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ABSTRACT. This paper deals with strong convergence theorems for solving the
split common fixed-point problems for the class of demicontractive mappings in
real Hilbert spaces. Furthermore, we apply our results to solving split variational
inequality problems, split convex minimization problems and split common zeros
problems in real Hilbert spaces.

1. INTRODUCTION

In this paper, we shall assume that H is a real Hilbert space with inner product
(.,.) and norm ||.||. Let I denote the identity operator on H. Let C' and @ be
nonempty, closed and convex subsets of real Hilbert spaces H; and Hs, respectively.
The split feasibility problem (SFP) is to find a point

(1.1) x € C such that Az € @,

where A : Hi — Hs is a bounded linear operator. The SFP in finite-dimensional
Hilbert spaces was first introduced by Censor and Elfving [5] for modeling inverse
problems which arise from phase retrievals and in medical image reconstruction [2].
The SFP attracts the attention of many authors due to its application in signal
processing. Various algorithms have been invented to solve it (see, for example,
[3,13,18-20,22,23,26] and references therein).

Note that the split feasibility problem (1.1) can be formulated as a fixed-point
equation by using the fact

(1.2) Po(I — 7 AN (I — Po)A)z* = o

that is, * solves the SFP (1.1) if and only if 2* solves the fixed point equation
(1.2) (see [19] for the details). This implies that we can use fixed-point algorithms
(see [24,25,27]) to solve SFP. A popular algorithm that solves the SFP (1.1) is
due to Byrne’s CQ algorithm [2] which is found to be a gradient-projection method
(GPM) in convex minimization. Subsequently, Byrne [3] applied KM iteration to
the CQ algorithm, and Zhao and Yang [29] applied KM iteration to the perturbed
CQ algorithm to solve the SFP. It is well known that the CQ algorithm and the
KM algorithm for a split feasibility problem do not necessarily converge strongly in
the infinite-dimensional Hilbert spaces.
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Now let us first recall the definitions of some operators that are often used in
fixed-point theory which are related to demicontractive operators and which appear
naturally when using subgradient projection operator techniques in solving some
feasibility problems.

Let T : H — H be a mapping. A point x € H is said to be a fized point of T
provided that Tz = z. In this paper, we use F/(T) to denote the fixed-points set and
use — and — to denote the strong convergence and weak convergence, respectively.

Definition 1.1. The mapping T : H — H is said to be

(a) nonexpansive if

T2 = Tyl| < ||z — yll, Vo, € H.
(b) quasi-nonexpansive if
T2 — Tpl| < ||z — pll, V2 € H,p € F(T).
(¢) firmly nonexpansive mapping if
T2 = Tyll? < |lz — yl? = 1@ — y) — (Tx — Ty)|%, Y,y € H.
(d) quasi-firmly nonexpansive mapping if
T2 = Tplf? < |l — plf? — || — Tal|?, ¥ € H,p € F(T).

(e) strictly pseudocontractive mapping if there exists a constant k € [0,1) such
that

[Ta = Tyl < [Jx — yl2 + kl|(x — y) — (Tz — Ty) |, Var, y € H.
(f) pseudocontractive mapping if
T2 = Tyl|> < ||z —yl* + [|(x — y) = (T — Ty)||*, Y,y € H.
(g) demicontractive (or k-demicontractive) if there exists k < 1 such that
1Tz —Tpl|* < ||z = pl|” + k|lz — Tx|[*,Vz € H,p € F(T).
Remark 1.2. Denoting by Sy, %QN, SEN, %QF, Ss,Sp, Sp (with & > 0) the
classes of nonexpansive, quasi-nonexpansive, firmly-nonexpansive, quasi-firmly non-
expansive, strictly pseudocontractive, pseudocontractive and demicontractive map-

pings, respectively, we easily observe that Spy C Sy € Son € Sp, Spy € Sgr ©
Sonv € Sp and Spy € Sy € S € Sp through the following examples.

Given below is an example of a demicontractive mapping which is not pseudo-
contractive and hence not strictly pseudocontractive.

Example 1.3 ([11]). Let H be the real line and C' = [—1, 1]. Define T" on C' by

2l
_ swsin(; ),z # 0
(1.3) Tz { O,x:&

An example of a demicontractive function which is not quasi-nonexpansive and
is not pseudocontractive is given by

Example 1.4 ([9]). f:[-2,1] = [-2,1], f(z) :== —2* — 2.
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Furthermore, Spy is well known to include resolvents and projection operators,
while S r contains subgradient projection operators (see, e.g., [14] and the reference
therein).

In this paper, we shall focus our attention on the following general two-operator
split common fixed-point problem (SCFPP):

(1.4) find x € C such that Az € Q,

where A : Hi — Hy is a bounded linear operator, S : Hy — Hy and T : Hy — Hy
are two demicontractive operators with nonempty fixed-point sets F'(S) = C and
F(T) = @, and denote the solution set of the two-operator SCFP by

(1.5) Q:={yeC:AycQ}=CnAHQ).

Recall that F(S) and F(T) are nonempty closed convex subsets of H; and Ha,
respectively. If Q # (), we have that Q is closed and convex subset of H;. The
split common fixed-point problem (SCFP) is a generalization of the split feasibility
problem (SFP) and the convex feasibility problem (CFP) (see [2,7]).

To solve (1.4), Censor and Segal [7] proposed and proved, in finite-dimensional
spaces, the convergence of the following algorithm:

(1.6) Tpy1 = S(xn + AT — 1) Azy,),n > 1,

where v € (O, %), with \ being the largest eigenvalue of the matrix A'A (A? stands

for matrix transposition). In 2011, Moudafi [15] introduced the following relaxed
algorithm:

(1.7) Tnt1 = (1 — apn)yn + anSyn,n > 1,

where y, = x,, + YA*(T — I)Ax,, 5 € (0,1),ay, € (0,1), and v € (0, ﬁ), with A
being the spectral radius of the operator A*A. Moudafi proved weak convergence
result of the algorithm (1.7) in Hilbert spaces where S and T are quasi-nonexpansive
operators. We observe that strong convergence result can be obtained in the results
of Moudafi [15] if a compactness type condition like demicompactness is imposed
on the operator S. Furthermore, we can also obtain strong convergence result by
suitably modifying the algorithm (1.7). Recently, Zhao and He [28] introduced the
following viscosity approximation algorithm.

(1.8) Yn = Ty + VAT — I)Azp,
’ Tn41 = O‘nf(xn) + (1 - an)((l - wn)xn + wnsyru n>1,

where f : Hi — Hi is a contraction of modulus p > 0,w,, € (0, %),7 € (0, %),
with A being the spectral radius of the operator A* A and proved strong convergence
results concerning (1.4) for quasi-nonexpansive operators S and T in real Hilbert
spaces. Inspired by the work of Zhao and He [28], Moudafi [16] quite recently
revisited the viscosity-type approximation method (1.8) above introduced in [28].
First, he proposed a simple proof of the strong convergence of the iterative sequence
{zy} defined by (1.8) based on attracting operator properties and then proposed a
modification of this algorithm (1.8) and proved its strong convergence (see Theorem
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2.1 of [16]).

We remark here that it is quite usual to seek a particular solution of a given
nonlinear problem, in particular, the minimum-norm solution. For instance, given
a nonempty, closed and convex subset C' of a Hilbert space H; and a bounded linear
operator A : Hy — Hs, where H, is another Hilbert space. The C-constrained pseu-
doinverse of A, AI} is then defined as the minimum-norm solution of the constrained
minimization problem

ATC(b) = argmin || Az — b||
which is equivalent to the fixed point problem
x = Po(x — NA*(Ax — b)),

where P¢ is the metric projection from Hy onto C, A* is the adjoint of A, A > 0 is
a constant, and b € Hy is such that Pm(b) € A(C). It is therefore an interesting
problem to invent iterative algorithms that can generate sequences which converge

strongly to the minimum-norm solution of a given SCFPP (1.4).

So, our main purpose here is to consider the split common fixed point problems for
demicontractive operators such that strong convergence is achieved for the iterative
sequence without imposing compactness type condition on the operators or on the
domains of the operators in the context of real Hilbert spaces. Our results are
motivated by the results of Moudafi [15]. Thus, we modify algorithm (1.7) above and
prove strong convergence results to the minimum-norm solution for split common
fixed point problems concerning demicontractive operators in real Hilbert spaces.

2. PRELIMINARIES

Definition 2.1. A mapping T : H — H is called demiclosed at the origin if any
sequence {z,} weakly converges to x, and if the sequence {T'z,} strongly converges
to 0, then Tz = 0.

Next, we state the following well-known lemmas which will be used in the sequel.

Lemma 2.2. Let H be a real Hilbert space. Then there holds the following well-
known results:

() [z +yl[> = [lz|* + 2(z, y) + ||yl[*,Va,y € H.
(ii) [lz+yl? <[lz]]* +2(y, 2 +y), Yo,y € H.

Lemma 2.3 (Xu, [21]). Let {an} be a sequence of nonnegative real numbers satis-
fying the following relation:

An+1 < (1 - an)an + apop +Yp, N2> 1)

where

(i) {an} C[0,1], - an = oo;

(ii) limsupo, <0;

(iii) v > 0; (n>1), Ty, < oo.
Then, a, — 0 as n — oo.
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3. MAIN RESULTS

In this section, we modify the algorithm (1.7) above so as to have strong conver-
gence. Below we include such modification.

Theorem 3.1. Let Hy and Ho be two real Hilbert spaces, A : Hy — Hs be a bounded
linear operator and A* : Hy — Hy be the adjoint of A. Let S : Hy — Hy be a k-
demicontractive mapping such that S — I is demi-closed at 0, C := F(S) # 0, T :
Hy — Hs be a ka-demicontractive mapping such that such that T — I is demi-closed
at 0 and Q := F(T) # (. Suppose that SCFPP (1.4) has a nonempty solution set
Q. Let {an} be a sequence in (0,1), {B,} a sequence in (0,(1—Fk1)(1—ay)) C (0,1)

and 7y € (0, ﬁ) Let sequences {yn}>2, and {x,}5°, be generated by x1 € Hy,
Yn = T +yA*(T — 1) Ax,
Tn+1 = (1 — Qp — /Bn)yn + anyna n > 1.

Suppose the following conditions are satisfied:

(3.1)

(a) nlggloan =0;

(b) Z ap = 00 and
n=1

(c) 0< lirginfﬁn < limsupf, < 1—k;.

n—o0
Then the sequence {xy}22 | converges strongly to an element x* € Q which is also
the minimum-norm solution (i.e., * € Q and ||z*|| = min{||z|| : x € Q}).

Proof. Let z* € Q. From (3.1) and Lemma 2.2 (i), we obtain that

lyn — ¥ = |lzp — 2" + A (T — I) Azy |
(3.2) = ||z, —1:*||2+2’y<mn—m*,A*(T—I)Axn> —|—72|\A*(T—I)Axn|\2.
Since

VAT — IAz,||*? = ~*(AYT — I)Ax,, A(T — I)Axy,)
YHAAX(T — 1) Az, (T — I)Az,)
(3.3) < AT = 1) Az, P,
Az* € Q = F(T) and T is a demicontractive mapping, then we obtain
(X — ", AY(T — I Axy) = (A(xy, — %), (T — 1) Axy,)
=(A(zy, — ")+ (T — 1) Azxy, — (T — I) Az, (T — 1) Axy,)
= (T Az, — Az*, (T — I)Az,) — ||(T — I)Az,||?

1 . *
— (T — I) Az,
1

1 *
5 [T = D Awal 2 = | Awy = 427 |12] = |[(T = 1) A
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]
2
Substituting (3.4) and (3.3) into (3.2), we have
(3:5)  lyn — «*I]> < [zn — 2*|* = (1 = ko = 4[| AP (T — 1) Az, |[*.
From (3.1), we obtain that
|zne1 = 2| = |I(1 = Bn — an)(yn — %) + Bu(Syn — %) — ana™||
(3.6) < (= Bn —an)(yn — %) 4 Bu(Syn — 27)|| + an|lz”]].
Using the fact that S is demicontractive, we obtain that
(1 = Bn — an)(Yn — %) + Bu(Syn — x*)”2
= (1= B — an)?llyn — "> + B2 |1Syn — 2|
+2(1 - /Bn - an)/Bn<Syn - «T*Jln - CC*>

(3.4) = (T — 1) Az, *.

< (1-08n— an)2‘|yn _x*HZ
+B2llyn — 2112 + kil — Sl
. 1—Fk
+2(1 = B = an)Ba Iy = 2112 = =51y — Syl ]

= (L= an)’llyn = (" + k1B — (1= k1) (1 = Bn = o) Bulllyn — Syl
= (1= an)’llyn — 21> + BalBn — (1 = an) (L = k1)]lyn — Synll?
(3.7) < (1= an)’[lyn — ™%,
which implies
(L = Bn = o) (yn — @) + Ba(Syn — 27)I| < (1 — an)llyn — 27|
Therefore it follows from (3.5), (3.6) and the last inequality above that
(3.8) |zn — 2%l < (1= an)llyn — 27| + anl2]|

< (L= an)llzn — 27| + anl|27]|
< max{|[z, — |, [[=7|[}

<

< max{[[zy — 27|, [|27]]}-

Therefore, {z,} and {y,} are bounded.
Now, for any x € Hj, we have

1Sz —a*|? <l =" |* + k|2 — Szl?

= (Szx—a",Sx—2") < (zx—a",x— Sz)
+x — 2%, Sz — x*) + k|| — Sz||?
(Sx —a*,Sx —z) < (z — 2",z — Sx)
+ki||z — Sx|?
(S —x,8c —x)+ (x — 2", 5z — x)
(x — a*,x — Sz) + K|z — Sz||*
(1—ky)||z — Sz||? < 2(x — z*,z — Sx).

4

4ond

(3.9)
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Furthermore, from (3.5) we have
112 < et =22 = (11 = Ba)yn + BaSyn — anyn — «*[|?
= [|(yn — 2%) = Bn(yn — Syn) — O‘nyn”Q
< Nn —2%) = Bu(yn — Syn)||2 — 20 (Yn, Tpp1 — )
= |lyn — 517*”2 = 2B0{Yn — SYn, Yn — T*) + Br%“yn - Syn||2
=20 (Yny Tpp1 — )
|[Yn — x*”z = Bn(1 = k1)[lyn — Syn’|2 + BrzLHyn - Syn||2
—20 (Yns Tng1 — T°)

= lyn = 2*|* = Bal(1 = k1) = Balllyn — Synll?
(3.10) =200 (Yny Tpp1 — )

< lzn - m*||2 = Bnl(L = k1) = Bulllyn — Syn||2

=200 (Yny Tpp1 — ).
Since {yn} and {z,} are bounded, IM > 0 such that —2(y,,xn+1 —2*) < M for
all n > 0. Therefore,
Bnl(1 = k1) = Bulllyn — Syn||2 < lyn — 55*”2 = lyn+1 — $*|‘2

(3.11) +ag M.

Hyn-‘rl -

IN

The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists ng € N such that {[|y, — 2*|[};2,,, is nonincreas-
ing. Then {||y, — 2*||}52; converges and ||y, — z*||> = ||yns1 — 2*||*> = 0, n — oco.
This together with (3.11) and the condition that «,, — 0 imply that,

(3.12) ||y — Syn|| = 0, n — 0.
From (3.5) and (3.8), we have that
V(1 —ka = AT — D Azn|? < ||z — 2| = [lyn — 2|
< (s =211+ anlla®])” — llvm — 2|12
= Nyn-1 = 2"|* = llyn — "> + 20n-1|2"[[[lyn-1 — 2*[| + af _y ||2*[>.
Using condition (a) above implies that
V(1 = k2 =y [JAIPI(T = D) Aza* = 0, 1 — o0.
Hence, we obtain
(3.13) (T — I)Azy,|| — 0, n — oo.
Also, we observe that
l|lyn — xnl|| = ||AY(T — I)Azy|| — 0, n — oo.

Since {z,} is bounded, there exists {x,,} of {z,} such that x,, — z € H;. Using
the fact that z,,, — 2z € Hy and ||y, — 2y|| — 0, n — oo, we have that y, —
z € Hy. By the demiclosedness principle of S — I at zero and (3.12), we have that
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z € F(S) = C. On the other hand, Since A is a linear bounded operator, it follows
from z,,, — z € Hy that Ax,; — Az € Hy. Hence, from (3.13), we have that

T Azy, — Azp,|| = ||T Ay — Azps|| — 0, § — oo.
Since T' — I is demiclosed at zero, we have that Az € F(T') = Q. Hence, z € Q.

Now, set w, = (1 — 8n)Yn + BnSYn,n > 1. Then from (3.1) we have that
Tn+1l = Wn — OpYn.

It then follows that

Tyl = (1 —an)wn — an(yn — wn)
(3.14) = (1 —an)wn + anfn(yn — Syn).
Also
wn —2*[7 = lyn — 2" = Bn(yn — Syn)|”
= llyn = 2"11* = 280 yn — Sy, yn — &*) + Ballyn — Syull®
< Hyn_x*HQ_Bn[(l_kl)_Bnmyn_synHZ
(3.15) < lyn — 2.

Applying Lemma 2.2 (ii) to (3.14), we have

lynt1 — 2P < lzpgr — 2*[?
= ”(1 - an)(wn - fk) + O‘n/Bn(yn - Syn) - Oénw*”z

< (1- O‘n)QHwn - x*||2 + 2000 (Bn(Yn — Syn) — T, Tpg1 — )
= (1= an)?||wn — &[> + 20080 (Yn — Syn, Tni1 — ¥)
=20 {x*, Ty — )
< (1= an)lyn — 2 + 20080 (yn — Sy, Tni1 — %)
=20 (", Tpp1 — )
< (1= an)llyn — 2|

+an[216n<yn - Synwrn—}-l - 33*> - 2<x*7$n+1 - £C*>]

We observe that limsupnﬁ\oo{ — 2(x*, Tpy1 — x*)} < =2(z*,z — x*) < 0 (since

x* = P0) and 28, (yn — Syn, Tn+1 — %) — 0, n — oo. Now, using Lemma 2.3 in
the inequality above, we have ||y, — 2*|| — 0 and consequently ||z, — z*|| — 0 by
(3.8). That is, z,, — z*,n — oo.

Case 2
Assume that {||y, — z*||} is not monotonically decreasing sequence. Set I',, =
llyn — 2*||? and let 7 : N — N be a mapping for all n > ng (for some ng large

enough)by
7(n) :==max{k e N: k <n, I, <T,11}.
Clearly, 7 is a non decreasing sequence such that 7(n) — oo as n — 0o and

FT(n) S FT(H)+17 vn Z no.
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From (3.11), it is easy to see that
tT(n)M
<
57‘(11)[(1 - kl) - /Br(n)]

Yr(n) = SYrm)|I” —0,n — 00.

Thus,

||y7'(n) - Sy’r(n)” — 0,n — oo.
Furthermore, we can show that

[[(T' = I)Az (|| = 0, n — oo.

By similar argument as above in Case 1, we conclude immediately that y;,) weakly
converges to z as 7(n) — oo. At the same time, we note that, for all n > ny,

0 < HyT(n)—l—l - ;U*HQ - Hyr(n) - x*Hz
< Qr(n) [2<57(n) (y‘r(n) - SyT(TL))7 Tr(n)+1 — JJ*>
~2(2", 2y 11— &)~ |[Yr(m) — 27117,

which implies

||y7'(n) - m*”Q < 2<67’(n) (yT(n) - SyT(n))’ Tr(n)+1 — l'*> - 2<$*a LTr(n)+1 — $*>
Hence, we deduce that
Therefore,

B, L) = 1 Truy 1 = 0

Furthermore, for n > ny, it is easy to see that I'z(,,) < I'z(,)41 if n # 7(n) (that is
7(n) < n), because I'; > I'j1 for 7(n) +1 < j < n. As a consequence, we obtain
for all n > ny,

0<TI'y< maX{FT(n)vrT(n)+l} = FT(n)+1'
Hence, limT',, = 0, that is {y,} converges strongly to z*. Hence, {x,} converges
strongly to x*. This completes the proof. O

Corollary 3.2. Let Hi and Hs be two real Hilbert spaces, A : Hy — Hy be a
bounded linear operator and A* : Ho — Hy be the adjoint of A. Let S : Hy — Hy be
a quasi-nonexpansive mapping such that S — I is demi-closed at 0, C := F(S) # 0,
T : Hy — Hs be a quasi-nonexpansive mapping such that such that T — I is demi-
closed at 0 and Q := F(T) # (). Suppose that SCFPP (1.4) has a nonempty solution

set Q. Let {an}02, and {Bn}22 be two real sequences in (0,1) and v € (0, W)

Let sequences {yn}>2, and {xn}>2, be generated by (3.1). Suppose the following
conditions are satisfied:

(a) nlg]goan =0;

(b) Z ap = 00 and
n=1

(c) 0< lilginf,é’n < limsupg, < 1.

n—oo
Then the sequence {zy}>2 | converges strongly to an element x* € Q0 which is also
the minimum-norm solution (i.e., * € Q and ||z*|| = min{||z|| : x € Q}).
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4. APPLICATIONS

4.1. Split Variational Inequality Problem. In this section, we apply our results
to solving the split variational inequality problem in a real Hilbert space, newly
introduced in [6].

Let H; and Hsy be two real Hilbert spaces. Given operators f : H; — H; and
g : Hy — Hs, a bounded linear operator A : Hy — Hs, and nonempty, closed and
convex subsets C' C Hy and @ C Ho, the split variational inequality problem (SVIP)
is formulated as follows:

Find a point z* € C such that

(4.1) (f(z*),x —2") >0, Ve e C
and such that the point y* = Ax* € @ and solves
(4.2) (9(y"),y—y") =20, Vy € Q.

When looked at separately, (4.1) is the classical Variational Inequality Problem
(VIP) and we denote its solution set by SOL(C, f). The SVIP constitutes a pair
of VIPs, which have to be solved so that the image y* = Az*, under a given
bounded linear operator A; of the solution x* of the VIP in Hj, is a solution
of another VIP in another space Hy. SVIP is quite general and should enable
split minimization between two spaces so that the image of a solution point of one
minimization problem, under a given bounded linear operator, is a solution point
of another minimization problem.

Recalling that SOL(C, f) and SOL(Q, g) are the solution sets of (4.1) and (4.2),
respectively, we see that the solution set of the SVIP is

Q:=Q(C,Q. f.9.4) := {z € SOL(C. f) : Az € SOL(Q.g)}.

We now prove the following convergence theorem for split variational inequality
problem.

Theorem 4.1. Let Hy and Hs be real Hilbert spaces and let A : Hy — Hsy be a
bounded linear operator. Let f : Hy — Hy and g : Hy — Hy be ay-inverse strongly
monotone and ag-inverse strongly monotone operators on Hy and Ho respectively,

and set o := min{ay,as}. Assume that v € (O, W) Consider the operators
S = Pc(I —Af) and T := Pgo(I — \g) with X € [0,2a]. Assume further that Q # (.
Let {a,}5° 1 and {Bn}22 be two real sequences in (0,1) satisfying:

(a) nlggloan =0;

(b) Z ap = 00 and
n=1

(c) 0 < lim inf8, < limsupf, < 1.

n—o0

Then the sequences {yn}o>; and {x,}22, generated by x1 € Hy,

{ Yn = Ty +yA*(T — I) Az,

(4.3) Tpi1 = (1 — an — Bu)yn + BuSyn, n > 1
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converge strongly to an element x* € Q which is also the minimum-norm solution
(i.e., x* € Q and ||z*|| = min{||z|| : = € Q}).

Proof. Let S = Po(I — Af) and T' = Pg(I — Ag). Then, for z1,z2 € C, we obtain
1521 — Smal® = [[Po(I = Af)as — Po(I — APzl

< (I = Az — (I = Af)aa|

= lz1 — @ — 2X(f(21) — flx2), 21 — m2) + N?[|f (1) — f(x2)||?
< oy — 2ol = 2Xan || f(21) = fl@2)l]? + N[ f (1) — fla2)]]?

< o — ol = AQ2a = N[ f(21) — f(x2)[]?

< e — @

and for y1,y2 € @, we have

I Tys — Tyl |? 1Po(I = Ag)y1 — Po(I — Ag)ya|l* < [|(I = Ag)y1 — (I = Ag)ya|®
= |y — y2|\2 = 2XMg(y1) — 9(y2), y1 — y2) + )\QHQ(yl) - 9(?/2)H2
<l — w2l = 2Xa2llg(v1) — Fw2)II> + A[lg(y1) — 9(wa) I
< g — w2l = AM2a = Mlg(y1) — g(v2)[1?
< Ay — wel]*

This implies that S and T are nonexpansive and hence quasi-nonexpansive (0-
demicontractive) mappings. We obtain the desired conclusion by following the line
of arguments of proof of Theorem 3.1. U

4.2. Split Convex Minimization Problem. Consider the following constrained
convex minimization problem:

(4.4) minimize{F(x) : x € C},

where F' : C' — R is a real-valued convex function. We say that the minimization
problem (4.4) is consistent if the minimization problem (4.4) has a solution. In the
sequel, we shall denote the solutions set of problem (4.4) by Q. If F' is (Fréchet)
differentiable, then z* € € if and only if

(4.5) (VF(z*),z — z*) > 0,Vz € C,

where VF' is the gradient of f. Since (4.5) is a VIP, we make the following observa-
tion. If /' : Hy — Hy and G : Hy — Hy are Fréchet differentiable convex functions
on closed and convex subsets C' C Hy and () C H» respectively, and if in the SVIP
we take f = VF and g = VG, then we obtain the following Split Minimization
Problem (SMP):

find a point z* € C such that

(4.6) z* = argmin{f(x):z € C}
and such that the point y* = Ax* € @ and solves
(4.7) y" = argmin{g(y) : y € Q}.

Following the line of proof of Theorem 3.1 and Theorem 4.1, we can prove the
following theorem.
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Theorem 4.2. Let Hy and Hs be real Hilbert spaces and let A : Hi — Hy be a
bounded linear operator. Let F' : Hi — Hy and G : Hy — Ho be Fréchet differ-
entiable convexr functions on closed and convexr subsets C C Hi and Q C Hy re-
spectively. Let VF be aq-inverse strongly monotone and VG be ag-inverse strongly
monotone operators on Hy and Hy respectively, and set o := min{ay,as}. As-
sume that v € (0, W) Consider the operators S := Po(I — AVF) and T =
Po(I — AVG) with X € [0,2a]. Assume further that Q # 0. Let {an}02, and
{Bn}2 be two real sequences in (0,1) satisfying:

(a) nlgglo@n =0;

(b) Z ap = 00 and
n=1

(c) 0< lirginfﬁn < limsupf, < 1.

n—oo

Then the sequences {y,}5>; and {z,}32, generated by x1 € Hy,
Yn = Tp + VAT — I)Axy,
Tnt1 = (1 —an = Bn)yn + BpSyn, n 21

converge strongly to an element * € Q) which is also the minimum-norm solution
(i.e., z* € Q and ||z*|| = min{||z|| : z € Q} ).

(4.8)

4.3. Split Common Zeros Problem. The Split Zeros Problem (SZP), newly in-
troduced in [6], is defined as: Let H; and Hy be two Hilbert spaces. Given operators
By : Hy — Hy and By : Hy — Hs, and a bounded linear operator A : H; — Hs, the
SZP is formulated as follows:
find a point z € H; such that

(4.9) Bi(z) =0 and B2(Az) = 0.

This problem is a special case of the SVIP if A is a surjective operator. To see
this, take in (4.1) - (4.2) C = H;,QQ = Hs,f = B; and g = Bs, and choose
x:=a*— Bi(z*) € Hy in (4.1) and x € H; such that Az := Ax™ — By(Az*) € Ha
in (4.2).

The next lemma proved in [6] shows when the only solution of an SVIP is a
solution of an SZP.

Lemma 4.3. Let Hy and Hy be real Hilbert spaces, and C C Hy and QQ C Hs

nonempty, closed and convex subsets. Let By : Hi — Hy and By : Hy — Hsy be

a-ISM operators and let A : Hy — Hsy be a bounded linear operator. Assume that

CNn{x € Hy:Bi(x) =0} #0, and that QN {y € Hy : Ba(y) =0} # 0, and denote
Q.= Q(C,Q,Bl,BQ,A) = {Z € SOL(C, Bl) Az € SOL(Q,BQ)}

Then, for any z* € C with Az* € Q, x* solves (4.9) if and only if x* € Q.

In view of Lemma 4.3 and using Theorem 3.1 and Theorem 4.1, we can prove the
following convergence theorem for Split Common Zeros Problem.

Theorem 4.4. Let Hy and Ho be real Hilbert spaces, and C C Hy and Q C Hoy
nonempty, closed and convex subsets. Let By : Hi — Hy and By : Ho — Hy be
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a-inverse strongly monotone operators (ISM) operators and let A : Hy — Hj be a
bounded linear operator. Assume that C N{x € Hy : Bi(x) = 0} # 0, and that

QN{y € Hy: Ba(y) =0} # 0. Assume that v € (0, W) Consider the operators

S = Pc(I — ABy) and T := Pgo(I — A\Bsy) with X\ € [0,2a]. Assume further that
Q#0. Let {an}2, and {Bn}2 be two real sequences in (0, 1) satisfying:

(a) nh_)rgoan =0;

(b) Z ay = 00 and
n=1

(¢) 0 <liminfg, <limsupf, < 1.
n—oo

n—oo

Then the sequences {yn}o>, and {x,}>2, generated by x1 € Hy,

Yn = T +yAY(T — I)Ax,
Tp+1 = (1 — Op — B’n)yn + /anym n=>1

converge strongly to an element ¥ € Q which is also the minimum-norm solution
(i.e., z* € Q and ||z*|| = min{||z|| : z € Q} ).

Remark 4.5. The condition
(f(x), Pc(I — \f)(z) —2*) > 0,V € Hy,z" € SOL(C, f).

imposed in Theorem 6.3 of [6] is dispensed with in our results

(4.10)

Remark 4.6. We make the following remarks concerning our results.

(1) In order to obtain strong convergence results, in this paper, we consider
convergence analysis of split common fixed problem using a modified Mann-
type iteration. In other words, the assumption of the condition “semi-
compactness” as assumed in Chang et al. [8] or “demi-compactness” as
assumed in Boonchari and Saejung [4] are dispensed with in our results.
In addition, our iterative method is easy to implement.

(2) Our results extend the class of operators for split common fixed point prob-
lem considered in the results of Moudafi [15,16] and Zhao and He [28] to
a wider class of operators:- demicontractive mappings. Furthermore, our
results extend the results of Li and Yao [12].

(3) In the results of Moudafi [17], weak convergence results were given concern-
ing split common fixed point problem for demicontractive mappings while
in this paper, we give strong convergence results for split common fixed
point problem for demicontractive mappings.

(4) Since demicontractive operators include directed operators ( an operator
T : H — H is called directed if (z — Tax,x — Tx) < 0,Vz € F(T),z € H),
then all the results in this paper hold if S and T are directed operators.
Please see, for example, Cui et al. [10] and Bauschke and Combettes [1] for
more details.
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