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point introduced by Berinde and Borcut [5] to prove some new tripled fixed point
theorems in partially ordered metric spaces depended on another function.

Let’s recall some basic definitions from [5] and [21].

Definition 1.1 ([5]). Let X be a nonempty set and let F : X ×X ×X → X be a
mapping. An element (x, y, z) ∈ X ×X ×X is said to be a tripled fixed point of F
if

F (x, y, z) = x , F (y, x, y) = y , F (z, y, x) = z.

From now on, we shall denote X ×X ×X by X3 and g(x) by gx.

Definition 1.2 ([5]). Let (X,≼) be a parially ordered set and let F : X3 → X be a
mapping. We say that F has the mixed monotone property if F (x, y, z) is monotone
non-decreasing in x andz and is monotone non-increasing in y, that is, for any
x, y, z ∈ X

x1, x2 ∈ X,x1 ≼ x2 =⇒ F (x1, y, z) ≼ F (x2, y, z),

y1, y2 ∈ X, y1 ≼ y2 =⇒ F (x, y1, z) ≽ F (x, y2, z),

z1, z2 ∈ X, z1 ≼ z2 =⇒ F (x, y, z1) ≼ F (x, y, z2).

Definition 1.3. Let (X,≼) be a parially ordered set. Let F : X3 → X and g : X → X
be two mappings. We say that F has the mixed g-monotone property if for any
x, y, z ∈ X

x1, x2 ∈ X, gx1 ≼ gx2 =⇒ F (x1, y, z) ≼ F (x2, y, z),

y1, y2 ∈ X, gy1 ≼ gy2 =⇒ F (x, y1, z) ≽ F (x, y2, z),

z1, z2 ∈ X, gz1 ≼ gz2 =⇒ F (x, y, z1) ≼ F (x, y, z2).

Definition 1.4 ([5]). Let F : X3 → X and g : X → X be two mappings. An ele-
ment (x, y, z) ∈ X3 is said to be:

(1) a tripled coincidence point of F and g if F (x, y, z) = gx, F (y, x, y) = gy and
F (z, y, x) = gz

(2) a tripled common fixed point of F if F (x, y, z) = gx = x, F (y, x, y) = gy = y
and F (z, y, x) = gz = z

Definition 1.5 ([5]). Let X be a nonempty set, then we say that the mapping
F : X3 → X and g : X → X are commutative if for any x, y, z ∈ X

g (F (x, y, z)) = F (gx, gy, gz)

Definition 1.6 ([21]). Let X be a nonempty set. Let G : X ×X ×X → R be a
function satisfying the following properties :

(G1) G(x, y, z) = 0 if x = y = z ;
(G2) G(x, x, y) > 0 for all x, y ∈ X with x ̸= y ;
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z ;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · ·

(symmetry in all three variables) ;
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X

(rectangular inequality).



TRIPLED FIXED POINT THEOREMS FOR CONTRACTIVE MAPPINGS 153

Then the function G is called a G-metric on X and (X,G) is called a G-metric
space.

Definition 1.7 ([21]). Let X be a G-metric space, and let {xn} be a sequence
of points of X, a point x ∈ X is said to be the limit of a sequence {xn} if
G(x, xn, xm) → 0 as n,m → ∞ and sequence {xn} is said to be G-convergent
to x.

Definition 1.8 ([21]). Let X be a G-metric space, a sequence {xn} is called G-
Cauchy if for every ε > 0, there is a positive integer N such that
G(xn, xm, xℓ) < ε for all n,m, ℓ ≥ N , that is, if G(xn, xm, xℓ) → 0, as n,m, l → ∞.

We state the following lemmas.

Lemma 1.9 ([21]). If X is a G-metric space, then the following are equivalent:

(1) {xn} is G-convergent to x.
(2) G(xn, xn, x) → 0 as n→ ∞.
(3) G(xn, x, x) → 0 as n→ ∞.
(4) G(xm, xn, x) → 0 as n,m→ ∞.

Lemma 1.10 ([21]). If X is a G-metric space, then the following are equivalent:

(1) {xn} is G-Cauchy.
(2) For every ε > 0, there exists a positive integer N such that

G(xn, xm, xm) < ε ; for all n,m ≥ N.

Lemma 1.11 ([21]). If X is a G-metric space, then

G(x, y, y) ≤ 2G(y, x, x) ; for all x, y ∈ X.

Lemma 1.12 ([21]). If X is a G-metric space, then

G(x, x, y) ≤ G(x, x, z) +G(z, z, y) ; for all x, y, z ∈ X.

Lemma 1.13 ([21]). Let (X,G), (X ′, G′) be two G-metric spaces. A mapping
f : X → X ′ is G-continuous at x ∈ X if and only if it is G sequentially contin-
uous at x, that is, whenever {xn} is G-convergent to x, {f(xn)} is G′-convergent
to f(x).

Definition 1.14 ([21]). A G-metric space X is called a symmetric G-metric space
if

G(x, y, y) = G(y, x, x) ; for all x, y ∈ X.

Definition 1.15 ([21]). A G-metric space X is said to be G-complete (or complete
G-metric space) if every G-Cauchy sequence in X is convergent in X.

Definition 1.16. Let X be a G-metric space. A mapping F : X3 → X is said to be
continuous if for any three G-convergent sequences {xn}, {yn} and {zn} converging
to x, y and z respectively, {F (xn, yn, zn)} is G-convergent to F (x, y, z).

Let Ψ denote the class of all functions φ : [0,∞)× [0,∞) → [0,∞) satisfying the
following condition :

lim
t1→r1
t2→r2

φ(t1, t2) > 0

for all (r1, r2) ∈ [0,∞)× [0,∞) with r1 + r2 > 0.
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Recently, Wangkeeree and Bantaojai [30] proved the following coupled fixed point
and coupled coincidence point theorems for generalized contractive mappings in
partially ordered G-metric spaces.

Theorem 1.17 ([30]). Let (X,≼) be a partially ordered set and G be a G-metric
on X such that (X,G) is a complete G-metric space. Let g : X → X be a mapping
and F : X ×X → X be a mapping having the mixed g-monotone property on X.
Suppose that there exists φ ∈ Ψ such that

MG
F (x, u, w, y, v, z) ≤ [G(gx, gu, gw) +G(gy, gv, gz)]

− 2φ (G(gx, gu, gw), G(gy, gv, gz)) ,
(1.1)

for all x, y, z, u, v, w ∈ X, for which gx ≽ gu ≽ gw and gy ≼ gv ≼ gz where

MG
F (x, u, w, y, v, z) = G(F (x, y), F (u, v), F (w, z)) +G(F (y, x), F (v, u), F (z, w)).

If there exists x0, y0 ∈ X such that

gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0),

and suppose F (X × X) ⊆ g(X), g is continuous and commutes with F , and also
suppose either

(a) F is continuous, or
(b) X has the following property:

(i) if a non-decreasing sequence xn → x, then xn ≼ x for all n,
(ii) if a non-increasing sequence yn → y, then yn ≽ y for all n,

then F and g have a coupled coincidence point, that is, there exists (x, y) ∈
X ×X such that gx = F (x, y) and gy = F (y, x).

Theorem 1.18 ([30]). Let (X,≼) be a partially ordered set and G be a G-metric on
X such that (X,G) is a complete G-metric space. Let F : X ×X → X be a mapping
having the mixed monotone property on X. Suppose that there exists φ ∈ Ψ such
that

G (F (x, y), F (u, v), F (w, z)) +G (F (y, x), F (v, u), F (z, w))

≤ [G(x, u, w) +G(y, v, z)]− 2φ (G(x, u, w), G(y, v, z)) ,
(1.2)

for all x ≽ u ≽ w and y ≼ v ≼ z. Suppose that either

(a) F is continuous or,
(b) X has the following property:

(i) if a non-decreasing sequence xn → x, then xn ≼ x for all n,
(ii) if a non-increasing sequence yn → y, then yn ≽ y for all n.

If there exists x0, y0 ∈ X such that x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0),
then F has a coupled fixed point in X.

On the other hand, Aydi and Karapinar [1] proved tripled fixed point theorems
in partially ordered metric spaces depended on another function which generalized
the theorem of Berinde and Borcut [5]. They proved the following results.

Definition 1.19. Let (X, d) be a metric space. A mapping T : X → X is said to
be ICS if T is injective, continuous and has the property : for every sequence {xn}
in X, if {Txn} is convergent then {xn} is also convergent.
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Let Φ be the class of all functions ϕ : [0,∞) → [0,∞) such that

(1) ϕ is non-decreasing,
(2) ϕt < t for all t > 0,
(3) lim

r→t+
ϕr < t for all t > 0.

Theorem 1.20 ([1]). Let (X,≼) be a partially ordered set and suppose there is
a metric d on X which that (X, d) is a complete metric space. Suppose that
T : X → X is an ICS and F : X3 → X is such that F has the mixed monotone
property. Assume that there exists ϕ ∈ Φ such that

(1.3) d(TF (x, y, z), TF (u, v, w)) ≤ ϕ (max{d(Tx, Tu), d(Ty, Tv), d(Tz, Tw)})

for any x, y, z ∈ X, for which x ≼ u, v ≼ y and z ≼ w, Suppose either

(a) F is continuous, or
(b) X has the following property :

(i) if a non-decreasing sequence xn → x, then xn ≼ x for all n,
(ii) if a non-increasing sequence yn → y, then yn ≽ y for all n,
(iii) if a non-decreasing sequence zn → z, then zn ≼ z for all n.
Suppose also that there exist x0, y0, z0 ∈ X such that

x0 ≼ F (x0, y0, z0), y0 ≽ F (y0, x0, y0) and z0 ≼ F (z0, y0, x0),

then F has a tripled fixed point, that is, there exists (x, y, z) ∈ X3 such that

x = F (x, y, z) , y = F (y, x, y) and z = F (z, y, x),

In this paper, inspired by Wangkeeree and Bantaojai [30] and Aydi and Karapinar
[1], we prove some tripled fixed point and tripled coincidence point theorems for
generalized contractive mappings in partially ordered G-metric space which are
generalization of Aydi and Karapinar [1], extending Wankeeree and Bantaojai [30]
and many others in the related topics.

2. Main results

We start with a tripled coincidence point theorem. Let Θ be the class of all
functions ψ : [0,∞)× [0,∞)× [0,∞) → [0,∞) satisfying condition :

lim
t1→r1
t2→r2
t3→r3

ψ(t1, t2, t3) > 0 ; for all (r1, r2, r3) ∈ [0,∞)3 with r1 + r2 + r3 > 0

Theorem 2.1. Let (X,≼) be a partially ordered set and (X,G) be a complete G-
metric space. Let F : X3 → X and g : X → X be two mappings such that F has the
mixed g-monotone property on X. Suppose that there exists ψ ∈ Θ such that

G (F (x, y, z), F (u, v, w), F (h, k, ℓ))

+G (F (y, z, x), F (v, w, u), F (k, ℓ, h))

+G (F (z, x, y), F (w, u, v), F (ℓ, h, k))

≤ [G(gx, gu, gh) +G(gy, gv, gk) +G(gz, gw, gℓ)]

− 3ψ (G(gx, gu, gh), G(gy, gv, gk), G(gz, gw, gℓ))

(2.1)
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for all x, y, z, u, v, w, h, k, ℓ ∈ X, for which gx ≽ gu ≽ gh and gy ≼ gv ≼ gk and
gz ≽ gw ≽ gℓ.

Assume that F (X ×X ×X) ⊆ g(X), g is continuous and commute with F , and
also suppose that either

(a) F is continuous, or
(b) X has the following property :

(i) if a non-decreasing sequence xn → x, then xn ≼ x for all n,
(ii) if a non-increasing sequence yn → y, then yn ≽ y for all n,
(iii) if a non-decreasing sequence zn → z, then zn ≼ z for all n.
Suppose also that there exist x0, y0, z0 ∈ X such that

gx0 ≼ F (x0, y0, z0), gy0 ≽ F (y0, x0, y0) and gz0 ≼ F (z0, y0, x0),

then F and g have tripled coincidence point, that is, there exists (x, y, z) ∈ X3

such that

gx = F (x, y, z) , gy = F (y, x, y) and gz = F (z, y, x).

Proof. Let x0, y0, z0 ∈ X such that

gx0 ≼ F (x0, y0, z0) , gy0 ≽ F (y0, x0, y0) and gz0 ≼ F (z0, y0, x0).

Since F (X ×X ×X) ⊆ g(X), we can choose x1, y1, z1 ∈ X such that

gx1 = F (x0, y0, z0) , gy1 = F (y0, x0, y0) and gz1 = F (z0, y0, x0).

Again, since F (X ×X ×X) ⊆ g(X), we can choose x2, y2, z2 ∈ X such that

gx2 = F (x1, y1, z1) , gy2 = F (y1, x1, y1) and gz2 = F (z1, y1, x1).

Continuing this process, we can construct sequences {xn}, {yn} and {zn} in X such
that

gxn+1 = F (xn, yn, zn) , gyn+1 = F (yn, xn, yn) and

gzn+1 = F (zn, yn, xn).
(2.2)

Since F has the mixed g-monotone property, then by using a mathematical in-
duction, one can show that

gxn ≼ gxn+1 , gyn ≽ gyn+1 and

gzn ≼ gzn+1 for all n ≥ 0.
(2.3)

Since gxn ≼ gxn+1, gyn ≽ gyn+1 and gzn ≼ gzn+1 for all n ≥ 0, so from (2.1), we
have

G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn) +G(gzn+1, gzn+1, gzn)

= G (F (xn, yn, zn), F (xn, yn, zn), F (xn−1, yn−1, zn−1))

+G (F (yn, xn, yn), F (yn, xn, yn), F (yn−1, xn−1, yn−1))

+G (F (zn, yn, xn), F (zn, yn, xn), F (zn−1, yn−1, xn−1))

≤ [G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1) +G(gzn, gzn, gzn−1)]

− 3ψ (G(gxn, gxn, gxn−1), G(gyn, gyn, gyn−1), G(gzn, gzn, gzn−1)) .

(2.4)

Setting

ωx
n+1 := G(gxn+1, gxn+1, gxn),
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ωy
n+1 := G(gyn+1, gyn+1, gyn),

ωz
n+1 := G(gzn+1, gzn+1, gzn) for all n ≥ 0,

we have, by (2.4), that

(2.5) ωx
n+1 + ωy

n+1 + ωz
n+1 ≤ ωx

n + ωy
n + ωz

n − 3ψ (ωx
n, ω

y
n, ω

z
n) for all n ≥ 0.

As ψ(t1, t2, t3) ≥ 0 for all (t1, t2, t3) ∈ [0,∞)3, from (2.5) we have

ωx
n+1 + ωy

n+1 + ωz
n+1 ≤ ωx

n + ωy
n + ωz

n for all n ≥ 0.

Then the sequence {ωx
n + ωy

n + ωz
n} is decreasing.

Therefore, there exists ω ≥ 0 such that

lim
n→∞

(ωx
n + ωy

n + ωz
n) = lim

n→∞

(
G(gxn+1, gxn+1, gxn)

+G(gyn+1, gyn+1, gyn) +G(gzn+1, gzn+1, gzn)
)

= ω.

(2.6)

Now, we show that ω=0. Suppose, to contrary, that ω>0. From (2.6), the sequences
{G(gxn+1, gxn+1, gxn)}, {G(gyn+1, gyn+1, gyn)} and {G(gzn+1, gzn+1, gzn)} have
convergent subsequences

{
G(gxn(j)+1, gxn(j)+1, gxn(j)

}
,
{
G(gyn(j)+1, gyn(j)+1, gyn(j)

}
and

{
G(gzn(j)+1, gzn(j)+1, gzn(j)

}
respectively. Suppose that

lim
j→∞

ωx
n(j)+1 = lim

j→∞
G(gxn(j)+1, gxn(j)+1, gxn(j)) = ω1,

lim
j→∞

ωy
n(j)+1 = lim

j→∞
G(gyn(j)+1, gyn(j)+1, gyn(j)) = ω2,

lim
j→∞

ωz
n(j)+1 = lim

j→∞
G(gzn(j)+1, gzn(j)+1, gzn(j)) = ω3,

for which ω1 + ω2 + ω3 = ω. From (2.5), we have

(2.7) ωx
n(j)+1 + ωy

n(j)+1 + ωz
n(j)+1 ≤ ωx

n(j) + ωy
n(j) + ωz

n(j) − 3ψ(ωx
n(j), ω

y
n(j), ω

z
n(j)).

Taking the limit as j → ∞ in the above inequality, we obtain

ω ≤ ω − 3 lim
j→∞

ψ
(
ωx
n(j), ω

y
n(j), ω

z
n(j)

)
< ω,

which is a contradiction. Therefore ω = 0 ; that is

(2.8) lim
n→∞

[
G(gxn+1, gxn+1, gxn) +G(gyn+1, gyn+1, gyn) +G(gzn+1, gzn+1gzn)

]
= lim

n→∞

(
ωx
n+1 + ωy

n+1 + ωz
n+1

)
= 0.

We next show that {gxn}, {gyn} and {gzn} are G-Cauchy sequences. On the con-
trary, assume that at least one of {gxn}, {gyn} and {gzn} is not a G-Cauchy se-
quence. By lemma 1.10, thare is an ε > 0 for which we can find subsequence{
gxn(k)

}
,
{
gxm(k)

}
of {gxn},

{
gyn(k)

}
,
{
gym(k)

}
of {gyn} and

{
gzn(k)

}
,
{
gzm(k)

}
of

{gzn} with n(k) > m(k) ≥ k such that

G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

+G(gzn(k), gzn(k), gzm(k)) ≥ ε.
(2.9)
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Corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) > m(k) ≥ k and satisfying (2.9). Then

G(gxn(k)−1, gxn(k)−1, gxm(k)) +G(gyn(k)−1, gyn(k)−1, gym(k))

+G(gzn(k)−1, gzn(k)−1, gzm(k)) < ε.
(2.10)

By Lemma 1.12, we have

G(gxn(k), gxn(k), gxm(k)) ≤ G(gxn(k), gxn(k), gxn(k)−1)

+G(gxn(k)−1, gxn(k)−1, gxm(k)),
(2.11)

G(gyn(k), gyn(k), gym(k)) ≤ G(gyn(k), gyn(k), gyn(k)−1)

+G(gyn(k)−1, gyn(k)−1, gym(k)),
(2.12)

and

G(gzn(k), gzn(k), gzm(k)) ≤ G(gzn(k), gzn(k), gzn(k)−1)

+G(gzn(k)−1, gzn(k)−1, gzm(k)).
(2.13)

Using (2.9)-(2.13), we obtain

ε ≤ G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

+G(gzn(k), gzn(k), gzm(k))

≤ G(gxn(k), gxn(k), gxn(k)−1) +G(gxn(k)−1, gxn(k)−1, gxm(k))

+G(gyn(k), gyn(k), gyn(k)−1) +G(gyn(k)−1, gyn(k)−1, gym(k))

+G(gzn(k), gzn(k), gzn(k)−1) +G(gzn(k)−1, gzn(k)−1, gzm(k))

< G(gxn(k), gxn(k), gxn(k)−1) +G(gyn(k), gyn(k), gyn(k)−1)

+G(gzn(k), gzn(k), gzn(k)−1) + ε.

Letting k → ∞ in the last inequality and using (2.8), we have

lim
k→∞

[
G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

+G(gzn(k), gzn(k), gzm(k))
]

= ε.
(2.14)

By Lemma 1.11 and Lemma 1.12, we have

G(gxn(k), gxn(k), gxm(k)) ≤ G(gxn(k), gxn(k), gxn(k)+1)

+G(gxn(k)+1, gxn(k)+1, gxm(k))

≤ 2G(gxn(k)+1, gxn(k)+1, gxn(k))

+G(gxn(k)+1, gxn(k)+1, gxm(k)+1)

+G(gxm(k)+1, gxm(k)+1, gxm(k)),

(2.15)

G(gyn(k), gyn(k), gym(k)) ≤ 2G(gyn(k)+1, gyn(k)+1, gyn(k))

+G(gyn(k)+1, gyn(k)+1, gym(k)+1)

+G(gym(k)+1, gym(k)+1, gym(k)),

(2.16)
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and

G(gzn(k), gzn(k), gzm(k)) ≤ 2G(gzn(k)+1, gzn(k)+1, gzn(k))

+G(gzn(k)+1, gzn(k)+1, gzm(k)+1)

+G(gzm(k)+1, gzm(k)+1, gzm(k)).

(2.17)

By (2.15), (2.16) and (2.17), we obtain

G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

+G(gzn(k), gzn(k), gzm(k))

≤ 2
(
ωx
n(k)+1 + ωy

n(k)+1 + ωz
n(k)+1

)
+

(
ωx
m(k)+1 + ωy

m(k)+1 + ωz
m(k)+1

)
+G(gxn(k)+1, gxn(k)+1, gxm(k)+1)

+G(gyn(k)+1, gyn(k)+1, gym(k)+1)

+G(gzn(k)+1, gzn(k)+1, gzm(k)+1).

(2.18)

Since n(k) > m(k), we have that

g(xn(k)) ≽ g(xm(k)) , g(yn(k)) ≼ g(ym(k)) and g(zn(k)) ≽ g(zm(k)),

and also, from (2.1),

G(gxn(k)+1, gxn(k)+1, gxm(k)+1) +G(gyn(k)+1, gyn(k)+1, gym(k)+1)

+G(gzn(k)+1, gzn(k)+1, gzm(k)+1)

= G
(
F (xn(k), yn(k), zn(k)), F (xn(k), yn(k), zn(k)), F (xm(k), ym(k), zm(k))

)
+G

(
F (yn(k), xn(k), yn(k)), F (yn(k), xn(k), yn(k)), F (ym(k), xm(k), ym(k))

)
+G

(
F (zn(k), yn(k), xn(k)), F (zn(k), yn(k), xn(k)), F (zm(k), ym(k), xm(k))

)
≤

[
G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

+G(gzn(k), gzn(k), gzm(k))
]
− 3ψ

(
G(gxn(k), gxn(k), gxm(k)),

G(gyn(k), gyn(k), gym(k)), G(gzn(k), gzn(k), gzm(k))
)
.

(2.19)

From (2.18) and (2.19), we have

2
(
ωx
n(k)+1 + ωy

n(k)+1 + ωz
n(k)+1

)
+

(
ωx
m(k)+1 + ωy

m(k)+1 + ωz
m(k)+1

)
≥ G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k)) +G(gzn(k), gzn(k), gzm(k))

−G(gxn(k)+1, gxn(k)+1, gxm(k)+1)−G(gyn(k)+1, gyn(k)+1, gym(k)+1)

−G(gzn(k)+1, gzn(k)+1, gzm(k)+1)

≥ G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k)) +G(gzn(k), gzn(k), gzm(k))

−
[
G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k)) +G(gzn(k), gzn(k), gzm(k))

]
+ 3ψ

(
G(gxn(k), gxn(k), gxm(k)), G(gyn(k), gyn(k), gym(k)), G(gzn(k), gzn(k), gzm(k))

)
= 3ψ

(
G(gxn(k), gxn(k), gxm(k)), G(gyn(k), gyn(k), gym(k)), G(gzn(k), gzn(k), gzm(k))

)
.

(2.20)
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This implies that

2
(
ωx
n(k)+1 + ωy

n(k)+1 + ωz
n(k)+1

)
+

(
ωx
m(k)+1 + ωy

m(k)+1 + ωz
m(k)+1

)
≥ 3ψ

(
G(gxn(k), gxn(k), gxm(k)), G(gyn(k), gyn(k), gym(k)),

G(gzn(k), gzn(k), gzm(k))
)
.

(2.21)

From (2.14), the sequence
{
G(gxn(k), gxn(k), gxm(k))

}
,
{
G(gyn(k), gyn(k), gym(k))

}
and

{
G(gzn(k), gzn(k), gzm(k))

}
have subsequences converging to, say ε1, ε2 and ε3

respectively, and ε1 + ε2 + ε3 = ε > 0.
We can write

lim
k→∞

G(gxn(k), gxn(k), gxm(k)) = ε1,

lim
k→∞

G(gyn(k), gyn(k), gym(k)) = ε2

lim
k→∞

G(gzn(k), gzn(k), gzm(k)) = ε3.

Letting k → ∞ in (2.21) and using (2.8), we have

0 = lim
k→∞

[
2
(
ωx
n(k)+1 + ωy

n(k)+1 + ωz
n(k)+1

)
+

(
ωx
m(k)+1 + ωy

m(k)+1 + ωz
m(k)+1

) ]
≥ lim

k→∞
3ψ

(
G(gxn(k), gxn(k), gxm(k)), G(gyn(k), gyn(k), gym(k)),

G(gzn(k), gzn(k), gzm(k))
)

= lim
t1→ε1
t2→ε2
t3→ε3

3ψ(t1, t2, t3), where


t1 = G(gxn(k), gxn(k), gxm(k)),
t2 = G(gyn(k), gyn(k), gym(k))
and t3 = G(gzn(k), gzn(k), gzm(k))

> 0,

which is a contradiction. Therefore, {gxn}, {gyn} and {gzn} are G-Cauchy.
Since X is G-complete, there exists x, y, z ∈ X such that

(2.22) lim
n →∞

gxn = x , lim
n→∞

gyn = y and lim
n→∞

gzn = z.

The continuity of g implies that

(2.23) lim
n →∞

gxn = gx , lim
n→∞

gyn = gy and lim
n→∞

gzn = gz.

Now, suppose that assumption (a) holds. From (2.2) and the commutativity of F
and g, we obtain

gx = lim
n→∞

g(gxn+1) = lim
n→∞

g(F (xn, yn, zn))

= lim
n→∞

(F (gxn, gyn, gzn))

= F
(
lim
n→∞

gxn, lim
n→∞

gyn, lim
n→∞

gzn

)
= F (x, y, z),

and

gy = lim
n→∞

g(gyn+1) = lim
n→∞

g(F (yn, xn, yn))
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= lim
n→∞

(F (gyn, gxn, gyn))

= F
(
lim
n→∞

gyn, lim
n→∞

gxn, lim
n→∞

gyn

)
= F (y, x, y).

Similarly, we have

gz = lim
n→∞

g(gzn+1) = lim
n→∞

g(F (zn, yn, xn))

= lim
n→∞

(F (gzn, gyn, gxn))

= F
(
lim
n→∞

gyn, lim
n→∞

gxn, lim
n→∞

gyn

)
= F (z, y, x).

Hence, (x, y, z) is a tripled coincidence point of F and g.
On the other hand, suppose that assumption (b) holds. Since {gxn} is non-

decreasing satisfying gxn → x, and {gyn} is non-increasing satisfying gyn → y, and
{gzn} is non-decreasing satisfying gzn → z, we have

g(gyn) ≼ gx , g(gyn) ≽ gy and g(gzn) ≼ gz ; for all n ≥ 0.

Using the rectangle inequality and (2.1), we obtain

G(F (x, y, z), gx, gx) +G(F (y, x, y), gy, gy) +G(F (z, y, x), gz, gz)

≤ G(F (x, y, z), g(gxn+1), g(gxn+1)) +G(g(gxn+1), gx, gx)

+G(F (y, x, y), g(gyn+1), g(gyn+1)) +G(g(gyn+1), gy, gy)

+G(F (z, y, x), g(gzn+1), g(gzn+1)) +G(g(gzn+1), gz, gz)

= G (F (x, y, z), F (gxn, gyn, gzn), F (gxn, gyn, gzn)) +G(g(gxn+1), gx, gx)

+G (F (y, x, y), F (gyn, gxn, gyn), F (gyn, gxn, gyn)) +G(g(gyn+1), gy, gy)

+G (F (z, y, x), F (gzn, gyn, gxn), F (gzn, gyn, gxn)) +G(g(gzn+1), gz, gz)

≤
[
G(gx, g(gxn), g(gxn)) +G(gy, g(gyn), g(gyn)) +G(gz, g(gzn), g(gzn))

]
− 3ψ

(
G(gx, g(gxn), g(gxn)), G(gy, g(gyn), g(gyn)), G(gz, g(gzn), g(gzn))

)
+G(g(gxn+1), gx, gx) +G(g(gyn+1), gy, gy) +G(g(gzn+1), gz, gz).

Letting n→ ∞ in the above inequality, we obtain

G(F (x, y, z), gx, gx) +G(F (y, x, y), gy, gy) +G(F (z, y, x), gz, gz) = 0.

This gives that

G(F (x, y, z), gx, gx) = G(F (y, x, y), gy, gy) = G(F (z, y, x), gz, gz) = 0,

this means, F (x, y, z) = gx, F (y, x, y) = gy and F (z, y, x) = gz. Therefore, (x, y, z)
is a tripled coincidence point of F and g. This completes our proof. �

If we set g(x) = x, ∀x ∈ X, in Theorem 2.1, we obtain the following new tripled
fixed point theorem which is a generalization of Theorem 1.20, the main result of
Aydi and Karapinar [1].
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Theorem 2.2. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G) is a complete G-metric space. Let g : X → X be a mapping and
F : X ×X ×X → X be a mapping having the mixed monotone property on X. Sup-
pose that there exists ψ ∈ Θ such that

G(F (x, y, z), F (u, v, w), F (h, k, ℓ)) +G(F (y, z, x), F (v, w, u),

F (k, ℓ, h)) +G(F (z, x, y), F (w, u, v), F (ℓ, h, k))

≤
[
G(x, u, h) +G(y, v, k) +G(z, w, ℓ)

]
− 3ψ

(
G(x, u, h), G(y, v, k), G(z, w, ℓ)

)
,

(2.24)

for all x, y, z, w, u, v, h, k, ℓ ∈ X for which x ≽ u ≽ h, y ≼ v ≼ k and z ≽ w ≽ ℓ.
Suppose either that

(a) F is continuous, or
(b) X has the following property :

(i) if a non-decreasing sequence xn → x, then xn ≼ x for all n,
(ii) if a non-increasing sequence yn → y, then yn ≽ y for all n,
(iii) if a non-decreasing sequence zn → z, then zn ≼ z for all n.
Suppose also that there exist x0, y0, z0 ∈ X such that

x0 ≼ F (x0, y0, z0), y0 ≽ F (y0, x0, y0) and z0 ≼ F (z0, y0, x0),

then F has a tripled fixed point in X.

Remark 2.3. Theorem 2.2 is more general than Theorem 1.20 [1], since the con-
tractive condition (2.24) is weaker than (1.3). This fact is clearly illustrated by the
following example.

Example 2.4. Let X = R+ be a set with uasual ordering, i.e. a set endowed
with order x ≼ y ⇔ x ≤ y. Let the mapping G : X ×X ×X → R be defined by
G(x, y, z) = |x− y|+ |y − z|+ |z − x|, for all x, y, z ∈ X. Then G is a G-metric on
X. Define the mapping F : X ×X ×X → X by F (x, y, z) = 1

9(x − y + z), for all
x, y, z ∈ X. Then the following properties hold :

(1) F is mixed monotone;
(2) F satisfies condition (2.24), but F does not satisfy condition (1.3).

We first show that F satisfies condition (2.24). Indeed , we have

G(F (x, y, z), F (u, v, w), F (h, k, ℓ)) +G(F (y, z, x), F (v, w, u), F (k, ℓ, h))

+G(F (z, x, y), F (w, u, v), F (ℓ, h, k))

=
1

9

[
|(x− u) + (v − y) + (z − w)|+ |(u− h) + (k − v) + (w − ℓ)|

+ |(h− x) + (y − k) + (ℓ− z)|
]

+
1

9

[
|(y − v) + (w − z) + (x− u)|+ |(v − k) + (ℓ− w) + (u− h)|

+ |(k − y) + (z − ℓ) + (h− x)|
]

+
1

9

[
|(z − w) + (u− x) + (y − v)|+ |(w − ℓ) + (h− u) + (v − k)|
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+ |(ℓ− z) + (x− h) + (k − y)|
]

≤ 2

3

[
(|x− u|+ |u− h|+ |h− x|) + (|y − v|+ |v − k|+ |k − y|)

+ (|z − w|+ |w − ℓ|+ |ℓ− z|)
]

=
[
(|x− u|+ |u− h|+ |h− x|) + (|y − v|+ |v − k|+ |k − y|)

+ (|z − w|+ |w − ℓ|+ |ℓ− z|)
]

− 1

3

[
(|x− u|+ |u− h|+ |h− x|) + (|y − v|+ |v − k|+ |k − y|)

+ (|z − w|+ |w − ℓ|+ |ℓ− z|)
]

=
[
G(x, u, h) +G(y, v, k) +G(z, w, ℓ)

]
− 3ψ

(
G(x, u, h), G(y, v, k), G(z, w, ℓ)

)
,

which is exactly the condition (2.24) with ψ(t1, t2, t3) =
1
9(t1 + t2 + t3). Moreover,

taking x0 = −1, y0 = 1 and z0 = −1, we have x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0)
and z0 ≤ F (z0, y0, x0). Therefore, all the conditions of Theorem 2.2 hold.

Now we show that F does not satisfy condition (1.3). Define T : X → X by
T (x) = ln(x) + 1. It is easy to see that T is an ICS mapping. Assume to the
contrary that there exists ϕ ∈ Φ such that (1.3) holds. This means

d(TF (x, y, z), TF (u, v, w)) = |TF (x, y, z)− TF (u, v, w)|

=
∣∣∣ ln( x− y + z

u− v + w

)∣∣∣
≤ ϕ (max{d(Tx, Tu), d(Ty, Tv), d(Tz, Tw)}) .

Taking x = u = y = 4, v = 5, w = 2 and z = 6, we get that ln 6 ≤ ln 3. This is a
contradiction.

Let Ω be the class of all functions η : [0,∞) → [0,∞) satisfying lim
t→r

η(t) > 0 for

all r > 0.

Corollary 2.5. Let (X,≼) be a partially ordered set and G be a G-metric on X
such that (X,G) is a complete G-metric space. Let g : X → X be a mapping and
F : X ×X ×X → X be a mapping having the mixed g-monotone property on X.
Suppose that there exists η ∈ Ω such that

G(F (x, y, z), F (u, v, w), F (h, k, ℓ))

+G(F (y, z, x), F (v, w, u), F (k, ℓ, h))

+G(F (z, x, y), F (w, u, v), F (ℓ, h, k))

≤ [G(gx, gu, gh) +G(gy, gv, gk) +G(gz, gw, gℓ)]

− 3η (max {G(gx, gu, gh), G(gy, gv, gk), G(gz, gw, gℓ)}) ,

(2.25)

for all x, y, z, w, u, v, h, k, ℓ ∈ X for which gx ≽ gu ≽ gh, gy ≼ gv ≼ gk and
gz ≽ gw ≽ gℓ. Suppose either that
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(a) F is continuous or
(b) X has the following property :

(i) if a non-decreasing sequence xn → x, then xn ≼ x for all n,
(ii) if a non-increasing sequence yn → y, then yn ≽ y for all n,
(iii) if a non-decreasing sequence zn → z, then zn ≼ z for all n.
If there exist x0, y0, z0 ∈ X such that

gx0 ≼ F (x0, y0, z0), gy0 ≽ F (y0, x0, y0) and gz0 ≼ F (z0, y0, x0),

then F and g have a tripled coincidence point.

Proof. In Theorem 2.1, taking ψ(t1, t2, t3) = η(max {t1, t2, t3}) for all (t1, t2, t3) ∈
[0,∞)× [0,∞)× [0,∞), we get the desired results. �
Corollary 2.6. In Corollary 2.5, if we replace inequality (2.25) by

G(F (x, y, z), F (u, v, w), F (h, k, ℓ)) +G(F (y, z, x), F (v, w, u),

F (k, ℓ, h)) +G(F (z, x, y), F (w, u, v), F (ℓ, h, k))

≤ [G(gx, gu, gh) +G(gy, gv, gk) +G(gz, gw, gℓ)]

− 3η (G(gx, gu, gh) +G(gy, gv, gk) +G(gz, gw, gℓ)) .

(2.26)

Then F and g have a tripled coincidence point.

Proof. In Theorem 2.1, taking ψ(t1, t2, t3) = η(t1+t2+t3) for all (t1, t2, t3) ∈ [0,∞)3,
then we get the desired result. �
Remark 2.7. We conclude that

(1) Theorem 2.1 extends Theorem 1.17 of Wangkeeree and Bantaojai [30].
(2) Theorem 2.2 extends Theorem 1.18 of Wangkeeree and Bantaojai [30], and

generalizes the result of Aydi and Karapinar [1] given by Theorem 1.20.
(3) We also see that Theorem 2.2 extends Theorem 1.20 of Aydi and Karapinar

[1] to partially ordered G-metric spaces.
(4) Corrolary 2.5 and Corrolary 2.6 extend Corrolary 2.6 and Corrolary 2.7.of

Wangkeeree and Bantaojai [30], respectively.
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