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variety of techniques to suggest and analyze various iterative algorithms for solv-
ing hemivariational inequalities and equilibrium problems. In 2003, Molnar and
Vas [9] introduced nonlinear hemivariational-like inequality systems and considered
the solvability of the systems with the existence of Nash generalized derivative points
as applications.

Inspired and motivated by recent works [5, 6, 8, 9, 11, 14, 15, 17], we study the
following hemivariational-like inequality (HV-L-I) for finding x = (x1, . . . , xn) ∈ K
such that for all u = (u1, . . . , un) ∈ K,

Ao
i (Tx; ηi(Tiui, Tixi)) + ⟨Bix, µi(ui, xi)⟩i + Jo

i (Sx; ξi(Siui, Sixi)) ≥ 0 (i = 1, n).

The solution of the hemivariational-like inequalities gives the position of the state
equilibrium of the structure. As applications, we study the existence of a Nash-
type derivative equilibrium point for a family {Ao

i : i = 1, n} of the partial Clarke
derivatives of a family {Ai : i = 1, n} of locally Lipschitz continuous functions
Ai : Y → R (i = 1, n). Our results generalize and improve the corresponding results
in [5, 9, 15].

2. Preliminaries with basic assumptions

The following FKKM Theorem due to Ky Fan and the equivalent Tarafdar fixed
point theorem are very useful in our main result.

Definition 2.1. Let X be a vector space and E ⊂ X. A set valued mapping
G : E → 2X is called a KKM mapping if for any finite subset {x1, x2, . . . , xn} of E
the following holds

conv ({x1, x2, . . . , xn}) ⊂
n∪

i=1

G(xi).

Theorem 2.2 ( [4, FKKM Theorem]). Suppose that X is a locally convex Hausdorff
topological space, E ⊂ X and G : E → 2X is a closed set-valued KKM mapping. If
there exists x0 ∈ E such that G(x0) is compact, then∩

x∈E
G(x) ̸= ∅.

The following theorem is called Tarafdar fixed point theorem [14].

Theorem 2.3. Let K be a nonempty convex subset of a Hausdorff topological vector
space X. Let G : K → 2K be a set-valued mapping such that

(a) for each x ∈ K,G(x) is a nonempty convex subset of K,
(b) for each y ∈ K,G−1(y) = {x ∈ K : y ∈ G(x)} contains an open set Oy

which may be empty,
(c)

∪
y∈K Oy = K and

(d) there exists a nonempty set K0 contained in a compact convex subset K1 of
K such that

D =
∩

y∈K0

Oc
y

is either empty or compact (Oc
y is the complement of Oy in K).
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Then there exists a point x0 ∈ K such that

x0 ∈ G(x0).

In this paper, Ki is a subset of a reflexive Banach space Xi and Yi , Zi are two
Banach spaces, Ti : Xi → Yi, Si : Xi → Zi, ηi : Yi × Yi → Yi, ξi : Zi × Zi → Zi

and µi : Ki × Ki → Xi are mappings, X∗
i is the topological dual of Xi, ⟨·, ·⟩ the

associated duality mapping between Xi and X∗
i (i = 1, n),

K =
n∏

i=1
Ki, X =

n∏
i=1

Xi, Y =
n∏

i=1
Yi and Z =

n∏
i=1

Zi, unless specifically noted.

Let Ai : X ×Xi → R be a continuous function, which is locally Lipschitz contin-
uous in the ith variable with the partial Clarke directional derivative at the point
xi ∈ Xi in the direction of ui ∈ Xi as

Ao
i (x1, x2, . . . , xi, . . . , xn;ui)

= lim sup
z→xi,τ↘0

Ai(x1, . . . , z + τui, . . . , xn)−Ai(x1, . . . , z, . . . , xn)

τ
.

Needed Notations

x = (x1, x2, . . . , xn), u = (u1, u2, . . . , un) ∈ X,
y = (y1, y2, . . . , yn), v = (v1, v2, . . . , vn) ∈ Y ,
z = (z1, z2, . . . , zn), w = (w1, w2, . . . , wn) ∈ Z,
Tx = (T1x1, . . . , Tnxn) and Sx = (S1x1, . . . , Snxn),
η(y, v) = (η1(y1, v1), η2(y2, v2), . . . , ηn(yn, vn)),
ξ(z, w) = (ξ1(z1, w1), ξ2(z2, w2), . . . , ξn(zn, wn)),
µ(x, u) = (µ1(x1, u1), µ2(x2, u2), . . . , µn(xn, un)),
A(Tx, η(Tu, Tx)) =

∑n
i=1A

o
i (Tx; ηi(Tiui, Tixi)),

in particular, A(Tx, Tu− Tx) =
∑n

i=1A
o
i (Tx, Tiui − Tixi),

B(x, µ(u, x)) =
∑n

i=1⟨Bix, µi(ui, xi)⟩i,
in particular, B(x, u− x) =

∑n
i=1⟨Bix, ui − xi⟩i, where Bi : K → X∗

i is a
mapping.

Basic assumptions

For all i = 1, n,

(i) Ti : Xi → Yi and Si : Xi → Zi are compact,
(ii) Ao

i : X ×Xi → R is upper semi-continuous,
(iii) the function x 7→ ⟨Bix, xi⟩i is weakly upper semi-continuous for every xi ∈

Xi (i = 1, n), where Bi : K → X∗
i ,

(iv) the mappings ηi : Yi×Yi → Xi, ξi : Zi×Zi → Zi and µi : Ki×Ki → Xi are
continuous, positive homogeneous and linear in the first variable satisfying
ηi(yi, vi) = −ηi(vi, yi), ξi(zi, wi) = −ξi(wi, zi) and µi(xi, ui) = −µi(ui, xi),

(v) ηi and ξi are compact.

Definition 2.4 ([2]). Let X be a Banach space and j : X → R a locally Lipschitz
continuous function. We say that j is regular at x ∈ X if for all u ∈ X the one
sided directional derivative j

′
(x;u) exists and j

′
(x;u) = jo(x;u). If j is regular at
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every point x ∈ X, we say that j is regular, where jo(x;u) = lim sup
z→x
t→0+

j(z+ut)−j(z)
t is

the Clarke directional derivative of f at x in the direction of u.

Proposition 2.5 ([2]). Let J : Z → R be a regular, locally Lipschitz continuous
function, then the followings hold:

(a) ∂J(z1, z2, . . . , zn) ⊆ ∂1J(z1, z2, . . . , zn)× · · ·× ∂nJ(z1, z2, . . . , zn), where ∂iJ
denotes the Clarke subdifferential in the ith variable (i = 1, n),

(b) Jo(z1, z2, . . . , zn;w1, w2, . . . , wn) ≤
∑n

i=1 J
o
i (z1, z2, . . . , zn;wi), where Jo

i de-
notes the Clarke derivative in the ith variable and

(c) Jo(z1, z2, . . . , zn; 0, . . . , wi, . . . , 0) ≤ Jo
i (z1, z2, . . . , zn;wi).

3. Main results

Theorem 3.1. Let Ki be nonempty bounded convex and Ai satisfy the assump-
tion (ii). Assume that Ti and Si satisfy the assumption (i) and Bi satisfies the
assumption (iii). Assume that ηi, ξi and µi satisfy the assumption (iv) and pos-
itive homogeneous, linear in the first variable. Assume that ηi and ξi satisfy the
assumption (v) (i = 1, n). Let J : Z → R be a regular, locally Lipschitz continuous
function, then (HV-L-I) is solvable.

Proof. From the assumptions (i), (iv) and (v), Ti and ηi are compact and η(·, ·)
is semi-continuous, so A(Tx, η(Tu, Tx)) is weakly upper semi-continuous. From
the assumptions (iii) and (iv), B(x, µ(u, x)) is also weakly upper semi-continuous.
Since Jo(·, ·) and ξ(·, ·) are upper semi-continuous, from the assumptions (i) and
(v), Jo(Sx; ξ(Su, Sx)) is also weakly upper semi-continuous. Thus a function H :
K → R defined by

H(x) = A(Tx, η(Tu, Tx)) +B(x, η(u, x)) + Jo(Sx; ξ(Su, Sx))

is weakly upper semi-continuous.
Now we continue our proof by using two methods; one is established by FKKM

theorem and the other is by Tarafdar fixed point theorem.

One Proof

Proof. Let G : K → 2K be a set-valued mapping defined by, for u ∈ K,

G(u) = {x ∈ K : A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx)) ≥ 0}.

For every u ∈ K, obviously G(u) ̸= ∅. Taking into account that the function

x 7→ A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx))

is weakly upper semi-continuous, it follows thatG(u) is weakly closed. Now we prove
that G is a KKM-mapping by the contradiction. Let u1, u2, . . . , ui, . . . , un ∈ K and
x ∈ conv ({u1, u2, . . . , un}) be such that

x ̸∈
n∪

i=1

G(ui),

where ui = (ui1, u
i
2, . . . , u

i
n) ∈ K (i = 1, n).
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Then we have

(3.1) A(Tx, η(Tui, Tx)) +B(x, µ(ui, x)) + Jo(Sx; ξ(Sui, Sx)) < 0 for i = 1, n.

Since x =
∑n

i=1 tiu
i for t1, t2, . . . , tn ∈ [0, 1] with

∑n
i=1 ti = 1, by multiplying the

inequality (3.1) with ti (i = 1, n) and then, adding the following n inequalities;

ti[A(Tx, η(Tu
i, Tx)) +B(x, µ(ui, x)) + Jo(Sx; ξ(Sui, Sx))] < 0,

for i = 1, n,

we obtain

A(Tx, η(Tx, Tx)) +B(x, µ(x, x)) + Jo(Sx; ξ(Sx, Sx))

= A
(
Tx, η

(
T
( n∑

i=1

tiu
i), Tx

))
+B

(
x, µ

( n∑
i=1

tiu
i, x

))
(3.2)

+ Jo
(
Sx; ξ

(
S
( n∑

i=1

tiu
i
)
, Sx

))
< 0

from the fact that A(·, ·), B(·, ·) and Jo(·, ·) are continuous, positive homogeneous
and affine in the second variable and η, µ and ξ are positive homogeneous and linear
in the first variable.

Consequently, (3.2) contradicts the fact that

A(Tx, η(Tx, Tx)) +B(x, µ(x, x)) + Jo(Sx; ξ(Sx, Sx))

= A(Tx, 0) +B(x, 0) + Jo(Sx; 0) = 0

by the assumption (iv). On the other hand, the set K is bounded convex and closed,
by Eberlein-Smulian Theorem it is weakly compact, therefore it is weakly closed.
Since G(u) ⊂ K is weakly closed, G(u) is also weakly compact.

Now from Theorem 2.2, we have∩
u∈K

G(u) ̸= ∅.

Hence there exists x ∈ K such that for every u ∈ K

A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx)) ≥ 0,

which implies that

n∑
i=1

Ao
i

(
Tx; ηi(Tiui, Tixi)

)
+

n∑
i=1

⟨Bix, µi(ui, xi)⟩i +
n∑

i=1

Jo
i

(
Sx; ξi(Siui, Sixi)

)
≥ 0.

(3.3)

Fixing an i = 1, n and putting uj = xj for j ̸= i in (3.3), by the assumption (iv)
and Proposition 2.5(c) we have

Ao
i (Tx; ηi(Tiui, Tixi))+

⟨
Bix, µi(ui, xi)

⟩
i
+Jo

i (Sx; ξi(Siui, Sixi)) ≥ 0 for i = 1, n.

�

Another Proof
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Proof. Assume that the conclusion fails, then for each x ∈ K, there exists u ∈ K
such that

A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx)) < 0.

Define a set-valued mapping G : K → 2K by, for x ∈ K

G(x) = {u ∈ K : A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx)) < 0}.
By assumption, the set

G(x) ̸= ∅ for every x ∈ K.

Since the function A(·, ·) +B(·, ·) + Jo(·, ·) is convex in the second variable, G(x) is
a convex set. Now the function

x 7→ A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx))

is weakly upper semi-continuous due to the weak upper semi-continuities of η, µ and
ξ

[G−1(u)]c = {x ∈ K : A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx)) ≥ 0}
is weakly closed, hence G−1(u) := {x ∈ K : u ∈ G(x)} is weakly open.

Now we verify that ∪
u∈K

G−1(u) = K.

For every u ∈ K we have
G−1(u) ⊂ K,

therefore ∪
u∈K

G−1(u) ⊂ K.

Conversely, let x ∈ K be fixed. Since G(x) ̸= ∅ there exists u0 ∈ K such that
u0 ∈ G(x). Hence x ∈ G−1(u0), which shows that K ⊂ G−1(u0) ⊂

∪
u∈K

G−1(u).

Now we show that
D :=

∩
u∈K

[G−1(u)]c

is empty or weakly compact.
Indeed, if D ̸= ∅ then D is a weakly closed subset of K, since it is the intersection

of weakly closed sets. By the weak compactness of K, D is also weakly compact.
Taking Ou = G−1(u) and K0 = K1 = K we can apply Theorem 2.3 to conclude
that there exists x0 ∈ K such that

x0 ∈ G(x0).

Hence

A(Tx0, η(Tx0, Tx0)) +B(x0, µ(x0, x0)) + Jo(Sx0; ξ(Sx0, Sx0)) < 0,

which is a contradiction to the assumption (iv).
Thus there exists a x ∈ K such that for every u ∈ K

A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx)) ≥ 0.

By the same method shown in the first proof, we obtain the existence of solution to
(HV-L-I). �
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In 2013, Molnar and Vas [9] considered the existence of solutions to the following
nonlinear hemivariational-like inequality systems :

Finding x = (x1, . . . , xn) ∈ K such that

Ai(x; δi(xi, ui)) + Ioi (Tx; T (δ(x, u))) ≥ 0(3.4)

for all u = (u, . . . , un) ∈ K, where Ki is bounded, closed and convex, a function
Ai : X ×Xi → R is nonlinear, a function I : Y → R is regular locally Lipschitz and
δi : Xi ×Xi → Xi is a mapping (i = 1, n).

They showed the existence of solutions to the system (3.4) by using Lin’s fixed
point theorem for set-valued mappings in [7] under the following conditions ; for
i = 1, n,

1. δi(xi, xi) = 0 for all xi ∈ Xi,
2. δi(xi, 0) is linear for all xi ∈ Xi,
3. for each ui ∈ Xi, δi(x

m
i , ui) ⇀ δi(xi, ui), whenever xmi ⇀ xi,

4. Ai(x; 0) = 0 for all xi ∈ Xi,
5. for all ui ∈ Xi, the mapping x 7−→ Ai(x; δi(xi, ui)) is weakly upper semicontinues,

6. the mapping ui 7−→
n∑

i=1
Ai(x; δi(xi, ui)) is convex for each x ∈ X.

Remark 3.2. Suppose that Ki (i = 1, n) is unbounded in Theorem 3.1. By impos-
ing the following coercivity condition;
there exist a compact set Di in Ki and ui ∈ Di (i = 1, n) such that

A(Tx, η(Tu, Tx)) +B(x, µ(u, x)) + Jo(Sx; ξ(Su, Sx)) < 0

for all x = (x1, x2, . . . , xi, . . . , xn) ∈ K \ D, where D :=
n∏

i=1
Di and u =

(u1, u2, . . . , ui, . . . , un), we obtain the solvability for (HV-L-I).

Remark 3.3. Putting yi = (Tiui, Tixi) = Tiui − Tixi, µi(ui, xi) = ui − xi and
ξi(Siui, Sixi) = Siui − Sixi for i = 1, n, we obtain corresponding results in [15] as
corollaries of Theorem 3.1 and Remark 3.2, respectively.

4. Applications

The solution of (HV-L-I) gives the position of the state equilibrium of the struc-
ture. As applications, we study the existence of a Nash-type derivative equilibrium
point for a family {Ao

i : i = 1, n} of the partial Clarke derivatives of a family
{Ai : i = 1, n} of locally Lipschitz continuous functions Ai : Y → R (i = 1, n).

Definition 4.1. A point u = (u1, u2, . . . , ui, . . . , un) ∈ K is called a Nash-type
derivative equilibrium point of a family {fi : K → R : i = 1, n} of functions with
respect to {ηi : i = 1, n} if

fo
i (u; ηi(xi, ui)) ≥ 0 (i = 1, n)

for x = (x1, x2, . . . , xi, . . . , xn) ∈ K.
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Theorem 4.2. Let Xi, Yi be reflexive Banach spaces, Ki ⊂ Xi bounded closed and
convex sets, Ti : Ki → Yi compact and linear mappings and Ai : Y → R locally
Lipschitz continuous function in the ith variable (i = 1, n).

Assume that Ai satisfies the assumption (ii) and ηi : Ki×Ki → Ki the assumption
(iv) (i = 1, n). Then there exists u = (u1, u2, . . . , ui, . . . , un) ∈ K such that

Ao
i (T1u1, . . . , Tiui . . . , Tnun; ηi(Tixi, Tiui)) ≥ 0

for all x = (x1, x2, . . . , xi, . . . , xn) ∈ K,

which means that Tu := (T1u1, . . . , Tiui, . . . , Tnun) is a Nash-type derivative equi-
librium point for {Ai : i = 1, n} with respect to ηi (i = 1, n).

Proof. Putting Bi = 0 (i = 1, n) and J = 0 in Theorem 3.1, we have the desired
result. �

Remark 4.3. Furthemore, by putting Ki = Yi and Ti = I the identitiy (i =
1, n) in Theorem 4.1, we also obtain a Nash-type derivative equilibrium point
u = (u1, . . . , ui, . . . , un) ∈ K, as shown in Theorem 4.1 [9] under suitable weaker
conditions as a corollary.

Theorem 4.4. Let Ki be closed and convex (i = 1, n). Assume that there exist a
bounded and closed set Di ⊂ Ki and ui ∈ Di (i = 1, n) such that

A(Tx; η(Tu, Tx)) < 0

for all x = (x1, x2, . . . , xi, . . . , xn) ∈ K \D,

where D :=
n∏

i=1
Di and u = (u1, u2, . . . , ui, . . . , un) ∈ D. Then there exists

v = (v1, v2, . . . , vi, . . . , vn) ∈ K such that Ao
i (Tv; ηi(Tixi, Tivi)) ≥ 0 for all x =

(x1, x2, . . . , xi, . . . , xn) ∈ K, which implies that v = (v1, v2, . . . , vi, . . . , vn) is a Nash-
type derivative equilibrium point for {Ai : i = 1, n} with respect to ηi (i = 1, n).

We consider the existence of solutions to (HV-L-I) for a differentiable function
Ai : Y → R.

Let Yi = Zi, Ai : Y → R be differentiable in the ith variable and ηi, ξi : Yi×Yi →
Yi be mappings (i = 1, n). Assume that the function A

′
i : Y × Yi → R is continuous

and J : Y → R is regular locally Lipschitz. Under these assumptions we have the
following result.

Corollary 4.5. Let J,Ai : Y → R be the functions mentioned above. Suppose that
the assumption (i) holds and ξi, ηi : Yi × Yi → Yi satisfy the assumption (iv). Let
Ki ⊂ Xi (i = 1, n) be a bounded closed and convex set. Then there exists an element
u = (u1, u2, . . . , ui, . . . , un) ∈ K such that

A
′
i(Tu; ηi(Tixi, Tiui)) + Jo

i (Tu; ξi(Tixi, Tiui)) ≥ 0

for all x = (x1, x2, . . . , xi, . . . , xn) ∈ K (i = 1, n).

If Ai = 0 in Theorem 3.1, then we also have the following existence result for
(HV-L-I).
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Corollary 4.6. Let Ki be a bounded closed and convex subset of a reflexive Banach
spaces Xi (i = 1, n). Assume that Bi : K → X∗

i satisfies the assumption (iii)
and µi, ξi : Ki × Ki → Ki satisfy the assumption (iv). Let J : Z → R be a
regular locally Lipschitz function and assumption (i) holds. Then there exists u =
(u1, u2, . . . , ui, . . . , un) ∈ K such that

⟨Biu, µi(xi, ui)⟩i + Jo
i (Su; ξi(Sixi, Siui)) ≥ 0

for all x = (x1, x2, . . . , xi, . . . , xn) ∈ K (i = 1, n).

The above result generalizes the main result in Kristaly [5].
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