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The idea of σ-convergence for double sequences has been studied in [5] and further
studied in [17], [18] and [19].

A double sequence x = (xjk) of real numbers is said to be σ-convergent to a
number L if and only if x ∈ Vσ, where

Vσ = {x ∈ Mu : P - lim
p,q→∞

τpqst(x) = L uniformly in s, t;L = σ−limx}

τpqst(x) =
1

pq

p−1∑
j=0

q−1∑
k=0

xσj(s),σk(t)

and τ−1,q,s,t = τp,−1,s,t = τ−1,−1,s,t = 0.
For σ(n) = n + 1, the set Vσ is reduced to the set F of almost convergent

double sequences [15]. The concept of almost convergence for single sequences was
introduced by Lorentz [9].

Note that a convergent double sequence need not be σ-convergent. However every
bounded convergent double sequence is σ-convergent and every σ-convergent double
sequence is bounded.

Example 1.1. Let σ(n) = n+ 1. The double sequence z = (zmn) defined by

(1.1) zmn =


1 if m = n odd,

−1 if m = n even,

0 (m ̸= n);

is σ-convergent to zero but not P -convergent.

Let C[a, b] be the space of all functions f continuous on [a, b]. We know that
C[a, b] is a Banach space with norm

∥f∥∞ := sup
x∈[a,b]

|f(x)|, f ∈ C[a, b].

The classical Korovkin approximation theorem states as follows [5]:
Let (Tn) be a sequence of positive linear operators from C[a, b] into C[a, b]. Then

limn ∥Tn(f, x) − f(x)∥∞ = 0, for all f ∈ C[a, b] if and only if limn ∥Tn(fi, x) −
fi(x)∥∞ = 0, for i = 0, 1, 2, where f0(x) = 1, f1(x) = x and f2(x) = x2.

Quite recently, such type of approximation theorems are proved in [1, 11] for
almost convergence of single and double sequences. For more details on Korovkin’s
type approximation theorem, one can be referred to [2, 4, 7, 12, 13, 14]. In this paper,
we use the notion of σ-convergence of double sequences to prove approximation
theorems for functions of two variables by using different sets of test functions.

2. For test functions 1, x
1−x ,

y
1−y , (

x
1−x)

2 + ( y
1−y )

2

Let I = [0, A], J = [0, B], A,B ∈ (0, 1) and K = I × J . We denote by C(K) the
space of all continuous real valued functions on K. This space is a equipped with
norm

∥f∥C(K) := sup
(x,y)∈K

|f(x, y)|, f ∈ C(K).
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Let Hω(K) denote the space of all real valued functions f on K such that

| f(s, t)− f(x, y) |≤ ω

(
f ;

√( s

1− s
− x

1− x

)2
+

( t

1− t
− y

1− y

)2
)
,

where ω is the modulus of continuity, i.e.

ω(f ; δ) = sup
(s,t),(x,y)∈K

{
|f(s, t)− f(x, y)| :

√
(s− x)2 + (t− y)2 ≤ δ

}
.

It is to be noted that any function f ∈ Hω(K) is continuous and bounded on K.

The following result was given by Taşdelen and Erençin [21].

Theorem A. Let (Tj,k) be a double sequence of positive linear operators from Hω(K)
into C(K). Then for all f ∈ Hω(K)

P - lim
j,k→∞

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

= 0

if and only if

P - lim
j,k→∞

∥∥∥∥Tj,k(fi;x, y)− fi

∥∥∥∥
C(K)

= 0 (i = 0, 1, 2, 3),

where

f0(x, y) = 1,

f1(x, y) =
x

1− x
,

f2(x, y) =
y

1− y
,

and

f3(x, y) =
( x

1− x

)2
+

( y

1− y

)2
.

We prove the following result:

Theorem 2.1. Let (Tj,k) be a double sequence of positive linear operators from
Hω(K) into C(K). Then for all f ∈ Hω(K)

(2.1) σ- lim

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

= 0.

if and only if

(2.2) σ- lim

∥∥∥∥Tj,k(1;x, y)− 1

∥∥∥∥
C(K)

= 0,

(2.3) σ- lim

∥∥∥∥Tj,k

( s

1− s
;x, y

)
− x

1− x

∥∥∥∥
C(K)

= 0,

(2.4) σ- lim

∥∥∥∥Tj,k

( t

1− t
;x, y

)
− y

1− y

∥∥∥∥
C(K)

= 0,
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(2.5) σ- lim

∥∥∥∥Tj,k

(( s

1− s

)2
+
( t

1− t

)2
;x, y

)
−
(( x

1− x

)2
+
( y

1− y

)2
)∥∥∥∥

C(K)

= 0.

Proof. Since each of 1, x
1−x ,

y
1−y , (

x
1−x)

2+( y
1−y )

2 belongs to Hω(K), conditions (2.2)-

(2.5) follow immediately from (2.1). Let f ∈ Hω(K) and (x, y) ∈ K be fixed. Then,
after using the properties of f, a simple calculation gives

| Tj,k(f ;x, y)− f(x, y) |
≤Tj,k(| f(s, t)− f(x, y) |;x, y)+ | f(x, y) || Tj,k(f0;x, y)− f0(x, y) |

≤ε+
(
ε+N +

2N

δ2

)
| Tj,k(f0;x, y)− f0(x, y) | +

4N

δ2
| Tj,k(f1;x, y)− f1(x, y) |

+
4N

δ2
| Tj,k(f2;x, y)− f2(x, y) | +

2N

δ2
| Tj,k(f3;x, y)− f3(x, y) |

≤ε+M
{
| Tj,k(f0;x, y)− f0(x, y) | + | Tj,k(f1;x, y)− f1(x, y) |

+ | Tj,k(f2;x, y)− f2(x, y) | + | Tj,k(f3;x, y)− f3(x, y) |
}
,

where N =∥ f ∥C(K) and

M = max

{
ε+N+

2N

δ2

(( A

1−A

)2
+
( B

1−B

)2
)
,
4N

δ2

( A

1−A

)
,
4N

δ2

( B

1−B

)
,
2N

δ2

}
.

Now replacing Tj,k(f ;x, y) by
1
pq

∑p−1
j=0

∑q−1
k=0 Tσj(s),σk(t)(f ;x, y) and taking sup(x,y)∈K ,

we get ∥∥∥∥ 1

pq

p−1∑
j=0

q−1∑
k=0

Tσj(s),σk(t)(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

≤ε+M

(∥∥∥∥ 1

pq

p−1∑
j=0

q−1∑
k=0

Tσj(s),σk(t)(f0;x, y)− f0(x, y)

∥∥∥∥
C(K)

+

∥∥∥∥ 1

pq

p−1∑
j=0

q−1∑
k=0

Tσj(s),σk(t)(f1;x, y)− f1(x, y)

∥∥∥∥
C(K)

+

∥∥∥∥ 1

pq

p−1∑
j=0

q−1∑
k=0

Tσj(s),σk(t)(f2;x, y)− f2(x, y)

∥∥∥∥
C(K)

+

∥∥∥∥ 1

pq

p−1∑
j=0

q−1∑
k=0

Tσj(s),σk(t)(f3;x, y)− f3(x, y)

∥∥∥∥
C(K)

)
(2.6)

Now taking limp,q→∞ uniformly in s, t on both sides in (2.6) and using the conditions
(2.2)-(2.5), we get

P - lim
p,q→∞

∥∥∥∥ 1

pq

p−1∑
j=0

q−1∑
k=0

Tσj(s),σk(t)(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

, uniformly in s, t.

That is,

σ- lim

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

= 0.
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This completes the proof of the theorem. �
We show that the following double sequence of positive linear operators satisfies

the conditions of Theorem 2.1 but does not satisfy the conditions of Theorem A.

Example 2.2. Consider the following Meyer-König and Zeller [10] (of two variables)
operators:

(2.7) Bm,n(f ;x, y)

:= (1−x)m+1(1−y)n+1
∞∑
j=0

∞∑
k=0

f

(
j

j +m+ 1
,

k

k + n+ 1

)(
m+ j

j

)(
n+ k

k

)
xjyk,

where f ∈ Hω(K), and K = [0, A]× [0, B], A,B ∈ (0, 1).

Since, for x ∈ [0, A], A ∈ (0, 1),

1

(1− x)m+1
=

∞∑
j=0

(
m+ j

j

)
xj ,

it is easy to see that
Bm,n(f0;x, y) = f0(x, y).

Also, we obtain

Bm,n(f1;x, y) = (1− x)m+1(1− y)n+1
∞∑
j=0

∞∑
k=0

j

m+ 1

(
m+ j

j

)(
n+ k

k

)
xjyk

= (1− x)m+1(1− y)n+1x

∞∑
j=0

∞∑
k=0

1

m+ 1

(m+ j)!

m!(j − 1)!

(
n+ k

k

)
xj−1yk

= (1− x)m+1(1− y)n+1x
1

(1− x)m+2

1

(1− y)n+1
=

x

(1− x)
,

and similarly

Bm,n(f2;x, y) =
y

(1− y)
.

Finally, we get

Bm,n(f3;x, y)

= (1− x)m+1(1− y)n+1
∞∑
j=0

∞∑
k=0

{( j

m+ 1

)2
+

( k

n+ 1

)2
}(

m+ j

j

)(
n+ k

k

)
xjyk

= (1− x)m+1(1− y)n+1 x

m+ 1

∞∑
j=0

∞∑
k=0

j

m+ 1

(m+ j)!

m!(j − 1)!

(
n+ k

k

)
xj−1yk

+ (1− x)m+1(1− y)n+1 y

n+ 1

∞∑
j=0

∞∑
k=0

k

n+ 1

(
m+ j

j

)
(n+ k)!

n!(k − 1)!
xjyk−1

= (1− x)m+1(1− y)n+1 x

m+ 1

{
x

∞∑
j=0

∞∑
k=0

(m+ j + 1)!

(m+ 1)!(j − 1)!

(
n+ k

k

)
xj−1yk
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+

∞∑
j=0

∞∑
k=0

(
m+ j + 1

j

)(
n+ k

k

)
xjyk

}

+ (1− x)m+1(1− y)n+1 y

n+ 1

{
y

∞∑
j=0

∞∑
k=0

(n+ k + 1)!

(n+ 1)!(k − 1)!

(
m+ j

j

)
xjyk−1

+

∞∑
j=0

∞∑
k=0

(
n+ k + 1

k

)(
m+ j

j

)
xjyk

}
=

m+ 2

m+ 1

( x

1− x

)2
+

1

m+ 1

x

1− x
+

n+ 2

n+ 1

( y

1− y

)2
+

1

n+ 1

y

1− y

→
( x

1− x

)2
+

( y

1− y

)2
.

Therefore the conditions of Theorem A are satisfied, and we get for all f ∈ Hω(K)
that

P - lim
j,k→∞

∥∥∥∥Tj,k(f ;x, y)− f(x, y)

∥∥∥∥= 0.

Let w = (zmn) be defined by (1.1) which is σ-convergent to 0 but not P -
convergent.

Let Lm,n : Hω(K) → C(K) be defined by

Lm,n(f ;x, y) = (1 + zmn)Bm,n(f ;x, y).

It is easy to see that the sequence (Lm,n) satisfies the conditions (2.2)-(2.5).
Hence by Theorem 2.1, we have

σ- lim ∥Lm,n(f ;x, y)− f(x, y)∥ = 0.

On the other hand, the sequence (Lm,n) does not satisfy the conditions of Theorem
A, since (Lm,n) is not P -convergent. That is, Theorem A does not work for our
operators Lm,n. Hence our Theorem 2.1 is stronger than Theorem A.

3. For test functions 1, x
1+x ,

y
1+y , (

x
1+x)

2 + ( y
1+y )

2

Let K = [0,∞) × [0,∞). We denote by CB(K) the space of all bounded and
continuous real valued functions on K equipped with norm

∥f∥CB(K) := sup
(x,y)∈K

|f(x, y)|, f ∈ CB(K).

Let Hω∗(K) denote the space of all real valued functions f on K such that

| f(s, t)− f(x, y) |≤ ω∗
(
f ;

√( s

1 + s
− x

1 + x

)2
+

( t

1 + t
− y

1 + y

)2
)
,

where ω∗ is the modulus of continuity, i.e.

ω∗(f ; δ) = sup
(s,t),(x,y)∈K

{
|f(s, t)− f(x, y)| :

√
(s− x)2 + (t− y)2 ≤ δ

}
.
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It is to be noted that any function f ∈ Hω∗(K) is bounded and continuous on
K, and a necessary and sufficient condition for f ∈ Hω∗(K) is that

lim
δ→0

ω∗(f ; δ) = 0.

The following is two-dimensional version of the Korovkin type theorem of Çakar
and Gadjiev [6].

Theorem B. Let (Tjk) be a sequence of positive linear operators from Hω∗(K) into
CB(K). Then for all f ∈ Hω∗(K)

P - lim
j,k→∞

∥∥∥∥Tjk(f ;x, y)− f(x, y)

∥∥∥∥
CB(K)

= 0

if and only if

P - lim
j,k→∞

∥∥∥∥Tjk(fi;x, y)− fi

∥∥∥∥
CB(K)

= 0 (i = 0, 1, 2, 3),

where

f0(x, y) = 1,

f1(x, y) =
x

1 + x
,

f2(x, y) =
y

1 + y
,

and

f3(x, y) =
( x

1 + x

)2
+

( y

1 + y

)2
.

We prove the following result:

Theorem 3.1. Let (Tjk) be a double sequence of positive linear operators from
Hω∗(K) into CB(K). Then for all f ∈ Hω∗(K)

(3.1) σ- lim

∥∥∥∥Tjk(f ;x, y)− f(x, y)

∥∥∥∥
CB(K)

= 0

if and only if

(3.2) σ- lim

∥∥∥∥Tjk(1;x, y)− 1

∥∥∥∥
CB(K)

= 0

(3.3) σ- lim

∥∥∥∥Tjk

( s

1 + s
;x, y

)
− x

1 + x

∥∥∥∥
CB(K)

= 0

(3.4) σ- lim

∥∥∥∥Tjk

( t

1 + t
;x, y

)
− y

1 + y

∥∥∥∥
CB(K)

= 0

(3.5) σ- lim

∥∥∥∥Tjk

(( s

1 + s

)2
+
( t

1 + t

)2
;x, y

)
−
(( x

1 + x

)2
+
( y

1 + y

)2
)∥∥∥∥

CB(K)

= 0.
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Proof. Since each of the functions f0(x, y) = 1, f1(x, y) = x
1+x , f2(x, y) = y

1+y ,

f3(x, y) = ( x
1+x)

2 + ( y
1+y )

2 belongs to Hω∗(K), conditions (3.2)-(3.5) follow imme-

diately from (3.1). Let f ∈ Hω∗(K) and (x, y) ∈ K be fixed. Then for ε > 0 there
exist δ1, δ2 > 0 such that | f(s, t) − f(x, y) |< ε holds for all (s, t) ∈ K satisfying
| s
1+s −

x
1+x | < δ1 and | t

1+t −
y

1+y | < δ2. Let

K(δ) :=

{
(s, t) ∈ K :

√( s

1 + s
− x

1 + x

)2
+

( t

1 + t
− y

1 + y

)2
< δ = min{δ1, δ2}

}
.

Hence

| f(s, t)− f(x, y) | =| f(s, t)− f(x, y) | χK(δ)(s, t)+ | f(s, t)− f(x, y) | χK\K(δ)(s, t)

≤ ε+ 2NχK\K(δ)(s, t),(3.6)

where χD denotes the characteristic function of the set D and N = ∥f∥CB(K).
Further we get

(3.7) χK\K(δ)(s, t) ≤
1

δ21

( s

1 + s
− x

1 + x

)2
+

1

δ22

( t

1 + t
− y

1 + y

)2
.

Combining (3.6) and (3.7), we get

(3.8) | f(s, t)− f(x, y) |≤ ε+
2N

δ2

{( s

1 + s
− x

1 + x

)2
+

( t

1 + t
− y

1 + y

)2
}
.

After using the properties of f, a simple calculation gives that

| Tjk(f ;x, y)− f(x, y) |≤ ε+M
{
| Tjk(f0;x, y)− f0(x, y) |
+ | Tjk(f1;x, y)− f1(x, y) |
+ | Tjk(f2;x, y)− f2(x, y) |
+ | Tjk(f3;x, y)− f3(x, y) |

}
,(3.9)

where

M := ε+N +
4N

δ2
.

Now replacing Tj,k(f ;x, y) by
1
pq

∑p−1
j=0

∑q−1
k=0 Tσj(s),σk(t)(f ;x, y) and taking sup(x,y)∈K ,

we get

(3.10)

∥∥∥∥ 1

pq

p−1∑
j=0

q−1∑
k=0

Tσj(s),σk(t)(f ;x, y)− f(x, y)

∥∥∥∥
C(K)

≤ ε+M

3∑
i=0

(∥∥∥∥ 1

pq

p−1∑
j=0

q−1∑
k=0

Tσj(s),σk(t)(fi;x, y)− fi(x, y)

∥∥∥∥
C(K)

,

where the functions fi (i = 0, 1, 2, 3) are same as in Theorem B. Now taking
limp,q→∞ uniformly in s, t on both sides in (3.10) and using the conditions (3.2)-
(3.5), we immediately get (3.1).

This completes the proof of the theorem. �

We show that the following double sequence of positive linear operators satisfies
the conditions of Theorem 3.1 but does not satisfy the conditions of Theorem B.
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Example 3.2. Consider the following Bleimann, Butzer and Hahn [3] (of two vari-
ables) operators:

Bm,n(f ;x, y) :=
1

(1 + x)m(1 + y)n

m∑
j=0

n∑
k=0

f

(
j

m− j + 1
,

k

n− k + 1

)(
m

j

)(
n

k

)
xjyk,

where f ∈ Hω(K), K = [0,∞)× [0,∞) and n ∈ N.
Since

(1 + x)m =

m∑
j=0

(
m

j

)
xj and (1 + y)n =

n∑
k=0

(
n

k

)
yk,

it is easy to see that

Bmn(f0;x, y) → 1 = f0(x, y).

Also by simple calculation, we obtain

Bmn(f1;x, y) →
x

1 + x
= f1(x, y),

Bmn(f2;x, y) →
y

1 + y
= f2(x, y),

and

Bmn(f3;x, y) →
( x

1 + x

)2
+

( y

1 + y

)2
= f3(x, y).

Let the operator Lmn : Hω(K) → CB(K) be defined by

Lmn(f ;x, y) = (1 + zmn)Bmn(f ;x, y).

It is easy to see that the sequence (Lmn) satisfies conditions (3.2)-(3.5). Hence
by Theorem 3.1, we have

σ- lim

∥∥∥∥Lmn(f ;x, y)− f(x, y)

∥∥∥∥
CB(K)

= 0.

On the other hand, the sequence (Lmn) does not satisfy the conditions of Theorem
B, since (Lmn) is σ-convergent to 0 but not P -convergent. That is, Theorem B does
not work for our operators Lmn. Hence our Theorem 3.1 is stronger than Theorem B.
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