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In particular, if φ = 0, the MEP problem reduces to the classical equilibrium
problem [for short, EP], which is to find x ∈ k such that

(1.2) f(x, y) ≥ 0, ∀y ∈ K.

Equilibrium problems have numerous applications, including but not limited to
problems in nonlinear analysis, Economics, game theory, finance and traffic analy-
sis. The equilibrium problem (1.2) includes many mathematical problems as par-
ticular cases for examples, mathematical programming problems, complementary
problems, variational inequality problems, Nash equilibrium problems in noncoop-
erative games, minimax inequality problems, and fixed point problems [1, 3].

The generalized monotonicity plays an important role in the literature of
equilibrium problems and variational inequality problems. There is a substantial
number of papers on existence results for solving equilibrium problems and varia-
tional inequality problems based on different relaxed monotonicity notions such as
monotonicity, pseudomonotonicity, quasimono-tonicity, relaxed monotonicity, Cx-
pseudomonotonicity (for more details, see [2–6,8, 9, 12–15]).

In 2003, Fang and Huang [8] considered two types of the variational-like in-
equality problems with the relaxed η-α-monotone and relaxed η-α-semimonotone
mappings. They obtained the existence solutions of these variational like inequal-
ities with relaxed η-α-monotone and relaxed η-α-semimonotone mappings in the
reflexive Banach spaces using the KKM technique.

In 2006, Bai et al. [1] introduced a new concept of the relaxed η-α-pseudomonotone
for a mapping and by using it they established an existence result of a solution for
a variational-like inequality problem. After the work reported in [1] very recently,
Mahato and Nahak [16] defined weakly relaxed η-α-pseudomonotone bi-function in
order to study EP.

Bianchi and Schaible [2] introduced various kinds of generalized monotone map-
pings. It is well-known that, under some suitable modifications, many results of
variational inequality problems can be adapted to equilibrium problems , which is
a very general phenomenon in this field.

In this paper, inspired and motivated by the recent researches [16, 17], we in-
troduce a new concept of the relaxed η-α-monotonicity for bi-functions and by
using it and the KKM technique we present some existence results of a solution for
the MEP. Our results can be viewed as a generalization of the main results given
in [1, 8, 11,15–17].

2. Variational-like inequalities with relaxed η-α-monotone mappings

Throughout this paper, unless otherwise specified, we always let E be a Hausdorff
topological vector space, θ denotes the zero vector of E and E⋆ is its topological
dual space of E, K a nonempty closed convex subset of E, T : K → 2E

⋆\{∅}, a
multivalued mapping from K to E⋆, and η : K × K → K, α : E → ℜ are two

mappings. Furthermore, we assume that α(θ) = 0 and limt→0+
α(tz)

t = 0, for all
z ∈ K. This means that the directional derivative of α at θ at every direction z ∈ K
exists and equals to zero. For examples of these mappings, one can consider all α
which has the property α(tz) = tpα(z) for all t ≥ 0, p > 1 and z ∈ E. We note that
if we take E = ℜ then it is easy to see that the directional derivative of the mapping
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α(x) = |x| at θ in each direction z ∈ E is zero but it dose not satisfy α(tz) = tpα(z)
for all t ≥ 0, p > 1 and z ∈ E.

Definition 2.1. A mapping f : K×K → ℜ is called relaxed η-α-monotone if there

exist mappings η : E × E → E and α : E → ℜ with limt→0+
α(η(θ,tz))

t = 0, for all
z ∈ K, such that the following inequality holds,

(2.1) f(x, y) + f(y, x) ≤ α(η(x, y)), for all x, y ∈ K.

Definition 2.2. The mapping f : K×K → ℜ is called relaxed η-α-pseudomonotone

if there exist mappings η : E × E → E and α : E → ℜ with limt→0+
α(η(θ,tz))

t = 0,
for all z ∈ K, such that the following inequality, for every pair of points x, y ∈ K,
holds

(2.2) f(x, y) ≥ 0 ⇒ f(y, x) ≤ α(η(x, y)).

Note that η-α-monotone mapping is a η-α-pseudomonotone.

Remark 2.3. (1) If we define η(x, y) = y − x, for all x, y ∈ K and α(tx) = tpα(x),
for all t > 0 and x ∈ K, then the problem given by (2.1) collapses to the Definition
2.1 of [16] and

lim
t→0+

α(η(θ, tz))

t
= 0, ∀z ∈ K.

While if we take E = K = ℜ, η(x, y) = y − x and α(x) = |x|, for all x, y ∈ ℜ, then

lim
t→0+

α(η(θ, tz))

t
= 0, ∀z ∈ K

but α dose not satisfy the following equality

α(tz) = tpα(z), ∀(t > 0, p > 1, z ∈ E).

Hence Definition 2.2 extends Definition 2.1 of [16].
(2) In [17] the authors considered the mapping η(x, y) = y − x and α with the

property

α(tx) = k(t)α(x), ∀(t > 0, x ∈ K),

where K : (0,∞) → (0,∞) with

lim
t→0+

K(t)

t
= 0.

It is easy to check that

lim
t→0+

α(tz)

t
= 0, ∀z ∈ K.

If we take E = K = ℜ and define

α(x) =

{
x2, x ∈ Q ( rational numbers);
0, x ∈ Qc( irrational numbers),

then it is easy to check that there is no K : (0,∞) → (0,∞) such that

α(tx) = k(t)α(x), ∀(t > 0, x ∈ K),
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while

lim
t→0+

α(η(θ, tz))

t
= 0, ∀z ∈ K.

Hence the example shows that Definition 2.1 and Definition 2.2 include the corre-
sponding definitions given in [17] and are extended definitions of them.

Definition 2.4. Let X and Y be two topological spaces. A set-valued mapping
G : X → 2Y is called:

(i) upper semi-continuous (u.s.c.) at x ∈ X if for each open set V containing
G(x), there is an open set U containing x such that for each t ∈ U, G(t) ⊆
V ; G is said to be u.s.c. on X if it is u.s.c. at all x ∈ X.

(ii) lower semi-continuous (l.s.c.) at x ∈ X if for each open set V with
G(x) ∩ V ̸= ∅, there is an open set U containing x such that for each
t ∈ U, G(t) ∩ V ̸= ∅; G is said to be l.s.c. on X if it is l.s.c. at all x ∈ X.

(iii) continuous if G is both lower semi-continuous and upper semi-continuous.

Proposition 2.5 ( [19] ). Let X and Y be two topological spaces. A set-valued
mapping T : X → 2Y is l.s.c. at x ∈ X if and only if for any y ∈ T (x) and any net
{xα} which converges to x there is a net {yα} such that yα ∈ T (xα) and yα → y.

Definition 2.6. A real valued mapping T : K → E is called lower hemi-continuous
if, for all x, y ∈ K, the mapping F : [0, 1] → X defined by F (t) = f(tx + (1 − t)y)
is lower semi-continuous at 0 from the right.

Remark that Definition 2.6 is weaker than Definition 2.2 of [16].

Definition 2.7 ([7] ). A mapping F : K → 2E is said to be a KKM-mapping, if

for any {x1, x2, . . . , xn} ⊂ K, co{x1, x2, . . . , xn} ⊂
n∪

i=1
F (xi), where 2E\{∅} denotes

the family of all nonempty subsets of E.

Lemma 2.8 ( [7] ). Let K be a nonempty subset of a topological vector space X and
F : K → 2X a KKM mapping with closed values in K. Assume that there exists a
nonempty compact convex subset B of K such that

∩
x∈B

F (x) is compact. Then∩
x∈K

F (x) ̸= ∅.

Now, we are ready to present the first result of the paper.

Theorem 2.9. Let f : K ×K → ℜ∪{+∞} be a proper function (that is f ̸= +∞)
be relaxed η-α-pseudomonotone mapping and η : K×K → E be a mapping. Let T :
K → 2E

∗\{∅} be lower η-hemicontinuous (that is the restriction of the multivalued
mapping x → ⟨T (x), η(y, x)⟩ to line segments is l.s.c. for each y ∈ K) multivalued
mapping. Assume that

(i) η(x, x) = 0, for all x ∈ K,
(ii) for any fixed x ∈ K and u ∈ Ty, the mapping y → ⟨u, η(y, x)⟩ is convex,
(iii) for any fixed x ∈ K, the mapping y → f(y, x) is convex.
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Then the MEP and the following problem are equivalent (that is, their solution
sets are equal):

Find x ∈ K such that

(2.3) f(y, x) + φ(x)− ϕ(y) ≤ α(η(x, y)), ∀y ∈ K.

Proof. Let x ∈ K be a solution of MEP. Then

f(x, y) + φ(y)− φ(x) ≤ 0, ∀y ∈ K.

Since f is relaxed η-α-monotone, we have

f(y, x) + φ(x)− φ(x) ≤ α(η(x, y))− f(x, y) + φ(x)− φ(y))

for all y ∈ K, v ∈ T (y). Then x ∈ K is a solution of (2.3).

To see the converse, let x ∈ K be a solution of (2.3). Assume that y is an arbitrary
element of K and u ∈ T (x). Since x is a solution of (2.3) then f(x, x) < ∞. Letting

yt = (1− t)x+ ty, t ∈ [0, 1],

(note K is a convex set) then yt ∈ K. Moreover yt approaches to x when t converges
to zero and so by Proposition 2.5 (note u ∈ T (x) and T is lower η-hemicontinuous)
there is vt ∈ T (yt), such that

(2.4) ⟨vt, η(y, x)⟩ → ⟨u, η(y, x)⟩ if t → 0

and hence (note that x is a solution of (2.3))

(2.5) ⟨vt, η(yt, x)⟩+ f(yt, x)− f(x, x) ≥ α(yt − x) = α(t(y − x)).

By condition (iii), we get

(2.6) f(yt, x)− f(x, x) = f((1− t)x+ ty, x)− f(x, x) ≤ t(f(y, x)− f(x, x))

and also conditions (ii) and (i) imply that

⟨vt, η(yt, x)⟩ = ⟨vt, η((1− t)x+ ty, x)⟩
≤ (1− t)⟨vt, η(x, x)⟩+ t⟨vt, η(y, x)⟩
= t⟨vt, η(y, x)⟩ .(2.7)

It follows from (2.5)-(2.7), for t ∈]0, 1], that,

(2.8) ⟨vt, η(y, x)⟩+ f(y, x)− f(x, x) ≥ α(t(y − x))

t
=

α(t(y − x))− α(θ)

t
,

for all y ∈ K and vt ∈ T (yt). Now the result follows by letting t → 0 in (2.8),
using (2.4) and the fact that α has nonnegative directional derivative at zero in
each direction. That is

⟨u, η(y, x)⟩+ f(y, x)− f(x, x) ≥ 0, for all y ∈ K and u ∈ T (x).

Hence x ∈ K is a solution of (2.2). This completes the proof. �

We need the next theorem in the sequel.

Theorem 2.10. Let K be a nonempty closed convex subset of a topological vector
space E. Let T : K → 2E

⋆\{∅}, f : K × K → R ∪ {+∞} and η : K × K → E be
three mappings such that,
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(i) η(x, y) + η(y, x) = 0, for all x ∈ K,
(ii) for any fixed y ∈ K, the mapping x → ⟨Tx, η(y, x)⟩ + f(y, x) − f(x, x) is

lower semi-continuous,
(iii) for any fixed y ∈ K, the mappings x → η(x, y) and x → f(x, y) are concave

and convex, respectively,
(iv) ⟨ui − uj , η(ai, aj)⟩ ≥ 0, for each finite subset A = {a1, a2, . . . , an} of K,

y ∈ coA and ui ∈ T (y),
(v) there exist a compact convex subset D of K and a compact subset B of K

such that

∀x ∈ K\B ∃z ∈ D : ⟨u, η(z, x)⟩+ f(z, x)− f(x, x) < 0, for some u ∈ T (z).

Then the solution set of problem (2.2) is nonempty and compact.

Proof. Define set-valued mapping, F : K → 2E as follows:

F (y) = {x ∈ K : ∀ u ∈ T (x), ⟨u, η(y, x)⟩+ f(y, x)− f(x, x) ≥ 0}.
We claim that F is a KKM mapping. If F is not a KKM-mapping, then there exist

subset {y1, y2, . . . , yn} ⊂ K and ti > 0, i = 1, 2, . . . , n, such that
n∑

i=1
ti = 1,

z =

n∑
i=1

ti yi ̸∈
n∪

i=1

F (yi),

and hence there exist ui ∈ T (y), for i = 1, 2, . . . , n such that

⟨ui, η(yi, z)⟩+ f(yi, z)− f(z, z) < 0, for i = 1, 2, . . . , n,

and so
n∑

i=1

ti⟨ui, η(yi, z)⟩+
n∑

i=1

tif(yi, z)− f(z, z) < 0,

and by (iii) (f is convex in the first variable) we have
n∑

i=1

ti⟨ui, η(yi, z) < 0,

and by (i) (note η(yi, z) = −η(z, yi) and z =
∑n

j=1 tjyj) we get

−
n∑

i=1

ti⟨ui, η(z, yi) < 0,

and it follows from (iii) and (i) that

−
n∑

j=1

n∑
i=1

titj⟨ui, η(yj , yi) < 0,

and so by (i) (note η(yi, yi) = 0, η(yi, yj) = −η(yj , yi)) we get∑
i<j

titj⟨ui − uj , η(yi, yj)⟩ < 0,

and so ⟨ui−uj , η(yi, yj)⟩ < 0, for some i < j ,which is contradicted (by (iv)). This
implies that F is a KKM-mapping. We claim that F (y) is closed for all y ∈ K.
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Indeed, let {xα} be a net in F (y) which converges to x ∈ K. We have to show
that x ∈ F (y). To see this let v ∈ T (x) be an arbitrary element. By (ii) through
Proposition 2.5 there is net {vα} in E∗ with vα ∈ T (xα) such that

(2.9) ⟨vα, η(y, xα)⟩+ f(y, xα)− f(xα, xα) → ⟨v, η(y, x)⟩+ f(y, x)− f(x, x)

and since xα ∈ F (y) we deduce from (2.9) that

⟨v, η(y, x)⟩+ f(y, x)− f(x, x) ≥ 0,

and hence x ∈ F (y). Also it follows from (v) that ∩z∈DF (z) ⊆ B, and so F satisfies
all the assumptions of Lemma 2.8 and then there exists x ∈

∩
y∈K F (y). This means

that x is a solution of problem (2.2). Furthermore the solution set of problem (2.2)
equals to the intersection

∩
y∈K F (y) which by using (v) is a subset of the compact

set B and, note
∩

y∈K F (y) is closed, so it is compact. This completes the proof of
theorem. �
Remark 2.11. (i) It is clear that one can omit condition (v) in Theorem 2.10 when
the set K is compact.

(ii) In [8], the authors, instead of condition (v) in Theorem 2.10, considered the
following condition for a reflexive Banach space, which consists of finding x0 ∈ K
such that,

(2.10)
⟨u− u0, η(x, x0)⟩ − f(x0, x) + f(x, x)

∥η(x, x0)∥
→ +∞

whenever ∥x∥ → ∞, for all u ∈ T (x), u0 ∈ T (x0).
They (2.10), called η-coercive. It is clear that (2.10) is a special case of condition
(v) in Theorem 2.10. Because for each positive real number M there is another
positive number N such that

(2.11) ∥x∥ > N ⇒ ⟨u− u0, η(x, x0)⟩ − f(x0, x) + f(x, x)

∥η(x, x0)∥
> M.

Now we can take B = {x : ∥x∥ ≤ N} and D = {x0} which are weakly compact
(note E is a reflexive Banach space) and convex. Moreover, by condition (i) of
Theorem 2.10, η(x, x0) = −η(x0, x) and by multiplying the relation (2.11) by −1
we get condition (v) in Theorem 2.10.

An special case of (2.10) has been given in [22] as follows,

⟨u− u0, η(x, x0)⟩+ f(x)− f(x0)

∥η(x, x0)∥
→ +∞,

whenever ∥x∥ → ∞, for all u ∈ T (x), u0 ∈ T (x0).

By combining Theorems 2.9 and 2.10 one can deduce the next result.

Theorem 2.12. Let K be a nonempty closed convex subset of a topological vec-
tor space E and E⋆ the dual space of E. Let T : K → 2E

⋆\{∅} be lower η-
hemicontinuous and relaxed η-α-monotone and the conditions (i)-(v) of Theorem
2.10 and condition (ii) of Theorem 2.9 hold. Then the solution sets of problems
(2.2) and (2.3) are equal and a nonempty compact subset of K.
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We note that if T is a single valued mapping and f is a zero map, then the
Theorems 2.9 and 2.10 are equivalent to the problems considered and studied by
Bai et al [1].

3. Variational-like inequalities with relaxed η-α-semimonotone
mappings

Throughout this section, let E be an arbitrary locally convex topological vector
space (briefly, locally convex space) with its topological dual E∗ and K a nonempty
closed convex subset of E.

Definition 3.1. Let A : K ×K → 2E
∗
, η : K ×K → E and α : E → ℜ be three

mappings. The mapping A is called relaxed η-α-semimonotone if the mapping
y → A(w, y) is relaxed η-α-monotone, for each w ∈ K. In this section we consider
the following problem of finding x ∈ K such that

(3.1) ⟨u, η(y, x)⟩+ f(y, x)− f(x, x) ≥ 0, for all y ∈ K and u ∈ A(x, y).

where f : K ×K → ℜ.

In order to prove our existence theorem we need the following result.

Theorem 3.2 ([6, Kakutani-Fan-Glicksberg]). Let X be a locally convex Hausdorff
space, D ⊆ X a nonempty, convex compact subset. Let T : D → 2D be upper
semicontinuous with nonempty, closed convex values T (x), for all x ∈ D. Then T
has a fixed point in D.

Theorem 3.3. Let E be a locally convex Hausdorff space, K ⊆ E a nonempty
closed convex set, A : K × K → 2E a relaxed η-α-semimonotone mapping, f :
K × K → ℜ

∪
{+∞} a proper convex and weakly lower semicontinuous function,

and η : K × K → E a mapping. If for all w ∈ K, the mapping y ∈ A(w, y)
satisfies all the assumptions of Theorem 2.10 and the mapping, for all w ∈ K,
x → ⟨u, η(y, x)⟩ + f(y, x) − f(x, x) ≥ 0, for all y ∈ K and u ∈ A(w, y), is convex
and upper semicontinuous, then problem (3.1) has a solution. Moreover the solution
set of problem (3.1) is compact and convex.

Proof. By Theorem 2.10, for each w ∈ coB, the set

G(w) = {x ∈ coB : ⟨u, η(y, x)⟩+ f(y, x)− f(x, x) ≥ 0, ∀y ∈ K and u ∈ A(w, y)}

is a nonempty convex and compact subset of B ⊂ K. Now the mapping G : coB →
2coB defined by w → G(w) fulfils all the conditions of Theorem 3.2. Hence there is
x ∈ coB ⊂ K such that x ∈ G(x) and so x is a solution of problem (3.1) and so
the solution set of the problem (3.1) is nonempty. It is clear that the solution set
of problem (3.1) is equal to the intersection∩

w∈K
G(w) ⊆

∩
x∈coB

G(w) ⊂ D

and since G(w), for all w ∈ K is closed and D is compact then the solution set
problem (3.1) is compact and the convexity of the solution set is obvious from the
assumptions. This completes the proof. �
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Remark 3.4. If A is a single valued mapping and f is a zero map, then problem
(3.1) is equivalent to the problem (3.1) considered and studied by Bai et al [1]. Note
that Theorems 2.10 and 3.3 are topological vector space version of Theorems 2.1
and 2.6, respectively, in [4].
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