒ (c) is proved in [37] and (c)
⇒ (b) is proved very recently in [19].

(4) Theorem 4.5 (b) ⇒ (a) is proved in [37], (b) ⇒ (a) in [48], (b) ⇒ (c) in [52].
(5) Theorem 4.6 (b) ⇒ (a) follows from [37] and (b) ⇒ (a) is proved in [48].
(6) Theorem 4.7 is proved in [46]. It is a generalization of a recent result of

P.K. Lin [45], that ℓ1 can be renormed to have the fixed point property,
answering a long standing open problem. Note that this result is not true
for non-separable groups (see [13]).

(7) Theorem 4.8 is proved in [33].
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Open problem 1. Let G be a locally compact group. Let Bρ(G) denote the reduced
Fourier-Stieltjes algebra of B(G) i.e. Bρ(G) is the weak∗ closure of C00(G)∩B(G).
Then Bρ(G) = Cρ(G)

∗. Does the weak∗ fixed point property on Bρ(G) imply G is
compact? This is true when G is amenable by Theorem 4.3, since B(G) = Bρ(G)
is this case.

Open problem 2. Let G be a locally compact group. Does the asymptotic centre
property on Bρ(G) imply that G is compact?

Open problem 3. It is point out in [18] that if E be a dual Banach space. Then the
following implications hold:

(a) ⇒ (b) ⇒ (c) and (a) ⇒ (d) ⇒ (e) ⇒ (f)

where

(a) E has the lim-sup property.
(b) E has the asymptotic centre property.
(c) E has the weak∗ fixed point property for left reversible semigroups.
(d) ∥φ∥ + lim supµ ∥φµ − φ∥ = lim supµ ∥φµ∥ for any bounded net (φµ) in E

converging weak∗ to φ ∈ E.
(e) For any net (φµ) in E and any φ ∈ E we have that ∥φµ − φ∥ → 0 if and

only if φµ → φ in the weak∗ topology and ∥φµ∥ → ∥φ∥.
(f) The weak∗ topology and the norm topology coincide on the unit sphere S

of E.

For which dual Banach space E are the conditions equivalent? Theorem 4.3 shows
that this is the case when E = B(G) of a compact group. In particular, this is the
case when E = ℓ1 (which is isometrically isomorphic to B(π), the Fourier-Stieltjes
algebra of the circle group π) regarded as the dual of c0 .

Theorem 4.9 was proved recently by Dhompongsa, Fupingwong and Lawton [12]
(see also [11]). Theorem 4.1 was proved in [37].

Open problem 4 (R. Bruck). If E is a Banach space with the weak fixed point
property, does E have the weak fixed point property for left reversible semigroups.
R. Bruck shows that [5] this is the case when the semigroup is commutative.

Open problem 5. If E is a dual Banach space with the weak∗ fixed point property,
does E have the weak∗ fixed point property for commutative semigroups, or more
general for left reversible semigroup?
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