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n-a-PSEUDOMONOTONICITY AND EQUILIBRIUM PROBLEM
IN TOPOLOGICAL VECTOR SPACE

A. FARAJZADEH AND S. PLUBTIENG

ABSTRACT. In this paper, two classes of generalized variational-like inequality
problems for multivalued mappings are introduced and then by using KKM tech-
nique and Kakutani-Fan-Glicksberg fixed point theorem the solvability of them
are investigated when the mappings are relaxed n-a-monotone. The results of
this note extend and improve the corresponding results in the literature and it
can be considered as a topological vector space version of reference of the paper
[N.K. Mahato, C. Nahak, Mized equilibrium problems with relazed c-monotone
mapping in Banach spaces, Rend. Circ. Mat. Palermo. DOI 10.1007/s12215-
013-0103-0].

1. INTRODUCTION

The existence of a solution for variational inequality problems, complementarity
problems, equilibrium problems and others is mainly dependent on the monotonicity
of a map (see, for examples, [1,2,4,5,7,9,11,15,22]). Recently, many authors,
see [8-12] considered the quasimonotonicity in dealing with variational inequality
problems. Verma [20, 21] studied and established some existence theorems of a
solution for a class of nonlinear variational inequality problems with p-monotone
and p-Lipschitz mappings in the setting of reflexive Banach spaces.

Inspired and motivated by the references [1,4,5,8,10,13,14,18,23], we introduce
two new concepts of the relaxed n-a-semimonotonicity and two classes of variational-
like inequality problems with relaxed m-a-monotone mappings and relaxed 7-a-
semimonotone mappings. Using the KKM-technique, we obtain the existence of a
solution for variational-like inequality problems with relaxed n-a-monotone map-
pings in the setting of reflexive Banach spaces. We also present the solvability of
variational-like inequalities problems with n-a-semimonotone mappings for an ar-
bitrary Banach space by applying of Kakutani-Fan fixed point theorem [6,23].

Let K be a nonempty subset of a real reflexive Banach space X. Let ¢ : K — R
(the real line) be a real valued function and f : K x K — R be an equilibrium
bi-function, i.e., f(x,z) = 0, for all x € K. Then the mixed equilibrium problem
[for short, MEP] is to find T € k

(1.1) f@y) +oy) — @) 20, Vy € K.
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In particular, if ¢ = 0, the MEP problem reduces to the classical equilibrium
problem [for short, EP], which is to find T € k such that

(1.2) f(@,y) >0, Yy € K.

Equilibrium problems have numerous applications, including but not limited to
problems in nonlinear analysis, Economics, game theory, finance and traffic analy-
sis. The equilibrium problem (1.2) includes many mathematical problems as par-
ticular cases for examples, mathematical programming problems, complementary
problems, variational inequality problems, Nash equilibrium problems in noncoop-
erative games, minimax inequality problems, and fixed point problems [1,3].

The generalized monotonicity plays an important role in the literature of
equilibrium problems and variational inequality problems. There is a substantial
number of papers on existence results for solving equilibrium problems and varia-
tional inequality problems based on different relaxed monotonicity notions such as
monotonicity, pseudomonotonicity, quasimono-tonicity, relaxed monotonicity, C,.-
pseudomonotonicity (for more details, see [2-6,8,9,12-15]).

In 2003, Fang and Huang [8] considered two types of the variational-like in-
equality problems with the relaxed n-a-monotone and relaxed n-a-semimonotone
mappings. They obtained the existence solutions of these variational like inequal-
ities with relaxed n-a-monotone and relaxed n-a-semimonotone mappings in the
reflexive Banach spaces using the KKM technique.

In 2006, Bai et al. [1] introduced a new concept of the relaxed n-a-pseudomonotone
for a mapping and by using it they established an existence result of a solution for
a variational-like inequality problem. After the work reported in [1] very recently,
Mahato and Nahak [16] defined weakly relaxed n-a-pseudomonotone bi-function in
order to study EP.

Bianchi and Schaible [2] introduced various kinds of generalized monotone map-
pings. It is well-known that, under some suitable modifications, many results of
variational inequality problems can be adapted to equilibrium problems , which is
a very general phenomenon in this field.

In this paper, inspired and motivated by the recent researches [16,17], we in-
troduce a new concept of the relaxed n-a-monotonicity for bi-functions and by
using it and the KKM technique we present some existence results of a solution for
the MEP. Our results can be viewed as a generalization of the main results given
in [1,8,11,15-17].

2. VARIATIONAL-LIKE INEQUALITIES WITH RELAXED n-a-MONOTONE MAPPINGS

Throughout this paper, unless otherwise specified, we always let E' be a Hausdorff
topological vector space, 6 denotes the zero vector of £ and E* is its topological
dual space of E, K a nonempty closed convex subset of E, T : K — 2F"\{(}}, a
multivalued mapping from K to E*, and n: K x K — K, o : E — R are two
mappings. Furthermore, we assume that «(6) = 0 and lim;_,o+ a(:z) = 0, for all
z € K. This means that the directional derivative of « at 8 at every direction z € K
exists and equals to zero. For examples of these mappings, one can consider all «
which has the property a(tz) = tPa(z) for allt > 0, p > 1 and z € E. We note that

if we take FZ = R then it is easy to see that the directional derivative of the mapping
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a(z) = |x| at 0 in each direction z € FE is zero but it dose not satisfy a(tz) = tPa(z)
forallt>0,p>1and z € E.

Definition 2.1. A mapping f : K x K — R is called relaxed n-a-monotone if there
exist mappings 7 : E x F — E and a : E — R with lim;_,+ w = 0, for all
z € K, such that the following inequality holds,

(2.1) flzy) + fly,2) < an(z,y)), forall 7,y € K.

Definition 2.2. The mapping f : K x K — R is called relaxed n-a-pseudomonotone
if there exist mappings n: F x E — E and a : E — R with lim;_,o+ w =0,
for all z € K, such that the following inequality, for every pair of points x,y € K,
holds

(2.2) flzy) 2 0= f(y,z) < an(z,y)).
Note that n-a-monotone mapping is a 7-a-pseudomonotone.
Remark 2.3. (1) If we define n(z,y) =y — x, for all x,y € K and a(tx) = tPa(z),

for all t > 0 and x € K, then the problem given by (2.1) collapses to the Definition
2.1 of [16] and

lim 2098 oy, g
t—0+
While if we take E = K = R, n(z,y) =y — x and «(x) = |z, for all z,y € R, then
lim M =0,Vz e K
t—0+ t

but a dose not satisfy the following equality
a(tz) =tPa(z),V(t > 0,p> 1,z € E).

Hence Definition 2.2 extends Definition 2.1 of [16].
(2) In [17] the authors considered the mapping n(z,y) = y — = and « with the
property
a(tr) = k(t)a(z), V(t > 0,z € K),
where K : (0,00) — (0, 00) with

lim @ =0.
t—0+ ¢
It is easy to check that
fim “%) _ov. e k.
t—0+

If we take E = K = R and define

{ 2?2, x € Q ( rational numbers);

a(z) = 0, € Q°( irrational numbers),

then it is easy to check that there is no K : (0,00) — (0,00) such that
a(tx) = k(t)a(z), V(t > 0,z € K),
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while
lim
t—0+t
Hence the example shows that Definition 2.1 and Definition 2.2 include the corre-
sponding definitions given in [17] and are extended definitions of them.

O‘wi’t’z)) =0,Vz € K.

Definition 2.4. Let X and Y be two topological spaces. A set-valued mapping
G: X — 2Y is called:

(i) upper semi-continuous (u.s.c.) at x € X if for each open set V' containing
G(z), there is an open set U containing z such that for each t € U, G(t) C
V; G is said to be u.s.c. on X if it is u.s.c. at all z € X.

(ii) lower semi-continuous (ls.c.) at z € X if for each open set V' with
G(z) NV # 0, there is an open set U containing z such that for each
teU, Gt)NV #0; G is said to be Ls.c. on X if it is Ls.c. at all z € X.

(iii) continuous if G is both lower semi-continuous and upper semi-continuous.

Proposition 2.5 ([19]). Let X and Y be two topological spaces. A set-valued
mapping T : X — 2Y is Ls.c. at x € X if and only if for any y € T(z) and any net
{za} which converges to x there is a net {ya} such that yo € T(x4) and yo — y.

Definition 2.6. A real valued mapping T : K — F is called lower hemi-continuous
if, for all z,y € K, the mapping F : [0,1] — X defined by F(t) = f(tx + (1 — t)y)
is lower semi-continuous at 0 from the right.

Remark that Definition 2.6 is weaker than Definition 2.2 of [16].

Definition 2.7 ([7]). A mapping F : K — 2 is said to be a KKM-mapping, if
n

for any {z1,29,...,2,} C K, co{x1,22,...,2,} C U F(x;), where 25\ {()} denotes
i=1

1=

the family of all nonempty subsets of E.

Lemma 2.8 ([7]). Let K be a nonempty subset of a topological vector space X and
F: K — 2% o KKM mapping with closed values in K. Assume that there exists a

nonempty compact convex subset B of K such that (| F(x) is compact. Then
rz€eB

() F(z) #0.
e K

Now, we are ready to present the first result of the paper.

Theorem 2.9. Let f: K x K — RU{+00} be a proper function (that is f # +00)
be relaxed n-a-pseudomonotone mapping and n : K x K — E be a mapping. Let T :
K — 2F°\{0} be lower n-hemicontinuous (that is the restriction of the multivalued
mapping x — (T(x),n(y,x)) to line segments is l.s.c. for each y € K ) multivalued
mapping. Assume that

(i) n(z,x) =0, for alz € K,

(ii) for any fized x € K and u € Ty, the mapping y — (u,n(y,x)) is conver,

(iii) for any fired x € K, the mapping y — f(y,x) is convex.
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Then the MEP and the following problem are equivalent (that is, their solution
sets are equal):
Find T € K such that

(2.3) f(y, ) + ¢(@) — ¢(y) < a(n(7,y)), Yy € K.
Proof. Let x € K be a solution of MEP. Then
f@,y) +ely) —e(@) <0, Vy € K.
Since f is relaxed n-a-monotone, we have
[y, 7) + o) —p(x) < an(@,y) - f(T,y) + (@) - ¢(y))
for all y € K, v € T(y). Then = € K is a solution of (2.3).

To see the converse, let z € K be a solution of (2.3). Assume that y is an arbitrary
element of K and u € T'(x). Since z is a solution of (2.3) then f(z,z) < co. Letting
Yo = (1 - t).%' +iy, te [07 1]7

(note K is a convex set) then y; € K. Moreover y; approaches to z when t converges
to zero and so by Proposition 2.5 (note u € T'(x) and T is lower n-hemicontinuous)
there is vy € T'(y¢), such that

(24) <vt777(y7:1:)> - <u7 n(ywr» ift—0
and hence (note that z is a solution of (2.3))
(2.5) (0 0yt ) + flye, ) = fz,2) > alyy —2) = alt(y — ).

By condition (iii), we get

(26)  fly,x) = flz,z) = f(L-Dz+ty,z) - f(z,2) < t(f(y,2) - f(z,2))
and also conditions (ii) and (i) imply that

(v, n(ye, x)) = (ve,n((1 =)z +ty, z))
< (1= t){vn(x,2)) + t{ve, n(y, )
(2.7) = Hu,n(y,2)) .

It follows from (2.5)-(2.7), for t €]0, 1], that,

alt(ly— =z a(tly—z)) — a(f
(28)  lonly o)+ f(,2) — faa) > QD) allyz ) Zal)
for all y € K and v; € T(y;). Now the result follows by letting ¢ — 0 in (2.8),
using (2.4) and the fact that o has nonnegative directional derivative at zero in
each direction. That is

(u,n(y,x)) + fly,z) — f(x,x) > 0, for all y € K and u € T(x).
Hence x € K is a solution of (2.2). This completes the proof. O

We need the next theorem in the sequel.

Theorem 2.10. Let K be a nonempty closed convex subset of a topological vector
space E. Let T : K — 2P \{0},f : K x K - RU {400} andn: K x K — E be
three mappings such that,
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(1) n(z,y) +n(y,x) =0, for allz € K,

(ii) for any fived y € K, the mapping x — (Tz,n(y,x)) + f(y,z) — f(z,x) is
lower semi-continuous,

(iii) for any fired y € K, the mappings x — n(x,y) and x — f(z,y) are concave
and convex, respectively,

(iv) (ui —wuj,nm(as,a5)) > 0, for each finite subset A = {ai,a2,...,an} of K,
y € coA and u; € T(y),

(v) there exist a compact convex subset D of K and a compact subset B of K
such that

Vee K\B 3z€ D: (u,n(z,z))+ f(z,2) — f(z,z) < 0, for some u € T(z).
Then the solution set of problem (2.2) is nonempty and compact.

Proof. Define set-valued mapping, F : K — 2% as follows:

F(y) = {xe K : VueT(x), (u, n(y,2)) + f(y,z) — f(z,z) > 0}.
We claim that F'is a KKM mapping. If F' is not a KKM-mapping, then there exist
n
subset {y1,y2,...,yn} C K and t; >0,7=1,2,...,n, such that > ¢, =1,

i=1
=Yty & |JFw).
p e
and hence there exist u; € T'(y), for i = 1,2,...,n such that
<u2777(y27z)>+f(y27 ) ( )<0 fOI‘Z—l,Q,...’ n,

Zti@m n(yi, z)) + th‘f(yi,z) - f(z,2) <0,
i=1 i=1

and by (iii) (f is convex in the first variable) we have

n
th<uza 77(%72) < 07
i=1

and by (i) (note n(y;,z) = —n(2,y;) and z =377, t;y;) we get

n
_th<ul’ n(zayl) < 07
i=1

and it follows from (iii) and (i) that

and so

n

n
=3O ity s, n(y;,vi) <0,

j=1 i=1
and so by (i) (note n(y:,yi) = 0,m(yi,y;) = —n(y;,vi)) we get
D tit(ui — g, n(yi,y5)) <0,
1<J

and so (u; —uj, n(ys,y;)) <0, for some ¢ < j ,which is contradicted (by (iv)). This
implies that F' is a KKM-mapping. We claim that F(y) is closed for all y € K.
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Indeed, let {z,} be a net in F(y) which converges to z € K. We have to show
that © € F(y). To see this let v € T'(x) be an arbitrary element. By (ii) through
Proposition 2.5 there is net {v,} in E* with v, € T'(x,) such that

(29) <Ua777(y7x0t>> + f(yvxa) - f(l'a,.f(}a) - <Ua 77(% $)> + f(yv x) - f(xa x)
and since x, € F(y) we deduce from (2.9) that

<v,77(y,:v)> + f(yvx) - f(ZC,ZL') > 07
and hence z € F(y). Also it follows from (v) that N,epF'(z) C B, and so F satisfies
all the assumptions of Lemma 2.8 and then there exists = € ﬂye i F(y). This means
that T is a solution of problem (2.2). Furthermore the solution set of problem (2.2)
equals to the intersection (), x F'(y) which by using (v) is a subset of the compact
set B and, note ﬂye x F(y) is closed, so it is compact. This completes the proof of
theorem. O

Remark 2.11. (i) It is clear that one can omit condition (v) in Theorem 2.10 when
the set K is compact.

(ii) In [8], the authors, instead of condition (v) in Theorem 2.10, considered the
following condition for a reflexive Banach space, which consists of finding zg € K
such that,
(2.10) <U—U(), T](l’,l’o» _f(x07x)+f(x7$) = 400

In(z; zo) |
whenever ||z|| — oo, for all u € T'(x), up € T(x0).
They (2.10), called n-coercive. It is clear that (2.10) is a special case of condition
(v) in Theorem 2.10. Because for each positive real number M there is another
positive number N such that

(u = uo, n(x,20)) = f(wo, 2) + f(2,2)
[n(z, o)l

Now we can take B = {z : ||z|| < N} and D = {zp} which are weakly compact

(note E is a reflexive Banach space) and convex. Moreover, by condition (i) of

Theorem 2.10, n(z,z9) = —n(zo,x) and by multiplying the relation (2.11) by —1

we get condition (v) in Theorem 2.10.

> M.

(2.11) |z > N =

An special case of (2.10) has been given in [22] as follows,

(u = uo, n(x,z0)) + f(x) = f(20)
[In(z, o)l
whenever ||z|| — oo, for all v € T'(x), ug € T'(zo).

— +00,

By combining Theorems 2.9 and 2.10 one can deduce the next result.

Theorem 2.12. Let K be a nonempty closed convex subset of a topological vec-
tor space E and E* the dual space of E. Let T : K — 2F"\{0} be lower n-
hemicontinuous and relaxed n-a-monotone and the conditions (i)-(v) of Theorem
2.10 and condition (i) of Theorem 2.9 hold. Then the solution sets of problems
(2.2) and (2.3) are equal and a nonempty compact subset of K.
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We note that if T' is a single valued mapping and f is a zero map, then the
Theorems 2.9 and 2.10 are equivalent to the problems considered and studied by
Bai et al [1].

3. VARIATIONAL-LIKE INEQUALITIES WITH RELAXED 7-a-SEMIMONOTONE
MAPPINGS

Throughout this section, let E be an arbitrary locally convex topological vector
space (briefly, locally convex space) with its topological dual E* and K a nonempty
closed convex subset of F.

Definition 3.1. Let A: K x K — 28" n: K x K — F and a : E — R be three
mappings. The mapping A is called relaxed n-a-semimonotone if the mapping
y — A(w,y) is relaxed n-a-monotone, for each w € K. In this section we consider
the following problem of finding x € K such that

(3.1) (u,n(y,x)) + f(y,z) — f(x,x) >0, for all y € K and u € A(z,y).
where f: K x K — R.

In order to prove our existence theorem we need the following result.

Theorem 3.2 ([6, Kakutani-Fan-Glicksberg]). Let X be a locally convex Hausdorff
space, D C X a nonempty, convex compact subset. Let T : D — 2P be upper
semicontinuous with nonempty, closed conver values T(x), for all x € D. Then T
has a fixed point in D.

Theorem 3.3. Let E be a locally convex Hausdorff space, K C E a nonempty
closed convex set, A : K x K — 2F a relazed n-a-semimonotone mapping, f :
K x K — RU{+o0} a proper convex and weakly lower semicontinuous function,
and n : K x K — E a mapping. If for all w € K, the mapping y € A(w,y)
satisfies all the assumptions of Theorem 2.10 and the mapping, for all w € K,
x = (u,n(y,x)) + fly,z) — f(x,z) >0, for ally € K and u € A(w,y), is convex
and upper semicontinuous, then problem (3.1) has a solution. Moreover the solution
set of problem (3.1) is compact and convez.

Proof. By Theorem 2.10, for each w € coB, the set
G(w) ={z € coB : (u,n(y,x)) + fly,z) — f(z,x) > 0,Vy € K and u € A(w,y)}

is a nonempty convex and compact subset of B C K. Now the mapping G : coB —
2¢°B defined by w — G(w) fulfils all the conditions of Theorem 3.2. Hence there is
x € coB C K such that x € G(z) and so z is a solution of problem (3.1) and so
the solution set of the problem (3.1) is nonempty. It is clear that the solution set
of problem (3.1) is equal to the intersection

(] Gw) < () Gw)cD
weK rEcoB

and since G(w), for all w € K is closed and D is compact then the solution set
problem (3.1) is compact and the convexity of the solution set is obvious from the
assumptions. This completes the proof. O
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Remark 3.4. If A is a single valued mapping and f is a zero map, then problem
(3.1) is equivalent to the problem (3.1) considered and studied by Bai et al [1]. Note
that Theorems 2.10 and 3.3 are topological vector space version of Theorems 2.1
and 2.6, respectively, in [4].
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