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Now let us first recall the definitions of some operators that are often used in
fixed-point theory which are related to demicontractive operators and which appear
naturally when using subgradient projection operator techniques in solving some
feasibility problems.

Let T : H → H be a mapping. A point x ∈ H is said to be a fixed point of T
provided that Tx = x. In this paper, we use F (T ) to denote the fixed-points set and
use → and ⇀ to denote the strong convergence and weak convergence, respectively.

Definition 1.1. The mapping T : H → H is said to be

(a) nonexpansive if

||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ H.

(b) quasi-nonexpansive if

||Tx− Tp|| ≤ ||x− p||,∀x ∈ H, p ∈ F (T ).

(c) firmly nonexpansive mapping if

||Tx− Ty||2 ≤ ||x− y||2 − ||(x− y)− (Tx− Ty)||2,∀x, y ∈ H.

(d) quasi-firmly nonexpansive mapping if

||Tx− Tp||2 ≤ ||x− p||2 − ||x− Tx||2, ∀x ∈ H, p ∈ F (T ).

(e) strictly pseudocontractive mapping if there exists a constant k ∈ [0, 1) such
that

||Tx− Ty||2 ≤ ||x− y||2 + k||(x− y)− (Tx− Ty)||2, ∀x, y ∈ H.

(f) pseudocontractive mapping if

||Tx− Ty||2 ≤ ||x− y||2 + ||(x− y)− (Tx− Ty)||2,∀x, y ∈ H.

(g) demicontractive (or k-demicontractive) if there exists k < 1 such that

||Tx− Tp||2 ≤ ||x− p||2 + k||x− Tx||2, ∀x ∈ H, p ∈ F (T ).

Remark 1.2. Denoting by ℑN ,ℑQN ,ℑFN ,ℑQF ,ℑS ,ℑP ,ℑD (with k ≥ 0) the
classes of nonexpansive, quasi-nonexpansive, firmly-nonexpansive, quasi-firmly non-
expansive, strictly pseudocontractive, pseudocontractive and demicontractive map-
pings, respectively, we easily observe that ℑFN ( ℑN ( ℑQN ( ℑD, ℑFN ( ℑQF (
ℑQN ( ℑD and ℑFN ( ℑN ( ℑS ( ℑD through the following examples.

Given below is an example of a demicontractive mapping which is not pseudo-
contractive and hence not strictly pseudocontractive.

Example 1.3 ( [11]). Let H be the real line and C = [−1, 1]. Define T on C by

Tx =

{
2
3x sin(

1
x), x ̸= 0

0, x = 0.
(1.3)

An example of a demicontractive function which is not quasi-nonexpansive and
is not pseudocontractive is given by

Example 1.4 ( [9]). f : [−2, 1] → [−2, 1], f(x) := −x2 − x.
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Furthermore, ℑFN is well known to include resolvents and projection operators,
while ℑQF contains subgradient projection operators (see, e.g., [14] and the reference
therein).

In this paper, we shall focus our attention on the following general two-operator
split common fixed-point problem (SCFPP):

find x ∈ C such that Ax ∈ Q,(1.4)

where A : H1 → H2 is a bounded linear operator, S : H1 → H1 and T : H2 → H2

are two demicontractive operators with nonempty fixed-point sets F (S) = C and
F (T ) = Q, and denote the solution set of the two-operator SCFP by

Ω := {y ∈ C : Ay ∈ Q} = C ∩A−1(Q).(1.5)

Recall that F (S) and F (T ) are nonempty closed convex subsets of H1 and H2,
respectively. If Ω ̸= ∅, we have that Ω is closed and convex subset of H1. The
split common fixed-point problem (SCFP) is a generalization of the split feasibility
problem (SFP) and the convex feasibility problem (CFP) (see [2, 7]).

To solve (1.4), Censor and Segal [7] proposed and proved, in finite-dimensional
spaces, the convergence of the following algorithm:

xn+1 = S(xn + γAt(T − I)Axn), n ≥ 1,(1.6)

where γ ∈
(
0, 2

λ

)
, with λ being the largest eigenvalue of the matrix AtA (At stands

for matrix transposition). In 2011, Moudafi [15] introduced the following relaxed
algorithm:

xn+1 = (1− αn)yn + αnSyn, n ≥ 1,(1.7)

where yn = xn + γA∗(T − I)Axn, β ∈ (0, 1), αn ∈ (0, 1), and γ ∈
(
0, 1

λβ

)
, with λ

being the spectral radius of the operator A∗A. Moudafi proved weak convergence
result of the algorithm (1.7) in Hilbert spaces where S and T are quasi-nonexpansive
operators. We observe that strong convergence result can be obtained in the results
of Moudafi [15] if a compactness type condition like demicompactness is imposed
on the operator S. Furthermore, we can also obtain strong convergence result by
suitably modifying the algorithm (1.7). Recently, Zhao and He [28] introduced the
following viscosity approximation algorithm.{

yn = xn + γA∗(T − I)Axn
xn+1 = αnf(xn) + (1− αn)((1− wn)xn + wnSyn, n ≥ 1,

(1.8)

where f : H1 → H1 is a contraction of modulus ρ > 0, wn ∈
(
0, 12

)
, γ ∈

(
0, 1

λ

)
,

with λ being the spectral radius of the operator A∗A and proved strong convergence
results concerning (1.4) for quasi-nonexpansive operators S and T in real Hilbert
spaces. Inspired by the work of Zhao and He [28], Moudafi [16] quite recently
revisited the viscosity-type approximation method (1.8) above introduced in [28].
First, he proposed a simple proof of the strong convergence of the iterative sequence
{xn} defined by (1.8) based on attracting operator properties and then proposed a
modification of this algorithm (1.8) and proved its strong convergence (see Theorem
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2.1 of [16]).

We remark here that it is quite usual to seek a particular solution of a given
nonlinear problem, in particular, the minimum-norm solution. For instance, given
a nonempty, closed and convex subset C of a Hilbert space H1 and a bounded linear
operator A : H1 → H2, where H2 is another Hilbert space. The C-constrained pseu-

doinverse of A, A†
C is then defined as the minimum-norm solution of the constrained

minimization problem

A†
C(b) := argminx∈C ||Ax− b||

which is equivalent to the fixed point problem

x = PC(x− λA∗(Ax− b)),

where PC is the metric projection from H1 onto C, A∗ is the adjoint of A, λ > 0 is
a constant, and b ∈ H2 is such that P

A(C)
(b) ∈ A(C). It is therefore an interesting

problem to invent iterative algorithms that can generate sequences which converge
strongly to the minimum-norm solution of a given SCFPP (1.4).

So, our main purpose here is to consider the split common fixed point problems for
demicontractive operators such that strong convergence is achieved for the iterative
sequence without imposing compactness type condition on the operators or on the
domains of the operators in the context of real Hilbert spaces. Our results are
motivated by the results of Moudafi [15]. Thus, we modify algorithm (1.7) above and
prove strong convergence results to the minimum-norm solution for split common
fixed point problems concerning demicontractive operators in real Hilbert spaces.

2. Preliminaries

Definition 2.1. A mapping T : H → H is called demiclosed at the origin if any
sequence {xn} weakly converges to x, and if the sequence {Txn} strongly converges
to 0, then Tx = 0.

Next, we state the following well-known lemmas which will be used in the sequel.

Lemma 2.2. Let H be a real Hilbert space. Then there holds the following well-
known results:

(i) ||x+ y||2 = ||x||2 + 2⟨x, y⟩+ ||y||2, ∀x, y ∈ H.
(ii) ||x+ y||2 ≤ ||x||2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

Lemma 2.3 (Xu, [21]). Let {an} be a sequence of nonnegative real numbers satis-
fying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where

(i) {an} ⊂ [0, 1],
∑

αn = ∞;
(ii) lim supσn ≤ 0;

(iii) γn ≥ 0; (n ≥ 1), Σγn < ∞.

Then, an → 0 as n → ∞.
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3. Main results

In this section, we modify the algorithm (1.7) above so as to have strong conver-
gence. Below we include such modification.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator and A∗ : H2 → H1 be the adjoint of A. Let S : H1 → H1 be a k1-
demicontractive mapping such that S − I is demi-closed at 0, C := F (S) ̸= ∅, T :
H2 → H2 be a k2-demicontractive mapping such that such that T − I is demi-closed
at 0 and Q := F (T ) ̸= ∅. Suppose that SCFPP (1.4) has a nonempty solution set
Ω. Let {αn} be a sequence in (0, 1), {βn} a sequence in (0, (1−k1)(1−αn)) ⊂ (0, 1)

and γ ∈
(
0, 1−k2

||A||2

)
. Let sequences {yn}∞n=1 and {xn}∞n=1 be generated by x1 ∈ H1,{

yn = xn + γA∗(T − I)Axn
xn+1 = (1− αn − βn)yn + βnSyn, n ≥ 1.

(3.1)

Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)

∞∑
n=1

αn = ∞ and

(c) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1− k1.

Then the sequence {xn}∞n=1 converges strongly to an element x∗ ∈ Ω which is also
the minimum-norm solution (i.e., x∗ ∈ Ω and ||x∗|| = min{||x|| : x ∈ Ω}).

Proof. Let x∗ ∈ Ω. From (3.1) and Lemma 2.2 (i), we obtain that

||yn − x∗||2 = ||xn − x∗ + γA∗(T − I)Axn||2

= ||xn − x∗||2 + 2γ⟨xn − x∗, A∗(T − I)Axn⟩+ γ2||A∗(T − I)Axn||2.(3.2)

Since

γ2||A∗(T − I)Axn||2 = γ2⟨A∗(T − I)Axn, A
∗(T − I)Axn⟩

= γ2⟨AA∗(T − I)Axn, (T − I)Axn⟩
≤ γ2||A||2||(T − I)Axn||2,(3.3)

Ax∗ ∈ Q = F (T ) and T is a demicontractive mapping, then we obtain

⟨xn − x∗, A∗(T − I)Axn⟩ = ⟨A(xn − x∗), (T − I)Axn⟩
= ⟨A(xn − x∗) + (T − I)Axn − (T − I)Axn, (T − I)Axn⟩
= ⟨TAxn −Ax∗, (T − I)Axn⟩ − ||(T − I)Axn||2

=
1

2

[
||TAxn −Ax∗||2 + ||(T − I)Axn||2 − ||Axn −Ax∗||2

]
− ||(T − I)Axn||2

≤ 1

2

[
||Axn −Ax∗||2 + k2||(T − I)Axn||2

]
+

1

2

[
||(T − I)Axn||2 − ||Axn −Ax∗||2

]
− ||(T − I)Axn||2
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=
k2 − 1

2
||(T − I)Axn||2.(3.4)

Substituting (3.4) and (3.3) into (3.2), we have

||yn − x∗||2 ≤ ||xn − x∗||2 − γ(1− k2 − γ||A||2)||(T − I)Axn||2.(3.5)

From (3.1), we obtain that

||xn+1 − x∗|| = ||(1− βn − αn)(yn − x∗) + βn(Syn − x∗)− αnx
∗||

≤ ||(1− βn − αn)(yn − x∗) + βn(Syn − x∗)||+ αn||x∗||.(3.6)

Using the fact that S is demicontractive, we obtain that

||(1− βn − αn)(yn − x∗) + βn(Syn − x∗)||2

= (1− βn − αn)
2||yn − x∗||2 + β2

n||Syn − x∗||2

+2(1− βn − αn)βn⟨Syn − x∗, yn − x∗⟩
≤ (1− βn − αn)

2||yn − x∗||2

+β2
n[||yn − x∗||2 + k1||yn − Syn||2]

+2(1− βn − αn)βn

[
||yn − x∗||2 − 1− k1

2
||yn − Syn||2

]
= (1− αn)

2||yn − x∗||2 + [k1β
2
n − (1− k1)(1− βn − αn)βn]||yn − Syn||2

= (1− αn)
2||yn − x∗||2 + βn[βn − (1− αn)(1− k1)]||yn − Syn||2

≤ (1− αn)
2||yn − x∗||2,(3.7)

which implies

||(1− βn − αn)(yn − x∗) + βn(Syn − x∗)|| ≤ (1− αn)||yn − x∗||.
Therefore it follows from (3.5), (3.6) and the last inequality above that

||xn+1 − x∗|| ≤ (1− αn)||yn − x∗||+ αn||x∗||(3.8)

≤ (1− αn)||xn − x∗||+ αn||x∗||
≤ max{||xn − x∗||, ||x∗||}

≤
...

≤ max{||x1 − x∗||, ||x∗||}.
Therefore, {xn} and {yn} are bounded.
Now, for any x ∈ H1, we have

||Sx− x∗||2 ≤ ||x− x∗||2 + k1||x− Sx||2

⇒ ⟨Sx− x∗, Sx− x∗⟩ ≤ ⟨x− x∗, x− Sx⟩
+⟨x− x∗, Sx− x∗⟩+ k1||x− Sx||2

⇒ ⟨Sx− x∗, Sx− x⟩ ≤ ⟨x− x∗, x− Sx⟩
+k1||x− Sx||2

⇒ ⟨Sx− x, Sx− x⟩+ ⟨x− x∗, Sx− x⟩
≤ ⟨x− x∗, x− Sx⟩+ k1||x− Sx||2

⇒ (1− k1)||x− Sx||2 ≤ 2⟨x− x∗, x− Sx⟩.(3.9)
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Furthermore, from (3.5) we have

||yn+1 − x∗||2 ≤ ||xn+1 − x∗||2 = ||(1− βn)yn + βnSyn − αnyn − x∗||2

= ||(yn − x∗)− βn(yn − Syn)− αnyn||2

≤ ||(yn − x∗)− βn(yn − Syn)||2 − 2αn⟨yn, xn+1 − x∗⟩
= ||yn − x∗||2 − 2βn⟨yn − Syn, yn − x∗⟩+ β2

n||yn − Syn||2

−2αn⟨yn, xn+1 − x∗⟩
≤ ||yn − x∗||2 − βn(1− k1)||yn − Syn||2 + β2

n||yn − Syn||2

−2αn⟨yn, xn+1 − x∗⟩
= ||yn − x∗||2 − βn[(1− k1)− βn]||yn − Syn||2

−2αn⟨yn, xn+1 − x∗⟩(3.10)

≤ ||xn − x∗||2 − βn[(1− k1)− βn]||yn − Syn||2

−2αn⟨yn, xn+1 − x∗⟩.

Since {yn} and {xn} are bounded, ∃M > 0 such that −2⟨yn, xn+1 − x∗⟩ ≤ M for
all n ≥ 0. Therefore,

βn[(1− k1)− βn]||yn − Syn||2 ≤ ||yn − x∗||2 − ||yn+1 − x∗||2

+αnM.(3.11)

The rest of the proof will be divided into two parts.

Case 1. Suppose that there exists n0 ∈ N such that {||yn − x∗||}∞n=n0
is nonincreas-

ing. Then {||yn − x∗||}∞n=1 converges and ||yn − x∗||2 − ||yn+1 − x∗||2 → 0, n → ∞.
This together with (3.11) and the condition that αn → 0 imply that,

||yn − Syn|| → 0, n → ∞.(3.12)

From (3.5) and (3.8), we have that

γ(1− k2 − γ||A||2)||(T − I)Axn||2 ≤ ||xn − x∗||2 − ||yn − x∗||2

≤
(
||yn−1 − x∗||+ αn−1||x∗||

)2
− ||yn − x∗||2

= ||yn−1 − x∗||2 − ||yn − x∗||2 + 2αn−1||x∗||||yn−1 − x∗||+ α2
n−1||x∗||2.

Using condition (a) above implies that

γ(1− k2 − γ||A||2)||(T − I)Axn||2 → 0, n → ∞.

Hence, we obtain

||(T − I)Axn|| → 0, n → ∞.(3.13)

Also, we observe that

||yn − xn|| = γ||A∗(T − I)Axn|| → 0, n → ∞.

Since {xn} is bounded, there exists {xnj} of {xn} such that xnj ⇀ z ∈ H1. Using
the fact that xnj ⇀ z ∈ H1 and ||yn − xn|| → 0, n → ∞, we have that ynj ⇀
z ∈ H1. By the demiclosedness principle of S − I at zero and (3.12), we have that
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z ∈ F (S) = C. On the other hand, Since A is a linear bounded operator, it follows
from xnj ⇀ z ∈ H1 that Axnj ⇀ Az ∈ H2. Hence, from (3.13), we have that

||TAxnj −Axnj || = ||TAxnj −Axnj || → 0, j → ∞.

Since T − I is demiclosed at zero, we have that Az ∈ F (T ) = Q. Hence, z ∈ Ω.

Now, set wn = (1− βn)yn + βnSyn, n ≥ 1. Then from (3.1) we have that

xn+1 = wn − αnyn.

It then follows that

xn+1 = (1− αn)wn − αn(yn − wn)

= (1− αn)wn + αnβn(yn − Syn).(3.14)

Also

||wn − x∗||2 = ||yn − x∗ − βn(yn − Syn)||2

= ||yn − x∗||2 − 2βn⟨yn − Syn, yn − x∗⟩+ β2
n||yn − Syn||2

≤ ||yn − x∗||2 − βn[(1− k1)− βn]||yn − Syn||2

≤ ||yn − x∗||2.(3.15)

Applying Lemma 2.2 (ii) to (3.14), we have

||yn+1 − x∗||2 ≤ ||xn+1 − x∗||2

= ||(1− αn)(wn − x∗) + αnβn(yn − Syn)− αnx
∗||2

≤ (1− αn)
2||wn − x∗||2 + 2αn⟨βn(yn − Syn)− x∗, xn+1 − x∗⟩

= (1− αn)
2||wn − x∗||2 + 2αnβn⟨yn − Syn, xn+1 − x∗⟩

−2αn⟨x∗, xn+1 − x∗⟩
≤ (1− αn)

2||yn − x∗||2 + 2αnβn⟨yn − Syn, xn+1 − x∗⟩
−2αn⟨x∗, xn+1 − x∗⟩

≤ (1− αn)||yn − x∗||2

+αn[2βn⟨yn − Syn, xn+1 − x∗⟩ − 2⟨x∗, xn+1 − x∗⟩].

We observe that lim supn→∞

{
− 2⟨x∗, xn+1 − x∗⟩

}
≤ −2⟨x∗, z − x∗⟩ ≤ 0 (since

x∗ = PΩ0) and 2βn⟨yn − Syn, xn+1 − x∗⟩ → 0, n → ∞. Now, using Lemma 2.3 in
the inequality above, we have ||yn − x∗|| → 0 and consequently ||xn − x∗|| → 0 by
(3.8). That is, xn → x∗, n → ∞.

Case 2
Assume that {||yn − x∗||} is not monotonically decreasing sequence. Set Γn =
||yn − x∗||2 and let τ : N → N be a mapping for all n ≥ n0 (for some n0 large
enough)by

τ(n) := max{k ∈ N : k ≤ n,Γn ≤ Γn+1}.
Clearly, τ is a non decreasing sequence such that τ(n) → ∞ as n → ∞ and

Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0.
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From (3.11), it is easy to see that

||yτ(n) − Syτ(n)||2 ≤
tτ(n)M

βτ(n)[(1− k1)− βτ(n)]
→ 0, n → ∞.

Thus,
||yτ(n) − Syτ(n)|| → 0, n → ∞.

Furthermore, we can show that

||(T − I)Axτ(n)|| → 0, n → ∞.

By similar argument as above in Case 1, we conclude immediately that yτ(n) weakly
converges to z as τ(n) → ∞. At the same time, we note that, for all n ≥ n0,

0 ≤ ||yτ(n)+1 − x∗||2 − ||yτ(n) − x∗||2

≤ ατ(n)[2⟨βτ(n)(yτ(n) − Syτ(n)), xτ(n)+1 − x∗⟩
−2⟨x∗, xτ(n)+1 − x∗⟩ − ||yτ(n) − x∗||2],

which implies

||yτ(n) − x∗||2 ≤ 2⟨βτ(n)(yτ(n) − Syτ(n)), xτ(n)+1 − x∗⟩ − 2⟨x∗, xτ(n)+1 − x∗⟩.
Hence, we deduce that

lim
n→∞

||yτ(n) − x∗|| = 0.

Therefore,
lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0.

Furthermore, for n ≥ n0, it is easy to see that Γτ(n) ≤ Γτ(n)+1 if n ̸= τ(n) (that is
τ(n) < n), because Γj ≥ Γj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain
for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Hence, limΓn = 0, that is {yn} converges strongly to x∗. Hence, {xn} converges
strongly to x∗. This completes the proof. �
Corollary 3.2. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a
bounded linear operator and A∗ : H2 → H1 be the adjoint of A. Let S : H1 → H1 be
a quasi-nonexpansive mapping such that S − I is demi-closed at 0, C := F (S) ̸= ∅,
T : H2 → H2 be a quasi-nonexpansive mapping such that such that T − I is demi-
closed at 0 and Q := F (T ) ̸= ∅. Suppose that SCFPP (1.4) has a nonempty solution

set Ω. Let {αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1) and γ ∈
(
0, 1

||A||2

)
.

Let sequences {yn}∞n=1 and {xn}∞n=1 be generated by (3.1). Suppose the following
conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞∑
n=1

αn = ∞ and

(c) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then the sequence {xn}∞n=1 converges strongly to an element x∗ ∈ Ω which is also
the minimum-norm solution (i.e., x∗ ∈ Ω and ||x∗|| = min{||x|| : x ∈ Ω}).
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4. Applications

4.1. Split Variational Inequality Problem. In this section, we apply our results
to solving the split variational inequality problem in a real Hilbert space, newly
introduced in [6].

Let H1 and H2 be two real Hilbert spaces. Given operators f : H1 → H1 and
g : H2 → H2, a bounded linear operator A : H1 → H2, and nonempty, closed and
convex subsets C ⊆ H1 and Q ⊆ H2, the split variational inequality problem (SVIP)
is formulated as follows:

Find a point x∗ ∈ C such that

⟨f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ C(4.1)

and such that the point y∗ = Ax∗ ∈ Q and solves

⟨g(y∗), y − y∗⟩ ≥ 0, ∀y ∈ Q.(4.2)

When looked at separately, (4.1) is the classical Variational Inequality Problem
(VIP) and we denote its solution set by SOL(C, f). The SVIP constitutes a pair
of VIPs, which have to be solved so that the image y∗ = Ax∗, under a given
bounded linear operator A; of the solution x∗ of the VIP in H1, is a solution
of another VIP in another space H2. SVIP is quite general and should enable
split minimization between two spaces so that the image of a solution point of one
minimization problem, under a given bounded linear operator, is a solution point
of another minimization problem.

Recalling that SOL(C, f) and SOL(Q, g) are the solution sets of (4.1) and (4.2),
respectively, we see that the solution set of the SVIP is

Ω := Ω(C,Q, f, g, A) := {z ∈ SOL(C, f) : Az ∈ SOL(Q, g)}.

We now prove the following convergence theorem for split variational inequality
problem.

Theorem 4.1. Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a
bounded linear operator. Let f : H1 → H1 and g : H2 → H2 be α1-inverse strongly
monotone and α2-inverse strongly monotone operators on H1 and H2 respectively,

and set α := min{α1, α2}. Assume that γ ∈
(
0, 1

||A||2

)
. Consider the operators

S := PC(I − λf) and T := PQ(I − λg) with λ ∈ [0, 2α]. Assume further that Ω ̸= ∅.
Let {αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1) satisfying:

(a) lim
n→∞

αn = 0;

(b)

∞∑
n=1

αn = ∞ and

(c) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then the sequences {yn}∞n=1 and {xn}∞n=1 generated by x1 ∈ H1,{
yn = xn + γA∗(T − I)Axn
xn+1 = (1− αn − βn)yn + βnSyn, n ≥ 1

(4.3)
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converge strongly to an element x∗ ∈ Ω which is also the minimum-norm solution
(i.e., x∗ ∈ Ω and ||x∗|| = min{||x|| : x ∈ Ω}).

Proof. Let S = PC(I − λf) and T = PQ(I − λg). Then, for x1, x2 ∈ C, we obtain

||Sx1 − Sx2||2 = ||PC(I − λf)x1 − PC(I − λf)x2||2

≤ ||(I − λf)x1 − (I − λf)x2||2

= ||x1 − x2||2 − 2λ⟨f(x1)− f(x2), x1 − x2⟩+ λ2||f(x1)− f(x2)||2

≤ ||x1 − x2||2 − 2λα1||f(x1)− f(x2)||2 + λ2||f(x1)− f(x2)||2

≤ ||x1 − x2||2 − λ(2α− λ)||f(x1)− f(x2)||2

≤ ||x1 − x2||2

and for y1, y2 ∈ Q, we have

||Ty1 − Ty2||2 = ||PQ(I − λg)y1 − PQ(I − λg)y2||2 ≤ ||(I − λg)y1 − (I − λg)y2||2

= ||y1 − y2||2 − 2λ⟨g(y1)− g(y2), y1 − y2⟩+ λ2||g(y1)− g(y2)||2

≤ ||y1 − y2||2 − 2λα2||g(y1)− f(y2)||2 + λ2||g(y1)− g(y2)||2

≤ ||y1 − y2||2 − λ(2α− λ)||g(y1)− g(y2)||2

≤ ||y1 − y2||2.

This implies that S and T are nonexpansive and hence quasi-nonexpansive (0-
demicontractive) mappings. We obtain the desired conclusion by following the line
of arguments of proof of Theorem 3.1. �

4.2. Split Convex Minimization Problem. Consider the following constrained
convex minimization problem:

minimize{F (x) : x ∈ C},(4.4)

where F : C → R is a real-valued convex function. We say that the minimization
problem (4.4) is consistent if the minimization problem (4.4) has a solution. In the
sequel, we shall denote the solutions set of problem (4.4) by Ω. If F is (Fréchet)
differentiable, then x∗ ∈ Ω if and only if

⟨∇F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C,(4.5)

where ∇F is the gradient of f . Since (4.5) is a VIP, we make the following observa-
tion. If F : H1 → H1 and G : H2 → H2 are Fréchet differentiable convex functions
on closed and convex subsets C ⊂ H1 and Q ⊂ H2 respectively, and if in the SVIP
we take f = ∇F and g = ∇G, then we obtain the following Split Minimization
Problem (SMP):
find a point x∗ ∈ C such that

x∗ = argmin{f(x) : x ∈ C}(4.6)

and such that the point y∗ = Ax∗ ∈ Q and solves

y∗ = argmin{g(y) : y ∈ Q}.(4.7)

Following the line of proof of Theorem 3.1 and Theorem 4.1, we can prove the
following theorem.
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Theorem 4.2. Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a
bounded linear operator. Let F : H1 → H1 and G : H2 → H2 be Fréchet differ-
entiable convex functions on closed and convex subsets C ⊂ H1 and Q ⊂ H2 re-
spectively. Let ∇F be α1-inverse strongly monotone and ∇G be α2-inverse strongly
monotone operators on H1 and H2 respectively, and set α := min{α1, α2}. As-

sume that γ ∈
(
0, 1

||A||2

)
. Consider the operators S := PC(I − λ∇F ) and T :=

PQ(I − λ∇G) with λ ∈ [0, 2α]. Assume further that Ω ̸= ∅. Let {αn}∞n=1 and
{βn}∞n=1 be two real sequences in (0, 1) satisfying:

(a) lim
n→∞

αn = 0;

(b)

∞∑
n=1

αn = ∞ and

(c) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then the sequences {yn}∞n=1 and {xn}∞n=1 generated by x1 ∈ H1,{
yn = xn + γA∗(T − I)Axn
xn+1 = (1− αn − βn)yn + βnSyn, n ≥ 1

(4.8)

converge strongly to an element x∗ ∈ Ω which is also the minimum-norm solution
(i.e., x∗ ∈ Ω and ||x∗|| = min{||x|| : x ∈ Ω}).

4.3. Split Common Zeros Problem. The Split Zeros Problem (SZP), newly in-
troduced in [6], is defined as: Let H1 and H2 be two Hilbert spaces. Given operators
B1 : H1 → H1 and B2 : H2 → H2, and a bounded linear operator A : H1 → H2, the
SZP is formulated as follows:
find a point x ∈ H1 such that

B1(x) = 0 and B2(Ax) = 0.(4.9)

This problem is a special case of the SVIP if A is a surjective operator. To see
this, take in (4.1) - (4.2) C = H1, Q = H2, f = B1 and g = B2, and choose
x := x∗ − B1(x

∗) ∈ H1 in (4.1) and x ∈ H1 such that Ax := Ax∗ − B2(Ax∗) ∈ H2

in (4.2).

The next lemma proved in [6] shows when the only solution of an SVIP is a
solution of an SZP.

Lemma 4.3. Let H1 and H2 be real Hilbert spaces, and C ⊆ H1 and Q ⊆ H2

nonempty, closed and convex subsets. Let B1 : H1 → H1 and B2 : H2 → H2 be
α-ISM operators and let A : H1 → H2 be a bounded linear operator. Assume that
C ∩ {x ∈ H1 : B1(x) = 0} ̸= 0, and that Q ∩ {y ∈ H2 : B2(y) = 0} ̸= 0, and denote

Ω := Ω(C,Q,B1, B2, A) := {z ∈ SOL(C,B1) : Az ∈ SOL(Q,B2)}.
Then, for any x∗ ∈ C with Ax∗ ∈ Q, x∗ solves (4.9) if and only if x∗ ∈ Ω.

In view of Lemma 4.3 and using Theorem 3.1 and Theorem 4.1, we can prove the
following convergence theorem for Split Common Zeros Problem.

Theorem 4.4. Let H1 and H2 be real Hilbert spaces, and C ⊆ H1 and Q ⊆ H2

nonempty, closed and convex subsets. Let B1 : H1 → H1 and B2 : H2 → H2 be
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α-inverse strongly monotone operators (ISM) operators and let A : H1 → H2 be a
bounded linear operator. Assume that C ∩ {x ∈ H1 : B1(x) = 0} ̸= 0, and that

Q ∩ {y ∈ H2 : B2(y) = 0} ̸= 0. Assume that γ ∈
(
0, 1

||A||2

)
. Consider the operators

S := PC(I − λB1) and T := PQ(I − λB2) with λ ∈ [0, 2α]. Assume further that
Ω ̸= ∅. Let {αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1) satisfying:

(a) lim
n→∞

αn = 0;

(b)

∞∑
n=1

αn = ∞ and

(c) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then the sequences {yn}∞n=1 and {xn}∞n=1 generated by x1 ∈ H1,{
yn = xn + γA∗(T − I)Axn
xn+1 = (1− αn − βn)yn + βnSyn, n ≥ 1

(4.10)

converge strongly to an element x∗ ∈ Ω which is also the minimum-norm solution
(i.e., x∗ ∈ Ω and ||x∗|| = min{||x|| : x ∈ Ω}).

Remark 4.5. The condition

⟨f(x), PC(I − λf)(x)− x∗⟩ ≥ 0, ∀x ∈ H1, x
∗ ∈ SOL(C, f).

imposed in Theorem 6.3 of [6] is dispensed with in our results

Remark 4.6. We make the following remarks concerning our results.

(1) In order to obtain strong convergence results, in this paper, we consider
convergence analysis of split common fixed problem using a modified Mann-
type iteration. In other words, the assumption of the condition “semi-
compactness” as assumed in Chang et al. [8] or “demi-compactness” as
assumed in Boonchari and Saejung [4] are dispensed with in our results.
In addition, our iterative method is easy to implement.

(2) Our results extend the class of operators for split common fixed point prob-
lem considered in the results of Moudafi [15, 16] and Zhao and He [28] to
a wider class of operators:- demicontractive mappings. Furthermore, our
results extend the results of Li and Yao [12].

(3) In the results of Moudafi [17], weak convergence results were given concern-
ing split common fixed point problem for demicontractive mappings while
in this paper, we give strong convergence results for split common fixed
point problem for demicontractive mappings.

(4) Since demicontractive operators include directed operators ( an operator
T : H → H is called directed if ⟨z − Tx, x − Tx⟩ ≤ 0, ∀z ∈ F (T ), x ∈ H),
then all the results in this paper hold if S and T are directed operators.
Please see, for example, Cui et al. [10] and Bauschke and Combettes [1] for
more details.
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