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TRIPLED FIXED POINT THEOREMS FOR GENERALIZED
CONTRACTIVE MAPPINGS IN PARTIALLY ORDERED
G-METRIC SPACES

JAMNIAN NANTADILOK

ABSTRACT. In this paper, we prove some tripled coincidence point and tripled
common fixed point theorems for nonlinear contractive mappings having the
mixed g-monotone property in partially ordered G-matric spaces. The results
on fixed point theorems are generalizations of the results of Aydi and Karapinar
in [1], extending Wangkeeree and Bantaojai’s [30] and some others in the related
topics.

1. INTRODUCTION AND PRELIMINARIES

One of the most well-known and most useful results in the fixed point theory is the
Banach Caccioppoli contraction mapping principle [4], a powerful tool in analysis.
This principle has been generalized in different directions in different spaces by
mathematicians over the years (see e.g. [4], [15], [27]-[29] and references mentioned
therein). On the other hand, fixed point theory has received much attention in
metric spaces endowed with a partial ordering. Existence and uniqueness of a fixed
point for contraction type mappings in partially ordered metric spaces were first
discussed by Ran and Reurings [23] in 2004. Later so many results were reported
on existence and uniqueness of a fixed point and its applications in partially ordered
metric space (see [2]-[30]).

In 1987, the notion of coupled fixed point was introduced by Guo and Laksh-
mikantham [12]. And in 2006, Bhaskar and Lakshmikantham [6] reconsidered the
concept of coupled fixed point in partially ordered metric spaces by introducing the
notion of a mixed monotone mapping. They proved some coupled fixed point theo-
rems for mixed monotone mapping and considered the existence and uniqueness of
solution for periodic boundary value problem.

Very recently, Berinde and Borcut [5] introduced the concept of tripled fixed point
theorems by virtue of mixed monotone mappings. Their contributions generalized
and extended Bhaskar and Lakshmikantham’s work for nonlinear mappings.

Mustafa and Sims ([21], [22]) introduce a new structure of generalized metric
spaces which are called G-metric spaces, as a generalization of metric spaces to
develop and introduce a new fixed point theory for various mappings in the new
structure. Later, several fixed point theorems in G-metric spaces were obtained (see
.. (2], [3], 8], [14], [18], [20], [21], [24], [30]).

The notion of fixed point of order N > 3 was first introduced by Samet and
Vetro [25]. Very recently, Aydi and Karapinar [1] used the concept of tripled fixed

2010 Mathematics Subject Classification. 46T99, 54H25, 47H10, 54N40.
Key words and phrases. G-matric space, partially ordered set, tripled coincidence point, tripled
common fixed point, mixed g-monotone property.



152 JAMNIAN NANTADILOK

point introduced by Berinde and Borcut [5] to prove some new tripled fixed point
theorems in partially ordered metric spaces depended on another function.

Let’s recall some basic definitions from [5] and [21].

Definition 1.1 ([5]). Let X be a nonempty set and let F': X x X x X — X be a
mapping. An element (z,y,z) € X x X x X is said to be a tripled fized point of F
if
F(z,y,2) =z, F(y,z,y)=y, F(zy72) ==z
From now on, we shall denote X x X x X by X3 and g(x) by gz.

Definition 1.2 ([5]). Let (X, <) be a parially ordered set and let F': X3 — X be a
mapping. We say that F' has the mized monotone property if F(zx,y, z) is monotone
non-decreasing in x andz and is monotone non-increasing in y, that is, for any
z,y,z € X

T1,22 € X,.f(}l =x = F(:Ul?y’ Z) = F(.’Eg,y,Z),
yhy?erylij - F(maylvz>tF(may27z)7
< F

21,20 € X, 21 R 20 = F(x,y,21) (,y, 22).
Definition 1.3. Let (X, <) be a parially ordered set. Let F': X? — X andg: X — X

be two mappings. We say that F' has the mized g-monotone property if for any
z,y,z € X

T1,T2 € X,g:m 2gre = F(xhy:z) = F(fﬁz,% Z)a
y1.y2 € X, gy1 2 gy2 = F(z,y1,2) = F(z,92, 2),
21,22 € X,921 =gz = F(xvyazl) = F(x>y>z2)‘

Definition 1.4 ([5]). Let F': X? — X and g: X — X be two mappings. An ele-

ment (z,y,2) € X3 is said to be:

(1) a tripled coincidence point of F and g if F(x,y,z) = gz, F(y,z,y) = gy and
F(z,y,z) =gz

(2) a tripled common fized point of F if F(x,y,z) = gz = =, F(y,x,y) = gy =y
and F(z,y,2) =gz =z

Definition 1.5 ([5]). Let X be a nonempty set, then we say that the mapping
F:X% = X and g: X = X are commutative if for any z,y,z € X

9 (F(z,y,2)) = F(g2,99,9%)
Definition 1.6 ([21]). Let X be a nonempty set. Let G: X x X x X — R be a
function satisfying the following properties :
(G1) G(z,y,2) =0ifz =y =z,
(G2) G(z,z,y) >0 for all x,y € X with z # vy ;
(G3) G(z,z,y) < G(x,y,z) for all x,y,z € X with y # z ;
(G4) G(xaf% Z) = G(.T), 2, y) = G<y7 2y JJ) =
(symmetry in all three variables) ;
(G5) G(z,y,2) < G(z,a,a) + G(a,y, z) for all z,y,z,a € X
(rectangular inequality).
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Then the function G is called a G-metric on X and (X, Q) is called a G-metric
space.

Definition 1.7 ([21]). Let X be a G-metric space, and let {z,} be a sequence
of points of X, a point # € X is said to be the limit of a sequence {x,} if
G(z,xn,zm) — 0 as n,m — oo and sequence {z,} is said to be G-convergent
to x.

Definition 1.8 ([21]). Let X be a G-metric space, a sequence {z,} is called G-
Cauchy if for every € > 0, there is a positive integer N such that
G(xp, Ty, xp) < € for all n,m, ¢ > N, that is, if G(zp, Tm,x¢) — 0, as n,m,l — oco.

We state the following lemmas.

Lemma 1.9 ([21]). If X is a G-metric space, then the following are equivalent:
(1) {zn} is G-convergent to x.
(2) G(zp,xn,z) = 0 as n — oo.
(3) G(zp,x,z) = 0 as n — oo.
(4) G(zm,zn,z) = 0 as n,m — oo.
Lemma 1.10 ([21]). If X is a G-metric space, then the following are equivalent:
(1) {zn} is G-Cauchy.
(2) For every e > 0, there exists a positive integer N such that
G (T, Tm,Tm) <& foralln,m > N.

Lemma 1.11 ([21]). If X is a G-metric space, then

Gz, y,y) <2G(y,@,x); forallw,yeX.
Lemma 1.12 ([21]). If X is a G-metric space, then

Gz,z,y) <G(x,z,2)+G(2,2,y) ; foralzxy,zeX.

Lemma 1.13 ([21]). Let (X,G),(X',G') be two G-metric spaces. A mapping
f: X — X' is G-continuous at v € X if and only if it is G sequentially contin-
uous at x, that is, whenever {x,} is G-convergent to x, {f(xy)} is G'-convergent

to f(x).
Definition 1.14 ([21]). A G-metric space X is called a symmetric G-metric space
if

G(z,y,y) = G(y,z,x); forall z,ye€ X.
Definition 1.15 ([21]). A G-metric space X is said to be G-complete (or complete
G-metric space) if every G-Cauchy sequence in X is convergent in X.

Definition 1.16. Let X be a G-metric space. A mapping F : X3 — X is said to be
continuous if for any three G-convergent sequences {zy}, {y,} and {z,} converging
to =,y and z respectively, {F(Zn, Yn, 2n)} is G-convergent to F(z,y, z).

Let ¥ denote the class of all functions ¢ : [0,00) % [0, 00) — [0, 00) satisfying the
following condition :
Jim o(ty,t2) > 0
to—1ro

for all (r1,72) € [0,00) X [0, 00) with r1 + 72 > 0.
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Recently, Wangkeeree and Bantaojai [30] proved the following coupled fixed point
and coupled coincidence point theorems for generalized contractive mappings in
partially ordered G-metric spaces.

Theorem 1.17 ([30]). Let (X, =) be a partially ordered set and G be a G-metric
on X such that (X, G) is a complete G-metric space. Let g: X — X be a mapping
and F: X x X — X be a mapping having the mixed g-monotone property on X.
Suppose that there exists ¢ € ¥ such that

Mg (z,u,w,y,0,2) < [Ggz, gu, gw) + G(gy, gv, 92)]
— 2¢ (G(gz, gu, gw), G(gy, gv, 92)) ,
for all x,y, z,u,v,w € X, for which gr = gu = gw and gy = gv < gz where
M8 (z,u,w,y,v,2) = G(F(x,y), F(u,v), F(w,2))+ G(F(y,x), F(v,u), F(z,w)).
If there exists xg,yg € X such that

(1.1)

gro = F(zo,90) and gyo = F(yo,%0),

and suppose F(X x X) C g(X), g is continuous and commutes with F, and also
suppose either

(a) F is continuous, or
(b) X has the following property:
(i) if a non-decreasing sequence x,, — x, then x, < x for all n,
(ii) if a non-increasing sequence y, — y, then y, = y for all n,
then F' and g have a coupled coincidence point, that is, there exists (x,y) €
X x X such that gr = F(x,y) and gy = F(y,x).

Theorem 1.18 ([30]). Let (X, <) be a partially ordered set and G be a G-metric on
X such that (X, G) is a complete G-metric space. Let F : X x X — X be a mapping
having the mized monotone property on X. Suppose that there exists o € U such
that

G (F(z,y), F(u,v), F(w,2)) + G (F(y,z), F(v,u), F(z,w))
< [G(z,u,w) + G(y,v, 2)] — 20 (G(z,u,w),G(y,v, 2)),

forall z = u > w and y <X v = z. Suppose that either

(1.2)

(a) F is continuous or,
(b) X has the following property:
(i) if a non-decreasing sequence x,, — x, then x, < x for all n,
(ii) if a non-increasing sequence y, — vy, then y, =y for all n.
If there exists xo,yo € X such that xo < F(x0,y0) and yo = F(yo,x0),
then F has a coupled fized point in X.

On the other hand, Aydi and Karapinar [1] proved tripled fixed point theorems
in partially ordered metric spaces depended on another function which generalized
the theorem of Berinde and Borcut [5]. They proved the following results.

Definition 1.19. Let (X, d) be a metric space. A mapping 7' : X — X is said to
be ICS if T is injective, continuous and has the property : for every sequence {z,}
in X, if {Tz,} is convergent then {z,} is also convergent.
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Let @ be the class of all functions ¢ : [0,00) — [0, 00) such that

(1) ¢ is non-decreasing,
(2) ¢t <t forallt >0,
(3) lim ¢r <t for all £ > 0.

r—tt

Theorem 1.20 ([1]). Let (X,=X) be a partially ordered set and suppose there is
a metric d on X which that (X,d) is a complete metric space. Suppose that
T:X — X is an ICS and F : X3 — X is such that F has the mized monotone
property. Assume that there exists ¢ € ® such that

(1.3) d(TF(z,y,z), TF(u,v,w)) < ¢ (maz{d(Tx,Tu),d(Ty,Tv),d(Tz,Tw)})

for any x,y,z € X, for which x 2 u,v <y and z < w, Suppose either

(a) F is continuous, or
(b) X has the following property :
(i) if a non-decreasing sequence x,, — x, then x, < x for all n,
(ii) if a non-increasing sequence yy, — y, then y, =y for all n,
(iii) #f a non-decreasing sequence z, — z, then z, < z for all n.
Suppose also that there exist xg,yo, z0 € X such that

ro = F(20,%0,20),%0 = F(y0,%0,50) and zo = F(z0,%0, 7o),
then F has a tripled fived point, that is, there exists (x,y,z) € X> such that

x =F(r,y,2), y=F(y,z,y) and z= F(z,y,x),

In this paper, inspired by Wangkeeree and Bantaojai [30] and Aydi and Karapinar
[1], we prove some tripled fixed point and tripled coincidence point theorems for
generalized contractive mappings in partially ordered G-metric space which are
generalization of Aydi and Karapinar [1], extending Wankeeree and Bantaojai [30]
and many others in the related topics.

2. MAIN RESULTS

We start with a tripled coincidence point theorem. Let © be the class of all
functions 1 : [0,00) x [0,00) X [0,00) — [0, 00) satisfying condition :
thm Y(ty,to,t3) >0 ; for all (ry,r,r3) € [0,00)3 with 1 + 79 + 73 >0
171

to—re
tz—rs3

Theorem 2.1. Let (X, =) be a partially ordered set and (X,G) be a complete G-
metric space. Let F: X? — X and g : X — X be two mappings such that F' has the
mixzed g-monotone property on X. Suppose that there exists ¥ € © such that

G (F(x,y,z), F(u,v,w), F(h,k,?))
+G (F(y,z,2), F(v,w,u), F(k,{,h
(2.1) +G (F(z,z,y), F(w,u,v), F({, h, k
< [G(gx, gu, gh) + G(gy, gv, gk) + G(gz, gw, gt
— 3¢ (G(gz, gu, gh), G(gy, gv, gk), G(gz, gw, gt

~— —

)
)
]
)

~—
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for all x,y,z,u,v,w,h, k, £ € X, for which gx = gu = gh and gy = gv < gk and
gz = gw = gl.

Assume that F(X x X x X) C g(X), g is continuous and commute with F, and
also suppose that either

(a) F is continuous, or
(b) X has the following property :
(i) if a non-decreasing sequence x,, — x, then x, < x for all n,
(ii) if a non-increasing sequence y, — y, then y, =y for all n,
(iii) if a non-decreasing sequence z, — z, then z, < z for all n.
Suppose also that there exist xg,yo, z0 € X such that
gzo = F (20,90, 20), 9Y0 = F(yo, 20, y0) and gzo = F (20, Y0, o),
then F and g have tripled coincidence point, that is, there exists (x,y,z) € X3
such that
gr = F(z,y,2) , gy = F(y,2,y) and gz = F(z,y,).
Proof. Let xg,y0, 20 € X such that

gro = F(x0,90,20) » 9%0 = F(y0,70,90) and gz0 = F'(20, Yo, 7o)
Since F'(X x X x X) C g(X), we can choose x1,y1,21 € X such that

gr1 = F(xo,90,20) » 991 = F(y0,%0,%0) and gz1 = F(z0, Yo, To).
Again, since FI(X x X x X) C g(X), we can choose 2,92, 20 € X such that

gxra = F(z1,y1,21) , gy2 = F(y1,21,41) and gzo = F(21,y1,21).
Continuing this process, we can construct sequences {z,}, {yn} and {z,} in X such
that
9Tn+1 = F(TnyYns 20) 5 9Ynt1 = F(Yn, T, yn)  and

9zn+1 = F(2n, Yn, Tn).
Since F' has the mixed g-monotone property, then by using a mathematical in-

duction, one can show that

9Tn = GTpil, 9Yn = GYnti and
gzZn = gzp+1 foralln > 0.

(2.2)

(2.3)

Since gz, < gTnt1, 9Yn = 9Yn+1 and gz, = gzp4q for all n > 0, so from (2.1), we
have

G(9Zn+1, 9Tn+1, 9Tn) + G(9Ynt1, GYnt1: 9Yn) + G(92n+1, 92n+1, 92n)
= G(F(I’nvynaZn)aF(xnaynaZn)vF(xnflyynflvznfl))
+G(F(ynwrn)yn)aF(yn;:I:nvyn)7F(yn—lvxn—hyn—l))

(2‘4) +G(F<zn7ymxn>7F(vaynvxn)7F(Zn—17yn—laxn—1>)
< [G(97n; 92n, 9Tn—1) + G(9Yns 9Yn, 9Yn—1) + G(92n, 92n; g2n—1)]
— 3¢ (G(9n, 9Tn, 9Zn—1), G(9Yn, 9Yn> 9Yn—1), G(92n, 92n, 92n—1)) -
Setting

UJ;€+1 = G(QCUn-i-h 9Tn+1, gmn)7
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Wit = G(9Ynt1, 9Yn+1, 9Yn),
w1 = G(92n41,9%n41,92n) for all m >0,

we have, by (2.4), that
(25) wig 4wl 4w < wptwd w3 (wy,wy,wi)  for all n > 0.
As (t1,ta,t3) > 0 for all (t1,t2,t3) € [0,00)3, from (2.5) we have
Wiy twi twiy < wp +wd +wr foralln > 0.
Then the sequence {w? + wy + w?} is decreasing.

Therefore, there exists w > 0 such that

lim (wf + w? +w:)= lim (G(gﬂcn+1,g$n+1,gl‘n)
n—o0 n—o0

(2.6) + G(9Yn+1, GYn+1, 9Yn) + G(9Zn+1, 9Zn+1, gzn))

= w.
Now, we show that w=0. Suppose, to contrary, that w>0. From (2.6), the sequences
{G(92n+1, 9711, 970) }, {G(9Yn+1: 9Ynt1,9yn)} and {G(9zn+1,92n41,92n)} have

convergent subsequences {G(gxn(j)+17gxn(j)+1a ga:n(j)}a {G(gyn(j)+1a 9Yn(j)+1, gyn(j)}
and {G(gzn(j)H,gzn(j)+1,gzn(]~)} respectively. Suppose that

jli{gowﬁ(j)ﬂ = jli{go G(92n(j)+15 9Tn(j)+15 9Tn(j)) = W1,
Jim Why = S G(gyn(j)r1s 9Yn(i)+15 9Yn(s) = w2,
Jim wngypn = Iim G(g2n() 11 92n(5)+1: 9%n()) = ws,

for which w; + wy + wg = w. From (2.5), we have

x ) z x Yy z x Yy z
(2.7) Wi F Wiy TWgL S Wa() T Wngy T Wa)  3Y(Wag) Wniy Wa))-

Taking the limit as 7 — oo in the above inequality, we obtain

. T Y z
w = w_gjlggﬂ(‘“’n(jwwn(j)’wn(ﬁ) <@

which is a contradiction. Therefore w = 0 ; that is

(2.8)  lim [G(g:cnﬂ,g:vnﬂ,gxn) + G(9Yn+1, 9Yn+1, 9Yn) + G(gzn+17gzn+1gzn)}

= lim (w®,; +w?y  +w? = 0.
n_mo( n+1 n+1 n+1)

We next show that {gx,}, {g9yn} and {gz,} are G-Cauchy sequences. On the con-
trary, assume that at least one of {gz,},{gy,} and {gz,} is not a G-Cauchy se-
quence. By lemma 1.10, thare is an € > 0 for which we can find subsequence

{9200 b {9Zmu } of {92n}s {9¥nii) }> {9Um) } of {gyn} and {gznm) }, {92m@) } of
{gzn} with n(k) > m(k) > k such that

G(9Zn(k) 9Tn(k)> 9Tmk)) + G(GYn(k)s 9Yn(k)> Ym(k))

2.9
(29) + G(92n(k)> 9%n(k)> 9Zm(k)) = €
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Corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) > m(k) > k and satisfying (2.9). Then

G(9%Tn(k)=15 9T n(k)—1> 9Tm(k)) + G (9Yn(k)—1> IYn(k)—15 IYm(k))

2.10
(2.10) + G(92n(k)—1> 9%n(k)—1> 9Zm(k)) < E-

By Lemma 1.12, we have

G(9Zn(k) 9Tn(k)> 9Tmk)) < G(9Tn(k)s ITn(k)s 9Tn(k)—1)

2.11
(211) + G(9T (k) =15 9Tn(k) =15 ITm(k) )
(2.12) G(9Yn(k)s 9Yn(k) 9Ymk) < G(9Yn(k)s 9Yn(k)> 9Yn(k)—1)
' + G(GYn(k)—15 9Yn(k)~15 9Ym(k))
and
G Zn ) ZTL ) Zm S G zn ) ZTL ) ZTL —
(2.13) (92n(k)» 92n(k)> 92m(k)) (92n(k)» 92n (k) 92n(k)—1)

+ G(92n(k)—15 9Zn(k)—1> I2m(k))-
Using (2.9)-(2.13), we obtain

e < G(gZn(k)s 9Tn(k)> ITm(k)) + G(9Yn(k)> IYn(k)> 9Ym(k))
+ G(92n(k)> 92n(k)> 9Zm(k))
< G(9Tn(k), 9Tn(k)s 9Tn(k)—1) T G(9Tn(k)—1, ITn(k)~15 ITm(k))
+ G(9Yn(k)> GYn(k): 9Yn(k)—1) + G(GYn(k) =15 GYn(k)—1> GYm(k))
+ G(92n(k)s 92n(k)> 9%n(k)—1) + G(92n(k)—1> T2n(k)~1> 9Zm(k))
< G(9Tn(k) 9Tn(k)> 9Tn(k)—1) + G(9Yn(k)> 9Yn(k)> IYn(k)—1)
+ G(92n(k)s 9%n(k)> 92n(k)—1) + €
Letting k — oo in the last inequality and using (2.8), we have

1) |G (k)s 9n (k) 9Tmk)) + G(9Yn k), 9Yn(k)> IYm(k))

+G(92n(k)s 9%n(k)> 92m@k)) | = €
By Lemma 1.11 and Lemma 1.12, we have

G(9Zn(k)> 9Zn(k)> IZm(k)) < G(9Tn(k) 9Tn(k) 9Tn(k)+1)
+ G(IZn(k)+15 9T n(k)+1> ITm(k))
(2.15) < 2G(9%Tn(k)+1> ITn(k)+1> ITn(k))
+ GG (k) 115 9Tn(k)+1> ITm(k)+1)
+ G(IZm(k)+15 9T m(k)+1> ITm(k))s

G(9Yn(k)> 9Yn(k) IYmk)) < 2G(GYn(k)+15 9Yn(k)+1> IYn(k))
(2.16) + G(9Yn(k)+15 9Yn(k)+1> IYm(k)+1)
+ G(GYm(k)+15 SYm(k)+1> Ym(k)) >
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and
G (9%n(k)» 92n(k)> 9Zm(k)) < 2G(92Zn(k)+15 92n(k)+1> I2n(k))
(2.17) + G(92n(k)+15 9Zn(k)+1> IZm(k)+1)
+ G(92m(k)+15 9Zm(k)+15 9Zm (k) )-
By (2.15), (2.16) and (2.17), we obtain
G(9Zn(k)> 9Zn(k)> 9Tm(k)) T G(9Yn(k)> 9Yn(k)s Ym(k))
+ G(92n(k), I2n(k)> 92m(k))

=2 <Wﬁ(k)+1 +Wniey 1+ Wi(k)ﬂ)

+ (an(k)ﬂ + Wy e T an(k)H)
+ GG (k)15 9Tn(k)+1> ITm(k)+1)
+ G(GYn(k)+1> 9Yn(k)+15 Ym(k)+1)

+ G(92n(k)+15 9Zn(k)+1> I2m(k)+1)-

(2.18)

Since n(k) > m(k), we have that
9(Tn) = 9 Tm)) » I Yn) 2 9Wmey) and g(znm) = 9(Zmk)),
and also, from (2.1),
(2.19)
G(9Zn(k)+1) 9Tn(k)+15 9Tm(k)+1) T G(GYn(k)+1> IYn(k)+1> IYm(k)+1)
+ G(92n(k)+15 9Zn(k)+15 9Zm(k)+1)
= G (F(@nk)s Yn(k)s Znk)) s F (@) Unk) Znk))s F (o) s Yme)s Zmk)))
+ G (F(Yn(k)y Tngk)> Yn(k))> F Wnky Zuk)s YUne))s F Uk Ty Ym(k)))
+ G (F(2nm): Yn(r): n(m)’ (n<k>ayn<k>,$n<k>),F (Zm(k)> Ym(k)» Tm(k)))
< [G(9Tn(k), 9Tnk)> 9Tm(k)) + G(9Yn (k) GYn(k)> SYm(k))
+G(9Zn(k)> 92n(k) > 97mk))| — 30 (G(9Tn(k)s 9T (k) GTm(k) )
G(9Yn(k)> 9Yn(k)> SYmk))» G(9Zn(k)> 92nk) GZm(k))) -
From (2.18) and (2.19), we have
(2.20)

2 (Wﬁmﬂ Wiy T wi(k)ﬂ) + (“ﬁz(km Wy T w;(km)
> G(9Zn (k) 9 (k) 9Tmk)) + G(GYn(k), 9Yn(k)> Ymk)) + G(92n(k)s 92n(k)s 9Zm(k))
— G(9Zn(k)+1> ITn(k)+1, ITmk)+1) — G(IYn(k)+1> 9Yn(k)+15 9Ym(k)+1)
— G(9Zn(k) 41> 9Zn(k)+15 9Zm(k)+1)

> G(9Zn (k) 9T (k) 9Tmk)) + G(GYn(k), 9Yn(k)> Ymk)) + G(92n(k)s 9Zn(k)s 9Zm(k))

— [G9Tn(i), 9Tn(k)y, 9Tm)) T G(GYn(k)> GYn(k)> 9Ym(k)) + G(9Zn(k) 97n (k) 9Zm())]
+ 3¢ (G (gl‘n(k) iﬂn(k), 9T im(k))s G(GYn(k) > SYn (k) 9Ym(k))> G(9Zn (k) 92n (k) 9Zm(k)))
= 3¢ (G(g Lo (k) GZm(k) ) G (GYn (k) 9Yn (k) 9Ymk))» G(9Znk)> G2n(k)> G2mk))) -
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This implies that

2 (Wﬁ(k)ﬂ + Wy T+ wfz(k)—i—l) + (Wffz(k)ﬂ + W1t an(k)ﬂ)
(2.21) > 30 (G(9Tn(k)> 9Zn (k) 9Zm(k))» G(GYn(k)> GYn (k) TYm (k) )
G(92n(k)s 92n(k)> 92m(k))) -
From (2.14), the sequence {G(g:cn(k),ga;n(k),gxm(k))}, {G(gyn(k),gyn(k),gym(k))}
and {G(gzn(k),gzn(k),gzm(k))} have subsequences converging to, say 1,2 and €3

respectively, and €1 + €9 +e3 =¢ > 0.
We can write

kli}ﬂ;oG(gxn(k)agxn(k)agl‘m(k)) = &1
Jim G (gyn()> 9Yn(k) 9Ymr)) = €2
klggo G(gzn(k)792n(k)agzm(k)) = £&3.

Letting & — oo in (2.21) and using (2.8), we have
0= lm [2 <wi(k)+1 + Wyt “’Z(kHl) + (an(k)ﬂ + W1 T wrzn(k)+1> ]

> klinolo 3¢ (G(gxn(k)a 9Zn(k)» gxm(k))a G(gyn(k)a 9Yn(k), gym(k))a

G(92Zn(k)> 92n (k) 92m(k)))

t1 = G(9Tn(k)> ITn(k)s 9Tm(k))s
= lim 3¢(t1,t2,13), where § o = G(9Yn(k)> 9Yn(k)> 9Ym(k))
1—€1
e and t3 = G(92n(k)> 9%n(k)» 92m(k))
3—7€3

> 0,

which is a contradiction. Therefore, {gz,}, {gyn} and {gz,} are G-Cauchy.
Since X is G-complete, there exists x,y, 2z € X such that

(2.22) lim gz, =z, lim gy, =y and lim gz, = z.
n —o00 n—00 n—0o0
The continuity of g implies that
(2.23) lim gz, =gz, lim gy, =gy and lim gz, = gz.
n —oo n—oo n—oo

Now, suppose that assumption (a) holds. From (2.2) and the commutativity of F’
and g, we obtain

gr = lim g(grni1) = nlglgog(F@mymZN))

n—oo

= lim (F(9Zn, gYn, 92n))

n—oo
= F ( lim gx,, lim gy,, lim gzn>
n—oo n—oo n—oo
= F(z,y,2),
and

gy = lim g(gyny1) = lim g(F(yn,Tn,yn))
n—oo n—oo



TRIPLED FIXED POINT THEOREMS FOR CONTRACTIVE MAPPINGS 161
= lim (F(gyn, 9Tn, 9yn))
n—oo

= (hm 9Yn, lim gy, lim gyn)

n—
= F(y,z,y).

Similarly, we have

gz = lim g(gznt1) = nh_gog(F(znaynaQ:n))

n—o0

= lim (F(9zn, 9Yn, 97n))
n—oo
= F ( lim gy,, lim gx,, lim gyn>
n—oo n—oo n—oo
= F(z,y,x).
Hence, (z,vy, 2) is a tripled coincidence point of F' and g.

On the other hand, suppose that assumption (b) holds. Since {gx,} is non-
decreasing satistying gz, — z, and {gy,} is non-increasing satisfying gy, — y, and
{9zn} is non-decreasing satisfying gz, — z, we have

9(9yn) =9z, g(gyn) = gy and g(gzn) X gz; foralln > 0.

Using the rectangle inequality and (2.1), we obtain
G(F(z,y,2), 97, gx) + G(F(y,,9), 9y, 9y) + G(F(2,9,2), 92, g2)
< G(F(2,9,2),9(9Tn+1), 9(9Tn+1)) + G(9(9Tn+1), 9, g)
+G( Y, 2,9), 9(9Yn+1): 9(9Yn+1)) + G(9(9Yn+1), 9y, 9)
G(F(z,y,7),9(92n+1), 9(92n+1)) + G(9(92n+1), 92, 92)
(F(w Y, 2), F(92n, 9Yn, 92n), F(9Tn; 9Yn, 92n)) + G(9(92n41), g7, g2)
+ G (F(y,2,9), F(9Yn, 9Tn, 9Yn)s F(9Yn; 9Tn, gyn)) + G(9(9Yn+1), 99, 9v)
G (F(z,9,2), F(92n, 9Yn, 97n), F(92n, 9Yn, 971)) + G(9(92n+1), 92, 92)

< [G(g:c, 9(9zn), 9(g20)) + G(9y, 9(gyn), 9(gyn)) + G(92, 9(92n), g(gzn))}

-3y (G(gx, 9(92n), 9(92n)), G(9y, 9(9yn), 9(9yn)), G(92, 9(92n), g(gzn)))
+ G(9(92n+1), 92, 92) + G(9(9Yn+1), 99, 9y) + G(9(92n+1), 9%, 92).
Letting n — oo in the above inequality, we obtain
G(F(x,y,2),9%,9x) + G(F(y,z,y), 9y, 9y) + G(F(2,y,2),92,92) = 0.
This gives that
G(F(z,y,2),92,9v) = G(F(y,z,v),9y,9y) = G(F(z,9,%),92,9z) = 0,

this means, F(z,y, z) = gz, F(y,x,y) = gy and F(z,y,z) = gz. Therefore, (x,y, 2)
is a tripled coincidence point of F' and g. This completes our proof. O

If we set g(z) = z, Vo € X, in Theorem 2.1, we obtain the following new tripled
fixed point theorem which is a generalization of Theorem 1.20, the main result of
Aydi and Karapinar [1].
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Theorem 2.2. Let (X, =X) be a partially ordered set and G be a G-metric on X
such that (X, G) is a complete G-metric space. Let g: X — X be a mapping and
F: X xX xX — X be amapping having the mixed monotone property on X. Sup-
pose that there exists 1 € © such that

G(F(x,y,z2), F(u,v,w), F(h,k,0)) + G(F(y, z,z), F(v,w,u),
F(k,t,h)) + G(F(z,z,y), F(w,u,v), F({,h, k))

(2.24) < [G(w, u,h) + G(y,v, k) + G(z,w, ﬁ)}

— 3 (G(a:, u, h), Gy, v, k), Gz, w,é)),

for all x,y,z,w,u,v,h, k., £ € X for whichx = u > h,y v =k and z = w = L.
Suppose either that

(a) F is continuous, or
(b) X has the following property :
(i) if a non-decreasing sequence x, — x, then x, < x for all n,
(ii) if a non-increasing sequence y, — y, then y, =y for all n,
(iii) #f a non-decreasing sequence z, — z, then z, < z for all n.
Suppose also that there exist xq,yo, z0 € X such that

zo =2 F(20,%0,%0),Y0 = F(yo, Zo,y0) and z = F(z0,Yo, Zo),
then F has a tripled fized point in X.
Remark 2.3. Theorem 2.2 is more general than Theorem 1.20 [1], since the con-

tractive condition (2.24) is weaker than (1.3). This fact is clearly illustrated by the
following example.

Example 2.4. Let X = R be a set with uasual ordering, i.e. a set endowed
with order x < y < x < y. Let the mapping G: X x X x X — R be defined by
G(z,y,2) = |z —y|+ |y — 2| + |z — x|, for all x,y,z € X. Then G is a G-metric on
X. Define the mapping F': X x X x X — X by F(z,y,z) = %(:17 —y + z), for all
x,1y,z € X. Then the following properties hold :

(1) F is mixed monotone;
(2) F satisfies condition (2.24), but F' does not satisfy condition (1.3).

We first show that F' satisfies condition (2.24). Indeed , we have
G(F(z,y,2), F(u,v,w), F(h,k,0)) + G(F(y, z,z), F(v,w,u), F(k,{,h))
+G(F(z,z,y), F(w,u,v), F({,h,k))
= o [l@ =)+ =)+ (= )|+ = B) - (= )+ (0= 0)
+1(h—2) + (y— k) + (€= 2)]
5[l + @ =2+ @l = B+ (=) + (R
k= y) + (= O+ (h = )]

5[ =) + @)+ -l + @ =+ (b= ) + (0= )]
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(6= 2) + (@ =)+ (k= )]

< 20—l + Ju = bl +1h =)+ (g = o+ o — K + [k~ o)
(2 = w| + |w — €] + £ = 2))]

= [(l =l + Ju = Bl + b = 2l) + (ly = o] + o = k| + [k = y)
+ (2 = w| + |w — €] + £ = 2]

L T R (e I I R
+ (|2 = wl +Jw = € +1¢ - )]

- [G(x,u, h)+G(y,v,k)+G(z,w,€)}

— 3 <G(x, u,h),G(y,v, k), G(z,w, 8)),

which is exactly the condition (2.24) with ¢ (t1,t2,t3) = %(tl + t2 + t3). Moreover,
taking xg = —1,59 = 1 and zp = —1, we have xg < F(x0,v0,20),%0 > F (0,0, Y0)
and 2o < F'(20, Y0, x0). Therefore, all the conditions of Theorem 2.2 hold.

Now we show that F' does not satisfy condition (1.3). Define T': X — X by
T(x) = In(x) + 1. It is easy to see that 7" is an JC'S mapping. Assume to the
contrary that there exists ¢ € ® such that (1.3) holds. This means

d(TF(z,y,z), TF(u,v,w)) = |TF(z,y,z) — TF(u,v,w)]
. r—y+z
‘ (u — v+ w) ‘
< ¢ (mazx{d(Tz,Tu),d(Ty, Tv),d(Tz,Tw)}).

Taking x =u =y =4,v =5, w =2 and z = 6, we get that In6 < In3. This is a
contradiction.

Let Q be the class of all functions 7 : [0,00) — [0, 00) satisfying %im n(t) > 0 for
—T
all r > 0.

Corollary 2.5. Let (X, =) be a partially ordered set and G be a G-metric on X
such that (X, G) is a complete G-metric space. Let g: X — X be a mapping and
F: X xX xX — X be a mapping having the mixed g-monotone property on X.
Suppose that there exists n € Q such that

G(F(z,y,z), F(u,v,w), F(h,k,?))
+G(F(y,z ), F(v,w,u), F(k,{,h))
(2.25) + G(F(z,z,y), F(w,u,v), F(¢,h, k))
< [G(gz, gu, gh) + G(gy, gv, gk) + G(gz, gw, gt)]
— 3n (max {G(gz, gu, gh), G(gy, gv, gk), G(g9z, gw, gL)}) ,

for all x,y,z,w,u,v,h,k, ¢ € X for which gx = gu = gh,gy =< gv = gk and
gz = gw = gf. Suppose either that

B(
F(t,
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(a) F is continuous or
(b) X has the following property :
(i) if a non-decreasing sequence x,, — x, then x, < x for all n,
(ii) if a non-increasing sequence y, — vy, then y, =y for all n,
(iii) #f a non-decreasing sequence z, — z, then z, < z for all n.
If there exist xg,yo, 20 € X such that

gxo = F(zo,v0,20), 9y0 = F(y0,20,%0) and gzo = F(z0,%0, o),

then F' and g have a tripled coincidence point.

Proof. In Theorem 2.1, taking v (t1,t2,t3) = n(max {t1,ts,t3}) for all (t1,te,t3) €
[0,00) % [0,00) X [0,00), we get the desired results. O

Corollary 2.6. In Corollary 2.5, if we replace inequality (2.25) by
G(F(z,y,z), F(u,v,w), F(h,k,0)) + G(F(y, z,z), F(v,w,u),
F(k,t,h))+ G(F(z,z,y), F(w,u,v), F(¢, h,k))

< [G(gz, gu, gh) + G(gy, gv, gk) + G(gz, gw, g0)]
= 31 (G(gz, gu, gh) + G(gy, gv, gk) + G(gz, gw, g{)) .

Then F and g have a tripled coincidence point.

(2.26)

Proof. In Theorem 2.1, taking 1 (t1, t2, t3) = n(t1+ta+t3) for all (t1,t2,t3) € [0,00)3,
then we get the desired result. O

Remark 2.7. We conclude that

(1) Theorem 2.1 extends Theorem 1.17 of Wangkeeree and Bantaojai [30].

(2) Theorem 2.2 extends Theorem 1.18 of Wangkeeree and Bantaojai [30], and
generalizes the result of Aydi and Karapinar [1] given by Theorem 1.20.

(3) We also see that Theorem 2.2 extends Theorem 1.20 of Aydi and Karapinar
[1] to partially ordered G-metric spaces.

(4) Corrolary 2.5 and Corrolary 2.6 extend Corrolary 2.6 and Corrolary 2.7.of
Wangkeeree and Bantaojai [30], respectively.
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