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falls into the one between classes of nonexpansive mappings and pseudocontractive
mappings. Also, we remark that the class of strongly pseudocontractive mappings
is independent of the class of k-strictly pseudo-contractive mappings (see [3, 4]).

Let A be a strongly positive bounded linear self-adjoint operator on H with a
constant γ > 0, that is, there exists a constant γ > 0 such that

⟨Ax, x⟩ ≥ γ∥x∥2, ∀x ∈ H.

Let f : C → C be a contractive mapping with constant α ∈ (0, 1), that is, there
exists a constant α ∈ (0, 1) such that ∥f(x)− f(y)∥ ≤ α∥x− y∥ for all x, y ∈ C.

The following optimization problem has been studied extensively by many au-
thors:

min
x∈Ω

µ

2
⟨Ax, x⟩+ 1

2
∥x− u∥2 − h(x),

where Ω =
∩∞

i=1Ci, C1, C2, · · · , are infinitely many closed convex subsets of H
such that

∩∞
i=1Ci ̸= ∅, u ∈ H, µ ≥ 0 is a real number, A is a strongly positive

bounded linear self-adjoint operator on H and h is a potential function for γf (i.e.,
h′(x) = γf(x) for all x ∈ H). For this kind of minimization problems, see, for
example, Bauschke and Borwein [2], Combettes [7], Deutsch and Yamada [8], Jung
[10] and Xu [18] when h(x) = ⟨x, b⟩ for b is a given point in H.

Iterative algorithms for nonexpansive mappings and strictly pseudocontractive
mappings have recently been applied to solve the optimization problem, where the
constraint set is the set of fixed points of the mapping, see, e.q., [5, 8, 11, 15, 19, 20]
and the references therein. Some iterative algorithms for equilibrium problems, vari-
ational inequality problems and fixed point problems to solve optimization problem,
where the constraint set is the common set of the set of solutions of the problems
and the set of fixed points of the mappings, were also investigated by many authors
recently, see, e.q., [12, 21, 22] and the references therein.

Inspired and motivated by the recent works in this direction, in this paper, we
consider the following optimization problem

(1.1) min
x∈F (T )

µ

2
⟨Ax, x⟩+ 1

2
∥x− u∥2 − h(x),

where F (T ) is the set of fixed points of a k-strictly pseudocontractive mapping T .
We introduce new implicit and explicit iterative algorithms for a k-strictly pseudo-
contractive mapping T related to the optimization problem (1.1), and then prove
that the sequences generated by the proposed iterative algorithms converge strongly
to a fixed point of the mapping T , which solves the optimization problem (1.1). In
particular, in order to establish strong convergence of explicit iterative algorithm,
we utilize weak and different control conditions in comparison with previous ones.
As a direct consequence, we obtain the unique minimum-norm point in the set F (T ).

2. Preliminaries and lemmas

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. In the following, when {xn} is a sequence in E, then xn → x (resp., xn ⇀ x)
will denote strong (resp., weak) convergence of the sequence {xn} to x.

We need some facts and tools in a real Hilbert space which are listed as lemmas
below. We will use them in the proofs for the main results in next section.
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Recall that for every point x ∈ H, there exists a unique nearest point in C,
denoted by PC(x), such that

∥x− PC(x)∥ ≤ ∥x− y∥
for all y ∈ C. PC is called the metric projection of H onto C. It is well known that
PC is nonexpansive.

Lemma 2.1 ([9]). Let H a real Hilbert space, let C be a nonempty closed convex
subset of H, and let T : C → C be a nonexpansive mapping with F (T ) ̸= ∅. If {xn}
is a sequence in C weakly converging to x and if {(I − T )xn} converges strongly to
y, then (I − T )x = y.

The following Lemmas 2.2 and 2.3 are not hard to prove (see also Lemmas 2.3
and 2.5 in [15]).

Lemma 2.2. Let µ > 0, and let A : H → H be a strongly positive linear bounded
operator on a Hilbert space H with a constant γ ∈ (0, 1) such that (1+µ)γ < 1. Let
0 < ρ ≤ (1 + µ∥A∥)−1. Then ∥I − ρ(I + µA)∥ < 1− ρ(1 + µ)γ

Lemma 2.3. Let H be a real Hilbert space, and let C be a nonempty closed convex
subset of H. Let f : C → C be a contractive mapping with constant α ∈ (0, 1),
and let A : C → C be a strongly positive bounded linear operator with a constant
γ ∈ (0, 1). Let µ > 0 and 0 < γ < (1 + µ)γ/α with (1 + µ)γ < 1. Then for all
x, y ∈ C,

⟨x− y, ((I + µA)− γf)x− ((I + µA)− γf)y⟩ ≥ ((1 + µ)γ − γα)∥x− y∥2.
That is, (I + µA)− γf is strongly monotone with a constant (1 + µ)γ − γα.

Lemma 2.4 ([23]). Let H be a Hilbert space, let C be a nonempty closed convex
subset of H, and let T : C → H be a k-strictly pseudo-contractive mapping. Then
the following hold:

(i) The fixed point set F (T ) is closed convex so that the projection PF (T ) is well
defined,

(ii) F (PCT ) = F (T ),
(iii) If we define a mapping S : C → H by Sx = λx + (1 − λ)Tx for all x ∈ C.

Then, as λ ∈ [k, 1), S is a nonexpansive mapping such that F (S) = F (T ).

Lemma 2.5 ([14, 18]). Let {sn} be a sequence of non-negative real numbers satis-
fying

sn+1 ≤ (1− λn)sn + λnδn + rn, ∀n ≥ 0,

where {λn}, {δn} and {rn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn = ∞,
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 λn|δn| < ∞,

(iii) rn ≥ 0 (n ≥ 0),
∑∞

n=0 rn < ∞.

Then limn→∞ sn = 0.

Lemma 2.6. In a Hilbert space H, the following inequality holds:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.
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Let LIM be a Banach limit. According to time and circumstances, we use
LIMn(an) instead of LIM(a) Then the following are well-known:

(i) for all n ≥ 1, an ≤ cn implies LIMn(an) ≤ LIMn(cn),
(ii) LIMn(an+N ) = LIMn(an) for any fixed positive integer N ,
(iii) lim infn→∞ an ≤ LIMn(an) ≤ lim supn→∞ an for all {an} ∈ l∞

The following lemma was given in Proposition 2 in [17].

Lemma 2.7. Let a ∈ R be a real number, and let a sequence {an} ∈ ℓ∞ satisfy the
condition LIMn(an) ≤ a for all Banach limit LIM . If lim supn→∞(an+1−an) ≤ 0,
then lim supn→∞ an ≤ a.

The following lemma can be found in [21](see also Lemma 2.1 in [10]).

Lemma 2.8. Let C be a nonempty closed convex subset of a real Hilbert space H,
and let g : C → R ∪ {∞} be a proper lower semicontiunous differentiable convex
function. If x∗ is a solution to the minimization problem

g(x∗) = inf
x∈C

g(x),

then
⟨g′(x∗), x− x∗⟩ ≥ 0, x ∈ C.

In particular, if x∗ solves the optimization problem

min
x∈C

µ

2
⟨Ax, x⟩+ 1

2
∥x− u∥2 − h(x),

then
⟨u+ (γf − (I + µA))x∗, x− x∗⟩ ≤ 0, x ∈ C,

where h is a potential function for γf .

Finally, we recall that the sequence {xn} in H is said to be weakly asymptotically
regular if

w − lim
n→∞

(xn+1 − xn) = 0, that is, xn+1 − xn ⇀ 0

and asymptotically regular if

lim
n→∞

∥xn+1 − xn∥ = 0,

respectively.

3. Main results

Throughout the rest of this paper, we always assume the following:

• H is a real Hilbert space;
• C is a nonempty closed subspace of H;
• T : C → H is a k-strictly pseudocontractive mapping with F (T ) ̸= ∅ for
some 0 ≤ k < 1;

• S : C → H is a mapping defined by Sx = kx+ (1− k)Tx;
• A : C → C is a strongly positive bounded linear self-adjoint operator with
a constant γ ∈ (0, 1);

• f : C → C is a contractive mapping with a constant α ∈ (0, 1);
• µ > 0 and 0 < γ < (1 + µ)γ/α with (1 + µ)γ < 1;
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• u ∈ C is a fixed element;
• PC is a metric projection of H onto C.

First, in order to find a solution of the optimization problem (1.1), we construct
the following iterative algorithm which generates a net {xt} in an implicit way:

(3.1) xt = t(u+ γf(xt)) + (I − t(I + µA))PCSxt, ∀t ∈
(
0,

1

1 + µ∥A∥

)
.

To this end, for t ∈ (0, 1) such that t < (1+µ∥A∥)−1, consider a mapping Qt : C →
C by

Qtx = t(u+ γf(x)) + (I − t(I + µA))PCSx, ∀x ∈ C.

It is easy to see that Qt is a contraction with constant 1− t((1+µ)γ−γα). Indeed,
by Lemma 2.2, we have

∥Qtx−Qty∥ ≤ tγ∥f(x)− f(y)∥+ ∥(I − t(I + µA))(PCSx− PCSy)∥
≤ tγα∥x− y∥+ (1− t(1 + µ)γ)∥x− y∥
= (1− t((1 + µ)γ − γα))∥x− y∥.

Hence Qt has a unique fixed point, denoted xt, which uniquely solve the fixed point
equation

xt = t(u+ γf(xt)) + (I − t(I + µA))PCSxt.

If we take µ = 0, u = 0 and f = 0 in (3.1), then we have

(3.2) xt = (1− t)PCSxt, ∀t ∈ (0, 1).

We summary the basic properties of the net {xt}, which can be proved by the
same method in [15]. We includes its proof for the sake of completeness.

Proposition 3.1. Let {xt} be defined by the implicit algorithm (3.1). Then

(i) {xt} is bounded for t ∈ (0, (1 + µ∥A∥)−1);
(ii) limt→0 ∥xt − PCSxt∥ = 0;
(iii) xt defines a continuous path from (0, (1 + µ∥A∥)−1) in C.

Proof. (1) Set A = (I + µA) and Pick p ∈ F (T ). Observing F (T ) = F (S) by
Lemma 2.4 (iii), from Lemma 2.2, we have

∥xt − p∥ = ∥tu+ t(γf(xt)−Ap) + (I − tA)(PCSxt − p)∥
≤ ∥(I − tA)(PCSxt − p)∥+ t∥u∥+ tγ∥f(xt)− f(p)∥+ t∥γf(p)−Ap∥
≤ (1− t((1 + µ)γ − γα))∥xt − p∥+ t(∥u∥+ ∥γf(p)−Ap∥).

So, it follows that

∥xt − p∥ ≤ ∥u∥+ ∥γf(p)−Ap∥
(1 + µ)γ − γα

.

Hence {xt} is bounded and so are {f(xt)}, {PCSxt} and {APCSxt}.
(ii) We have ∥xt − PCSxt∥ = t∥u + γf(xt) − APCSxt∥ → 0 as t → 0 by the

boundedness of {f(xt)} and {APCSxt} in (i).
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(iii) Let t, t0 ∈ (0, (1 + µ∥A∥)−1) and calculate

∥xt − xt0∥ = ∥(t− t0)u+ (t− t0)γf(xt) + t0γ(f(xt)− f(xt0))

− (t− t0)APCSxt + (I − t0A)(PCSxt − PCSxt0)∥
≤ |t− t0|∥u∥+ |t− t0|γ∥f(xt)∥+ t0γα∥xt − xt0∥

|t− t0|∥APCSxt∥+ (1− t0(1 + µ)γ)∥xt − xt0∥.

It follows that

∥xt − xt0∥ ≤ ∥u∥+ γ∥f(xt)∥+ ∥APCSxt∥
t0((1 + µ)γ − γα)

|t− t0|.

This show that xt is locally Lipschizian and hence continuous. �

We provide the following result for the existence of solutions of the optimization
problem (1.1).

Theorem 3.2. The net {xt} defined by the implicit algorithm (3.1) converges
strongly to a fixed point x̃ of T as t → 0, which solves the following variational
inequality:

(3.3) ⟨u+ (γf − (I + µA))x̃, p− x̃⟩ ≤ 0, p ∈ F (T ).

This x̃ is a solution of the optimization problem (1.1).

Proof. We first show that the uniqueness of a solution of the variational inequality
(3.3), which is indeed a consequence of the strong monotonicity of (I + µA) − γf .
Suppose that x̃ ∈ F (T ) and x̂ ∈ F (T ) both are solutions to (3.3). Then we have

(3.4) ⟨u+ (γf − (I + µA))x̃, x̂− x̃⟩ ≤ 0

and

(3.5) ⟨u+ (γf − (I + µA))x̂, x̃− x̂⟩ ≤ 0.

Adding up (3.4) and (3.5) yields

⟨((I + µA)− γf)x̃− ((I + µA)− γf)x̂, x̃− x̂⟩ ≤ 0.

The strong monotonicity of (I +µA)− γf (Lemma 2.3) implies that x̃ = x̂ and the
uniqueness is proved.

Next, we prove that xt → x̃ as t → 0. Observing F (T ) = F (S) by Lemma 2.4
(iii), from (3.1), we write, for given p ∈ F (T ),

xt − p = t(u+ γf(xt)− (I + µA)p) + (I − t(I + µA))(PCSxt − p)

to derive that

∥xt − p∥2 = t⟨u+ γf(xt)− (I + µA)p, xt − p⟩
+ ⟨(I − t(I + µA))(PCSxt − p), xt − p⟩

≤ (1− t(1 + u)γ)∥xt − p∥2 + t⟨u+ γf(xt)− (I + µA)p, xt − p⟩.
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It follows that

∥xt − p∥2 ≤ 1

(1 + µ)γ
⟨u+ γf(xt)− (I + µA)p, xt − p⟩

≤ 1

(1 + µ)γ
{γα∥xt − p∥2 + ⟨u+ γf(p)− (I + µA)p, xt − p⟩}.

Therefore

(3.6) ∥xt − p∥2 ≤ 1

(1 + µ)γ − γα
⟨u+ γf(p)− (I + µA)p, xt − p⟩.

Since {xt} is bounded as t → 0 (by Proposition 3.1 (i)), we see that if {tn} is a
subsequence in (0,1) such that tn → 0 and xtn ⇀ x̃, then by Proposition 3.1 (ii),
limn→∞(I − PCS)xtn = 0. By Lemma 2.1 and Lemma 2.4 (ii) and (iii), x̃ ∈ F (T ).
Thus from (3.6), we see xtn → x̃.

Now, we prove that x̃ is a solution of the variational inequality (3.3). Since

xt = t(u+ γf(xt)) + (I − t(I + µA))PCSxt,

we have

(I + µA)xt − (u+ γf(xt)) = −1

t
(I − t(I + µA))(I − PCS)xt.

It follows that, for p ∈ F (T ),

⟨(I + µA)xt − (u+ γf(xt)), xt − p⟩ = − 1

t
⟨(I − t(I + µA))(I − PCS)xt, xt − p⟩

= − 1

t
⟨(I − PCS)xt − (I − PCS)p, xt − p⟩

+ ⟨(I + µA)(I − PCS)xt, xt − p⟩
≤ ⟨(I + µA)(I − PCS)xt, xt − p⟩(3.7)

since I−PCS is monotone (i.e., ⟨x−y, (I−PCS)x−(I−PCS)y⟩ ≥ 0, x, y ∈ C, which
is due to the nonexpansivity of PCS). Now, replacing t in (3.7) with tn and letting
n → ∞, and noticing that (I − PCS)xtn → (I − PCS)x̃ = 0 for x̃ ∈ F (T ) = F (S),
we obtain

⟨u+ (γf − (I + µA))x̃, p− x̃⟩ = ⟨(I + µA)x̃− (u+ γf(x̃)), x̃− p⟩ ≤ 0.

That is, x̃ ∈ F (T ) is a solution of the variational inequality (3.3).
Moreover, if {tj} is another subsequence in (0, 1) such that tj → 0 and xtj ⇀ x̂.

By the same argument, we can show that x̂ ∈ F (T ) and x̂ solves the variational
inequality (3.3); hence x̂ = x̃ by uniqueness. In a summary, we have shown that
each cluster point of {xt} (at t → 0) equals x̃. Therefore xt → x̃ as t → 0. By
(3.3) and Lemma 2.8, we deduce immediately the desired result. This completes
the proof. �

From Theorem 3.2, we can deduce the following result.
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Corollary 3.3. The net {xt} defined by the implicit algorithm (3.2) converges
strongly to a fixed point x̃ of T as t → 0, which solves the following minimiza-
tion problem: find x∗ ∈ F (T ) such that

∥x∗∥ = min
x∈F (T )

∥x∥.

Now, we propose the following iterative algorithm which generates a sequence
{xn} in an explicit way:

(3.8) xn+1 = αn(u+ γf(xn)) + (I − αn(I + µA))PCSxn, n ≥ 0,

where {αn} is a sequence in (0,1) and x0 ∈ C is selected arbitrarily.
First, we prove the following main result.

Theorem 3.4. Let {xn} be a sequence in C generated by the iterative algorithm
(3.8), and let {αn} be a sequence in (0, 1) which satisfies condition:

(C1) limn→∞ αn = 0.

Let LIM be a Banach limit. Then

LIMn(⟨u+ γf(q)− (I + µA)q, xn − q⟩) ≤ 0,

where q = limt→0+ xt with xt being defined by the implicit algorithm (3.1).

Proof. Let {xt} be a net defined by (3.1) for 0 < t < 1 and t < (1+µ∥A∥)−1. Then,
by Theorem 3.2, there exists limt→0 xt := q ∈ F (T ). Moreover q is a solution of the
variational inequality

⟨u+ (γf − (I + µA))q, p− q⟩ ≤ 0, p ∈ F (T ).

It follows from (3.1) that

∥xt − xn+1∥ = ∥(I − t(I + µA))(PCSxt − xn+1) + t(u+ γf(xt)− (I + µA)xn+1)∥.

Applying Lemma 2.2 and Lemma 2.6, we have

∥xt − xn+1∥2 ≤ (1− t(1 + µ)γ)2∥PCSxt − xn+1∥2

+ 2t⟨u+ γf(xt)− (I + µA)xn+1, xt − xn+1⟩.(3.9)

First we note from Proposition 3.1 (i) that {xt}, {f(xt)}, {PCSxt} and {(I +
µA)PCSxt} are bounded.

Next we show that {xn} is bounded. To this end, let p ∈ F (T ) and set A =
I + µA. From condition (C1), we may assume, without loss of generality, that
αn < (1 + µ∥A∥)−1 for all n ≥ 0. Then, from Lemma 2.2, we derive

∥xn+1 − p∥ = ∥αn(u+ γf(xn)−Ap) + (I − αnA)(xn − p)∥
≤ (1− αn(1 + µ)αnγ)∥xn − p∥+ αn(∥u∥+ ∥γf(xn)−Ap∥)
≤ (1− αn(1 + µ)γ)∥xn − p∥

+ αn(∥u∥+ γ∥xn − p∥+ ∥γf(p)−Ap∥)
≤ [1− ((1 + µ)γ − γα)αn]∥xn − p∥

+ ((1 + µ)γ − γα)αn
∥u∥+ ∥γf(p)−Ap∥

(1 + µ)γ − γα
.
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It follows that

∥xn+1 − p∥ ≤ max

{
∥xn − p∥, ∥u∥+ ∥γf(p)−Ap∥

(1 + µ)γ − γα

}
.

Using an induction, we have

∥xn+1 − p∥ ≤ max

{
∥x0 − p∥, ∥u∥+ ∥γf(p)−Ap∥

(1 + µ)γ − γα

}
.

Hence {xn} is bounded, and so are {f(xn)}, {PCSxn}, and {APCSxn}.
Now, as a consequence with condition (C1), we get

∥xn+1 − PCSxn∥ = αn∥γf(xn)−APCSxn∥ → 0 (n → ∞),

and

(3.10) ∥PCSxt − xn+1∥ ≤ ∥xt − xn∥+ en,

where en = ∥xn+1−PCSxn∥ → 0 as n → ∞ and, noticing that A is strongly positive
bounded linear,

⟨Axt −Axn, xt − xn⟩ = ⟨A(xt − xn), xt − xn⟩ ≥ (1 + µγ)∥xt − xn∥2

> (1 + µ)γ∥xt − xn∥2.(3.11)

From (3.9), (3.10) and (3.11), we obtain

∥xt − xn+1∥2 ≤ (1− (1 + µ)γ)2(∥xt − xn∥+ en)
2

+ 2t⟨u+ γf(xt)−Axt, xt − xn+1⟩
+ 2t⟨Axt −Axn+1, xt − xn+1⟩

≤ (((1 + µ)γ)2t2 − 2(1 + µ)γt)∥xt − xn∥2 + ∥xt − xn∥2

+ (1− t(1 + µ)γ)2(2∥xt − xn∥en + e2n)

+ 2t⟨u+ f(xt)−Axt, xt − xn+1)⟩
+ 2t⟨Axt −Axn+1, xt − xn+1⟩

≤ ((1 + µ)γt2 − 2t)⟨Axt −Axn, xt − xn⟩+ ∥xt − xn∥2

+ (1− t(1 + µ)γ)2(2∥xt − xn∥en + e2n)

+ 2t⟨u+ γf(xt)−Axt, xt − xn+1)⟩
+ 2t⟨Axt −Axn+1, xt − xn+1⟩

= (1 + µ)γt2⟨Axt −Axn, xt − xn⟩+ ∥xt − xn∥2

+ (1− t((1 + µ)γ)2(2∥xt − xn∥en + e2n)

+ 2t⟨u+ γf(xt)−Axt, xt − xn+1⟩
+ 2t(⟨Axt −Axn+1, xt − xn+1⟩ − ⟨Axt −Axn, xt − xn⟩).(3.12)

Applying the Banach limit LIM to (3.12) together with limn→∞ en = 0, we have

LIMn(∥xt − xn+1∥2) ≤ (1 + µ)γt2LIMn(⟨Axt −Axn, xt − xn⟩)
+ LIMn(∥xt − xn∥2)
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+ 2tLIMn(⟨u+ γf(xt)−Axt, xt − xn+1⟩)
+ 2t(LIMn(⟨Axt −Axn+1, xt − xn+1⟩)
− LIMn(⟨Axt −Axn, xt − xn⟩)).(3.13)

Using the property LIMn(an) = LIMn(an+1) of Banach limit in (3.13), we obtain

LIMn(⟨Axt − (u+ γf(xt)), xt − xn⟩) = LIMn(⟨Axt − (u+ γf(xt)), xt − xn+1⟩)

≤ (1 + µ)γt

2
LIMn(⟨Axt −Axn, xt − xn⟩).(3.14)

Since

t⟨Axt −Axn, xt − xn⟩ ≤ t∥A∥∥xt − xn∥2

≤ t∥A∥(∥xt − p∥+ ∥p− xn∥)2

≤ t∥A∥
(

2

(1 + µ)γ − γα
(∥u∥+ ∥γf(p)−Ap∥) + ∥x0 − p∥

)2

→ 0 (as t → 0),(3.15)

we conclude from (3.14) and (3.15) that

LIMn(⟨u+ γf(q)−Aq, xn − q⟩)
= LIMn(⟨Aq − (u+ γf(q)), q − xn⟩)
≤ lim sup

t→0
LIMn(⟨Axt − (u+ γf(xt)), xt − xn⟩)

≤ lim sup
t→0

(1 + µ)γt

2
LIMn(⟨Axt −Axn, xt − xn⟩) ≤ 0,

where q = limt→0 xt. This completes the proof. �

Now, using Theorem 3.4, we establish the strong convergence of the explicit
algorithm (3.8) for finding a solution of the optimization problem (1.1).

Theorem 3.5. Let {xn} be a sequence in C generated by the iterative algorithm
(3.8), and let {αn} be a sequence in (0, 1) which satisfies conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=0 αn = ∞.

If {xn} is weakly asymptotically regular, then {xn} converges strongly to q ∈ F (T ),
which solves the optimization problem (1.1).

Proof. First we note that from condition (C1), without loss of generality, we assume

that αn ≤ (1 + µ∥A∥)−1 and 2((1+µ)γ−αγ)
1−αnγα

αn < 1 for n ≥ 0. Let q = limt→0 xt with

xt being defined by (3.1). Then we know from Theorem 3.2 that q ∈ F (T ), and q
is unique solution of the optimization problem (1.1).

We divide the proof into three steps:

Step 1. We show that {xn} is bounded. Indeed, we know that ∥xn − p∥ ≤

max

{
∥x0 − p∥, ∥u∥+∥γf(p)−(I+µA)p∥

(1+µ)γ−γα

}
for all n ≥ 0 and all p ∈ F (T ) in the proof
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of Theorem 3.4. Hence {xn} is bounded and so are {f(xn)}, {PCSxn} and {(I +
µA)PCSxn}.
Step 2. We show that lim supn→∞⟨u + γf(q) − (I + µA)q, xn − q⟩ ≤ 0, where
q = limt→0 xt with xt being defined by (3.1). To this end, put

an := ⟨u+ γf(q)− (I + µA)q, xn − q⟩, n ≥ 1.

Then Theorem 3.4 implies that LIMn(an) ≤ 0 for any Banach limit LIM . Since
{xn} is bounded, there exists a subsequence {xnj} of {xn} such that

lim sup
n→∞

(an+1 − an) = lim
j→∞

(anj+1 − anj )

and xnj ⇀ v ∈ H. This implies that xnj+1 ⇀ v since {xn} is weakly asymptotically
regular. Therefore, we have

w − lim
j→∞

(q − xnj+1) = w − lim
j→∞

(q − xnj ) = (q − v),

and so

lim sup
n→∞

(an+1 − an) = lim
j→∞

⟨u+ γf(q)− (I + µA)q, (q − xnj+1)− (q − xnj )⟩ = 0.

Then Lemma 2.7 implies that lim supn→∞ an ≤ 0, that is,

lim sup
n→∞

⟨u+ γf(q)− (I + µA)q, xn − q⟩ ≤ 0.

Step 3. We show that limn→∞ ∥xn − q∥ = 0. To do this, set A = I + µA. Indeed,
from Lemma 2.2 and Lemma 2.6, we derive

∥xn+1 − q∥2 = ∥αn(u+ γf(xn)−Aq) + (I − αnA)(PCSxn − q)∥
≤ ∥(I − αnA)(PCSxn − q)∥2

+ 2αn⟨u+ γf(xn)−Aq, xn+1 − q⟩
≤ (I − αn(1 + µ)γ)2∥xn − q∥2

+ 2αnγ⟨f(xn)− f(q), xn+1 − q⟩
+ 2αn⟨u+ γf(q)−Aq, xn+1 − q⟩

≤ (1− (1 + µ)γαn)
2∥xn − q∥2

+ 2αnγα∥xn − q∥∥xn+1 − q∥
+ 2αn⟨u+ γf(q)−Aq, xn+1 − q⟩

≤ (1− (1 + µ)γ)αn)
2∥xn − q∥2

+ αnγα[∥xn − q∥2 + ∥xn+1 − q∥2]
+ 2αn⟨u+ γf(q)−Aq, xn+1 − q⟩,

that is,

∥xn+1 − q∥2

≤ 1− 2(1 + µ)γαn + ((1 + µ)γ)2α2
n + αnγα

1− αnγα
∥xn − q∥2
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+
2αn

1− αnγα
⟨u+ γf(q)−Aq, xn+1 − q⟩

=

(
1− 2((1 + µ)γ − γα)αn

1− αnγα

)
∥xn − q∥2 + ((1 + µ)γ)2α2

n

1− αnγα
∥xn − q∥2

+
2αn

1− αnγα
⟨u+ γf(q)−Aq, xn+1 − q⟩

≤
(
1− 2((1 + µ)γ − γα)

1− αnγα
αn

)
∥xn − q∥2 + 2((1 + µ)γ − γα)αn

1− αnγα
×(

((1 + µ)γ)2αn

2((1 + µ)γ − γα)
M +

1

(1 + µ)γ − γα
⟨u+ γf(q)−Aq, xn+1 − q⟩

)
= (1− λn)∥xn − q∥2 + λnδn,

where M = sup{∥xn − q∥2 : n ≥ 0}, λn = 2((1+µ)γ−γα)
1−αnγα

αn and

δn =
((1 + µ)γ)2αn

2((1 + µ)γ − γα)
M +

1

(1 + µ)γ − γα
⟨u+ γf(q)−Aq, xn+1 − q⟩.

From conditions (C1) and (C2) and Step 2, it is easy to see that λn → 0,
∑∞

n=0 λn =
∞ and lim supn→∞ δn ≤ 0. Hence, by Lemma 2.5, we conclude xn → q as n → ∞.
This completes the proof. �

Corollary 3.6. Let {xn} be a sequence in C generated by the iterative algorithm
(3.8), and let {αn} be a sequence in (0, 1) which satisfies conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=0 αn = ∞.

If {xn} is asymptotically regular, then {xn} converges strongly to q ∈ F (T ), which
solves the optimization problem (1.1).

Remark 3.7. If {αn} in Corollary 3.6 satisfies conditions (C1), (C2) and

(C3)
∑∞

n=0 |αn+1 − αn| < ∞; or limn→∞
αn

αn+1
= 1; or

(C4) |αn+1 − αn| ≤ o(αn+1) + σn,
∑∞

n=0 σn < ∞ (the perturbed control condi-
tion),

then the sequence {xn} generated by the iterative algorithm (3.8) is asymptotically
regular. Now, we give only the proof in case when {αn} satisfies conditions (C1),
(C2) and (C4). By Step 1 in the proof of Theorem 3.5, there exists a constant L > 0
such that for all n ≥ 0,

∥APCSxn∥+ γ∥f(xn)∥ ≤ L.

So,we obtain, for all n ≥ 0,

∥xn+1 − xn∥ = ∥(I − αnA)(PCSxn − PCSxn−1) + (αn − αn−1)APCSxn−1

+ γ[αn(f(xn)− f(xn−1)) + f(xn−1)(αn − αn−1)]∥
≤ (1− αn(1 + µ)γ)∥xn − xn−1∥+ |αn − αn−1|∥APCSxn−1∥

+ γ[αnα∥xn − xn−1∥+ ∥f(xn−1)∥|αn − αn−1]

≤ (1− αn((1 + µ)γ − γα))∥xn − xn−1∥+ L|αn − αn−1|
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≤ (1− αn((1 + µ)γ − γα))∥xn − xn−1∥+ (o(αn) + σn−1)L.(3.16)

By taking sn+1 = ∥xn+1 − xn∥, λn = αn((1 + µ)γ − γα), λnδn = o(αn)L and
rn = σn−1L, from (3.16) we have

sn+1 ≤ (1− λn)sn + λnδn + rn.

Hence, by (C1), (C2), (C4) and Lemma 2.5, we obtain

lim
n→∞

∥xn+1 − xn∥ = 0.

In view of this observation, we have the following:

Corollary 3.8. Let {xn} be a sequence in C generated by the iterative algorithm
(3.8), and let {αn} be a sequence in (0, 1) which satisfies conditions (C1), (C2)
and (C4) (or conditions (C1), (C2) and (C3)). Then {xn} converges strongly to q
∈ F (T ), which solves the optimization problem (1.1).

From Theorem 3.5, we can also deduce the following result.

Corollary 3.9. Let {xn} be a sequence in C generated by

xn+1 = (1− αn)PCSxn, ∀n ≥ 0,

and let {αn}⊂ (0, 1) be a sequence satisfying conditions (C1) and (C2). If {xn} is
weakly asymptotically regular, then {xn} converges strongly to a fixed point q of T
as n → ∞, which solves the following minimization problem: find x∗ ∈ F (T ) such
that

∥x∗∥ = min
x∈F (T )

∥x∥.

Remark 3.10. (1) From Proposition 2.6 of Acedo and Xu [1], we know that if, for
any N ≥ 1 and for each 1 ≤ i ≤ N , Ti : C → H is a ki-strictly pseudocontractive
mapping for some 0 ≤ ki < 1, and {ηi}Ni=1 is a positive sequence such that

∑N
i=1 ηi =

1, then
∑N

i=1 ηiTi is a k-strictly pseudocontractive mapping with k = max{ki : 1 ≤
i ≤ N} and F (

∑N
i=1 ηiTi) =

∩N
i=1 F (Ti). So, by putting Sx = kx+(1−k)

∑N
i=1 ηiTix

in Theorem 3.2, Theorem 3.4 and Theorem 3.5, we obtain the corresponding results
for a finite family of ki-strictly pseudocontractive mappings for some 0 ≤ ki < 1
(1 ≤ i ≤ N), which can be utilized to solve the following optimization problem

min
x∈

∩N
i=1 F (Ti)

µ

2
⟨Ax, x⟩+ 1

2
∥x− u∥2 − h(x).

(2) In Remark 3.7, condition (C4) on {αn} is independent of condition (C3),
which was imposed by Cho et al. [5], Marino and Xu [15] and others. For this fact,
see [6, 13].

(3) We point out the our iterative algorithms (3.1) and (3.8) are different from
those in the recent works in this direction.
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