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the class of asymptotically quasi-nonexpansive mappings and this inclusion is proper
(see [3, 18,23]).
(2) a uniformly L-Lipschitzian mapping is uniformly Hölder continuous but the
converse is not true, in general.

Convergence theorems for the mappings, mentioned in (i)-(v), through different
iterative methods have been obtained by a number of authors (e.g., [3,16–18,22,23]
and the references therein).

The reader interested in fixed points of uniformly Lipschitzian mappings in metric
spaces and Mann iterative methods for nonexpansive mappings in geodesic metric
spaces is referred to Dhompongsa et al. [4, 5]

In 2005, Suantai [19] introduced a general three-step iterative method as an
extension of one-step, two-step and three-step iterative methods [6, 8, 14,22].

Let C be a convex subset of a normed space. Khan et al. [9] introduced the
following multi-step iterative method:

x1 ∈ C,

xn+1 = (1− arn)xn + arnT
n
r y(r−1)n,

y(r−1)n = (1− a(r−1)n)xn + a(r−1)nT
n
r−1 y(r−2)n,

y(r−2)n = (1− a(r−2)n)xn + a(r−2)nT
n
r−2 y(r−3)n,

...

y2n = (1− a2n)xn + a2nT
n
2 y1n,

y1n = (1− a1n)xn + a1nT
n
1 y0n,

(1.1)

where {Ti : i ∈ I} is a family of selfmappings of C, 0 ≤ ain ≤ 1, y0n = xn for all n.
The iterative method (1.1) extends Mann iterative method [14], Ishikawa iterative

method [8], Khan and Takahashi iterative method [12] and the three-step iterative
method of Xu and Noor [22], simultaneously.

Moudafi [15] proposed viscosity iterative method which amounts to selecting a
particular fixed point of a given nonexpansive selfmapping. The so-called viscosity
iterative method have been studied by many authors (see, for example, [13, 16,
21] and references therein). These methods are very important because of their
applicability to convex optimization, linear programming, monotone inclusions and
elliptic differential equations [15].

Recently, Chang et al. [2] introduced and studied the following viscosity iterative
method:

xn+1 = (1− αn)f (xn) + αnT
n yn

yn = (1− βn)xn + βnT
nxn, n ≥ 1

(1.2)

where T is an asymptotically nonexpansive mapping and f is a fixed contraction.
As the iterative methods in (1.1)-(1.2) involve convex combinations, so we need

some convex structure in a metric space to define and investigate their convergence
on a nonlinear domain.

A mapping W : X2 × J → X is a convex structure [20] on a metric space X if

d (u,W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y)
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for all x, y, u ∈ X and α ∈ J = [0, 1]. The metric space X together with a convex
structure W is known as a convex metric space. A nonempty subset C of a convex
metric space X is convex if W (x, y, α) ∈ C for all x, y ∈ C and α ∈ J. All normed
linear spaces are convex metric spaces but there are convex metric spaces which are
not linear; for example, a CAT (0) space [1, 11].

A convex metric space X is uniformly convex if for any ε > 0, there exists
δ = δ (ε) > 0 such that for all r > 0 and x, y, z ∈ X with d (z, x) ≤ r, d (z, y) ≤ r
and d (x, y) ≥ rε imply that d

(
z,W

(
x, y, 12

))
≤ (1− δ) r.

Obviously, uniformly convex Banach spaces are uniformly convex metric spaces.
A convex metric space X has property (C) if W (x, y, α) = W (y, x, 1− α) for

all x, y ∈ X,α ∈ J and property (H) if d (W (x, y, α) ,W (z, w, α)) ≤ αd (x, z) +
(1− α) d (y, w) for all x, y, z, w ∈ X,α ∈ J.

In general, a convex structure W is not continuous. However, if W satisfies
properties (C) and (H), then W is continuous. In fact, the property (C) always
holds in uniformly convex metric spaces. Therefore W is continuous on a uniformly
convex metric space if and only if it satisfies the property (H).

In a convex metric space, we devise a general iterative method which extends the
methods in (1.1) and (1.2), simultaneously.

We define Sn−mapping generated by a family {Ti : i ∈ I} of generalized asymp-
totically quasi-nonexpansive mappings on C as:

(1.3) Snx = Urnx

where U0n = I (the identity mapping), U1nx = W (Tn
1 U0nx, x, a1n), U2nx =

W (Tn
2 U1nx, x, a2n), . . . , Urnx = W (Tn

r U(r−1)nx, x, arn).
For {αn} ⊂ J, a fixed contractive mapping f on C and Sn given in (1.3), we

define {xn} as follows:

(1.4) x1 ∈ C, xn+1 = W (f (xn) , Snxn, αn),

and call it a general viscosity iterative method in a convex metric space.
The purpose of this paper is to:

(i) establish a necessary and sufficient condition for convergence of iterative method
(1.4) to a common fixed point of a finite family of generalized asymptotically quasi-
nonexpansive mappings on a convex metric space;
(ii) prove strong convergence results for the iterative method (1.4) to a common
fixed point of a finite family of uniformly Hölder continuous and generalized asymp-
totically quasi-nonexpansive mappings on a uniformly convex metric space.

Our work is a significant generalization of the corresponding results in Banach
spaces and CAT (0) spaces.

We assume that F =
∩

i∈I F (Ti) ̸= ∅.
We need the following known results for our convergence analysis.

Lemma 1.1 ([9]). Let the sequences {an} and {un} of real numbers satisfy:

an+1 ≤ (1 + un)an, an ≥ 0, un ≥ 0,
∞∑
n=1

un < +∞.

Then (i) limn→∞ an exists; (ii) if lim infn→∞ an = 0, then limn→∞ an = 0.
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Lemma 1.2 ([10]). Let X be a uniformly convex metric space satisfying property
(H). Let x ∈ X and {an} be a sequence in [b, c] for some b, c ∈ (0, 1). If {un} and
{vn} are sequences in X such that lim supn−→∞ d(un, x) ≤ r, lim supn−→∞ d(vn, x) ≤
r and limn−→∞ d(W (un, vn, an), x) = r for some r ≥ 0, then limn→∞ d(un, vn) = 0.

2. Convergence theorems in convex metric spaces

The aim of this section is to prove some results for the viscosity iteration method
(1.4) to converge to a common fixed point of a finite family of generalized asymp-
totically quasi-nonexpansive mappings in a convex metric space.

Lemma 2.1. Let C be a nonempty, closed and convex subset of a convex met-
ric space X and {Ti : i ∈ I} be a family of generalized asymptotically quasi-
nonexpansive selfmappings of C, i.e., d (Tn

i x, pi) ≤ (1 + uin)d (x, pi) + cin for all
x ∈ C and pi ∈ F (Ti), i ∈ I where {uin} and {cin} are sequences in [0,∞)
with

∑∞
n=1 uin < ∞,

∑∞
n=1 cin < ∞ for each i. Then, for the sequence {xn} in

(1.4) with
∑∞

n=1 αn < ∞, there are sequences {νn} and {ξn} in [0,∞) satisfying∑∞
n=1 νn < ∞,

∑∞
n=1 ξn < ∞ such that

(a) d (xn+1, p) ≤ (1 + νn)
r d (xn, p) + ξn, for all p ∈ F and all n ≥ 1;

(b) d (xn+m, p) ≤ M1 (d (xn, p) +
∑∞

n=1 ξn), for all p ∈ F and n ≥ 1,m ≥ 1,M1 > 0.

Proof. (a) Let p ∈ F and νn = maxi∈I uin for all n ≥ 1. Since
∑∞

n=1 uin < ∞ for
each i, therefore

∑∞
n=1 νn < ∞.

Now we have

d (U1nxn, p) = d (W (Tn
1 U0nxn, xn, a1n), p)

≤ (1− α1n)d (xn, p) + α1n (T
n
1 xn, p)

≤ (1− α1n)d (xn, p) + α1n [(1 + u1n)d (xn, p) + c1n]

≤ (1 + u1n)d (xn, p) + c1n

= (1 + νn)
1d (xn, p) + c1n.

Assume that d (Uknxn, p) ≤ (1+ νn)
kd (xn, p)+ (1+ νn)

k−1
∑k

i=1 cin holds for some
k > 1.

Consider

d
(
U(k+1)nxn, p

)
= d

(
W (Tn

k+1Uknxn, xn, a(k+1)n), p
)

≤ (1− a(k+1)n)d (xn, p) + a(k+1)nd
(
Tn
k+1Uknxn, p

)
≤ (1− a(k+1)n)d (xn, p) + a(k+1)n(1 + u(k+1)n)d (Uknxn, p)

+a(k+1)nck+1n

≤ (1− a(k+1)n)d (xn, p) + a(k+1)nc(k+1)n

+a(k+1)n(1 + u(k+1)n)d (Uknxn, p)

≤ (1− a(k+1)n)d (xn, p) + a(k+1)nc(k+1)n

+a(k+1)n(1 + νn)

[
(1 + νn)

kd (xn, p) + (1 + νn)
k−1

k∑
i=1

cin

]
≤ (1− a(k+1)n)(1 + νn)

k+1d (xn, p) + a(k+1)n(1 + νn)c(k+1)n
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+a(k+1)n(1 + νn)
k+1d (xn, p) + a(k+1)n(1 + νn)

k−1
k+1∑
i=1

cin

≤ (1 + νn)
k+1d (xn, p) + (1 + νn)

k
k+1∑
i=1

cin

By mathematical induction, we have

(2.1) d (Ujnxn, p) ≤ (1 + νn)
jd (xn, p) + (1 + νn)

j−1
j∑

i=1

cin, 1 ≤ j ≤ r.

Hence

(2.2) d (Snxn, p) = d (Urnxn, p) ≤ (1 + νn)
rd (xn, p) + (1 + νn)

r−1
r∑

i=1

cin.

Now, by (1.4) and (2.2), we obtain

d (xn+1, p) = d (W (f (xn) , Sn, αn), p)

≤ αnd (f (xn) , p) + (1− αn) d (Snxn, p)

≤ αnαd (xn, p) + αnd (f (p) , p)

+ (1− αn)

(
(1 + νn)

rd (xn, p) + (1 + νn)
r−1

r∑
i=1

cin

)

≤ (1 + νn)
rd (xn, p) + (1− αn) (1 + νn)

r−1
r∑

i=1

cin

+αnd (f (p) , p)

≤ (1 + νn)
rd (xn, p) + αnd (f (p) , p) + (1 + νn)

r−1
r∑

i=1

cin.

Setting max
{
d (f (p) , p) , sup(1 + νn)

r−1
}
= M, we get that

d (xn+1, p) ≤ (1 + νn)
rd (xn, p) +M

(
αn +

r∑
i=1

cin

)
.

That is,
d (xn+1, p) ≤ (1 + νn)

rd (xn, p) + ξn,

where ξn = M (αn +
∑r

i=1 cin) and
∑∞

n=1 ξn < ∞.
(b) We know that 1 + t ≤ et for t ≥ 0. Thus, by part (a), we have

d (xn+m, p) ≤ (1 + νn+m−1)
rd (xn+m−1, p) + ξn+m−1

≤ erνn+m−1d (xn+m−1, p) + ξn+m−1

≤ er(νn+m−1+νn+m−2)d (xn+m−2, p) + ξn+m−1 + ξn+m−2

...

≤ er
∑n+m−1

i=n vid (xn, p) +
n+m−1∑
i=n+1

vi

n+m−1∑
i=n

ξi
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≤ er
∑∞

i=1 vi

(
d (xn, p) +

∞∑
i=1

ξi

)

= M1

(
d (xn, p) +

∞∑
i=1

ξi

)
,whereM1 = er

∑∞
i=1 vi .

�

The next result deals with a necessary and sufficient condition for the convergence
of {xn} in (1.4) to a point of F ; for this we follow the arguments of Khan et al. ([9],
Theorem 2.2).

Theorem 2.2. Let C be a nonempty, closed and convex subset of a complete con-
vex metric space X and {Ti : i ∈ I} a family of generalized asymptotically quasi-
nonexpansive selfmappings of C, i.e., d (Tn

i x, pi) ≤ (1 + uin)d (x, pi) + cin for all
x ∈ C and pi ∈ F (Ti), i ∈ I where {uin} and {cin} are sequences in [0,∞)
with

∑∞
n=1 uin < ∞,

∑∞
n=1 cin < ∞ for all i. Then, for the sequence {xn} in

(1.4) with
∑∞

n=1 αn < ∞, {xn} converges strongly to a point in F if and only if
lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F (x, p).

Proof. The necessity is obvious; we only prove the sufficiency. By Lemma 2.1 (a),
we have

d (xn+1, p) ≤ (1 + νn)
rd (xn, p) + ξn for all p ∈ F and n ≥ 1.

Therefore,

d(xn+1, F ) ≤ (1 + νn)
rd(xn, F ) + ξn,

=

(
1 +

r∑
k=1

r(r − 1) · · · (r − k + 1)

k!
νkn

)
d(xn, F ) + ξn.

As
∑∞

n=1 νn < +∞, so
∑∞

n=1

∑r
k=1

r(r−1)···(r−k+1)
k! νkn < ∞. Now

∑∞
n=1 ξn < ∞

in Lemma 2.1 (a), so by by Lemma 1.1 and lim infn→∞ d(xn, F ) = 0, we get that
limn→∞ d(xn, F ) = 0. Next, we prove that {xn} is a Cauchy sequence in X. Let
ε > 0. From the proof of Lemma 2.1 (b), we have

(2.3) d (xn+m, xn) ≤ d (xn+m, F ) + d (xn, F ) ≤ (1 +M1) d (xn, F ) +M1

∞∑
i=n

ξi,

Since limn→∞ d(xn, F ) = 0 and
∑∞

i=1 ξi < ∞, there exists a natural number n0 such
that

d(xn, F ) ≤ ε

2 (1 +M1)
and

∞∑
i=n

ξi <
ε

2M1
for all n ≥ n0.

So for all integers n ≥ n0,m ≥ 1, we obtain from (2.3) that

d (xn+m, xn) < (M1 + 1)
ε

2 (1 +M1)
+M1

ε

2M1
= ε.
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Thus, {xn} is a Cauchy sequence in X and so converges to q ∈ X. Finally, we show
that q ∈ F . For any ε > 0, there exists natural number n1 such that

d(xn, F ) = inf
p∈F

d (xn, p) <
ε

3
and d (xn, q) <

ε

2
, for all n ≥ n1.

There must exist p∗ ∈ F such that d (xn, p
∗) < ε

2 for all n ≥ n1; in particular,

d (xn1 , p
∗) < ε

2 and d (xn1 , q) <
ε
2 .

Hence

d (p∗, q) ≤ d (xn1 , p
∗) + d (xn1 , q) < ε.

Since ε is arbitrary, therefore d (p∗, q) = 0. That is, q = p∗ ∈ F. �

A generalized asymptotically nonexpansive mapping is a generalized asymptoti-
cally quasi-nonexpansive, so we have the following important new results:

Corollary 2.3. Let C be a nonempty, closed and convex subset of a complete convex
metric space X and {Ti : i ∈ I} a family of generalized asymsptotically nonexpansive
selfmappings of C, i.e., d (Tn

i x, T
n
i y) ≤ (1 + uin)d (x, y) + cin, for all x, y ∈ C and

i ∈ I where {uin} and {cin} are sequences in [0,∞) with
∑∞

n=1 uin < ∞ and∑∞
n=1 cin < ∞ for all i. Then the sequence {xn} in (1.4), converges strongly to a

point p ∈ F if and only if lim infn→∞ d(xn, F ) = 0.

Corollary 2.4. Let C, {Ti : i ∈ I}, F and {uin} , {cin} be as in Theorem 2.2. Then
the sequence {xn} in (1.4), converges strongly to a point p ∈ F if and only if there
exists a subsequence {xi} of {xn} which converges strongly to p.

Theorem 2.5. Let C be a nonempty, closed and convex subset of a complete convex
metric space X, and {Ti : i ∈ I} a family of generalized asymptotically nonexpansive
selfmappings of C, i.e., d (Tn

i x, T
n
i y) ≤ (1 + uin)d (x, y) + cin, for all x, y ∈ C and

i ∈ I where {uin} and {cin} are sequences in [0,∞) with
∑∞

n=1 uin < ∞ and∑∞
n=1 cin < ∞ for all i. If limn→∞ d (xn, Tixn) = 0 for the sequence {xn} in (1.4),

i ∈ I and one of the mappings is semi-compact, then {xn} converges strongly to
p ∈ F .

Proof. Let Tℓ be semi-compact for some 1 ≤ ℓ ≤ r. Then there exists a subsequence
{xi} of {xn} such that xi → p ∈ C. Hence

d (p, Tℓp) = lim
i→∞

d (xi, Tℓxi) = 0.

Thus, p ∈ F and so by Corollary 2.4, {xn} converges strongly to a common fixed
point of the family of mappings. �
Theorem 2.6. Let C, {Ti : i ∈ I}, F, {uin} and {cin} be as in Theorem 2.5.
Suppose that there exists a mapping Tj which satisfies the following conditions:
(i) limn→∞ d (xn, Tjxn) = 0;
(ii) there exists a constant M such that d (xn, Tjxn) ≥ Md(xn, F ), for all n ≥ 1.Then
the sequence {xn} in (1.4), converges strongly to a point p ∈ F .

Proof. From (i) and (ii), it follows that limn→∞ d(xn, F ) = 0. By Theorem 2.2,
{xn} converges strongly to a common fixed point of the family of mappings. �
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3. Results in a uniformly convex metric space

In this section, we establish some convergence results for the iterative method
(1.4) of generalized asymptotically quasi-nonexpansive mappings on a uniformly
convex metric space.

Lemma 3.1. Let C be a nonempty, closed and convex subset of a uniformly convex
metric space X and {Ti : i ∈ I} be a family of uniformly Hölder continuous and
generalized asymptotically quasi-nonexpansive selfmappings of C, i.e., d (Tn

i x, pi) ≤
(1 + uin) (x, pi) + cin for all x ∈ C and pi ∈ F (Ti), where {uin} and {cin} are
sequences in [0,∞) with

∑∞
n=1 uin < ∞ and

∑∞
n=1 cin < ∞, respectively, for each

i ∈ I. Then, for the sequence {xn} in (1.4) with ain ∈ [δ, 1− δ] for some δ ∈
(
0, 12
)

and
∑∞

n=1 αn < ∞, we have
(a) limn→∞ d (xn, p) exists for all p ∈ F
(b) limn→∞ d (xn, Tjxn) = 0, for each j ∈ I.

Proof. (a) Let p ∈ F and νn = maxi∈I uin, for all n ≥ 1.By Lemma 1.1 (i) and
Lemma 2.1 (a), it follows that limn→∞ d (xn, p) exists for all p ∈ F . Assume that

(3.1) lim
n→∞

d (xn, p) = c.

(b) The inequality (2.1 ) together with (3.1) gives that

(3.2) lim sup
n→∞

d (Ujnxn, p) ≤ c, 1 ≤ j ≤ r.

By (1.4), we have

d (xn+1, p) = d (W (f (xn) , Sn, αn), p)

≤ αnd (f (xn) , p) + (1− αn) d (Snxn, p)

≤ αnd (f (xn) , p) + αnd (f (p) , p) + (1− αn) d (Urnxn, p) ,

(3.3)

and hence

(3.4) c ≤ lim inf
n→∞

d (Urnxn, p)

Combining (3.2) and (3.4), we get

lim
n→∞

d (Urnxn, p) = c.

Note that

d (Urnxn, p) = d
(
W (Tn

r U(r−1)nxn, xn, arn), p
)

≤ arnd
(
Tn
r U(r−1)nxn, p

)
+ (1− arn) d (xn, p)

≤ arn
[
(1 + νn) d

(
U(r−1)nxn, p

)
+ crn

]
+ (1− arn) d (xn, p)

= arn (1 + νn) d
(
W (Tn

r−1U(r−2)nxn, xn, a(r−1)n)xn, p
)

+arncrn + (1− arn) d (xn, p)

≤ arn (1 + νn)
[
a(r−1)nd

(
Tn
r−1U(r−2)nxn, p

)
+
(
1− a(r−1)n

)
d (xn, p)

]
+arncrn + (1− arn) d (xn, p)

≤ arna(r−1)n (1 + νn)
2 d
(
U(r−2)nxn, p

)
+
(
1− arna(r−1)n

)
(1 + νn)

2 d (xn, p)
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+arna(r−1)n (1 + νn)
2 c(r−1)n + arn (1 + νn)

2 crn

...

≤
r∏

i=j+1

ain (1 + νn)
r−j d (Ujnxn, p)

+
(
1−

r∏
i=j+1

ain

)
(1 + νn)

r−j d (xn, p)

+
r∏

i=j+1

ain (1 + νn)
r−j cj+1n +

r∏
i=j+2

ain (1 + νn)
r−j cjn

+ · · ·+ arn (1 + νn)
r−j crn.

and therefore, we have

d (xn, p) ≤ d (xn, p)

δr−j
− d (Urnxn, p)

δr−j (1 + νn)
r−j

+ d (Ujnxn, p)

+cj+1n +
cjn
δ

+ · · ·+ crn
δr−j+1

.

Hence

(3.5) c ≤ lim inf
n→∞

d (Ujnxn, p) , 1 ≤ j ≤ r.

Using (3.2) and (3.5), we have

lim
n→∞

d (Ujnxn, p) = c.

That is,
lim
n→∞

d
(
W (Tn

j U(j−1)nxn, xn, ajn), p
)
= c for 1 ≤ j ≤ r.

This together with (3.1) and (3.2) gives that

(3.6) lim
n→∞

d
(
Tn
j U(j−1)nxn, xn,

)
= 0 for 1 ≤ j ≤ r.

If j = 1,we have by (3.6),
lim
n→∞

d (Tn
1 xn, xn) = 0.

In case j ∈ {2, 3, 4, . . . , r} , we observe that

d
(
xn, U(j−1)nxn

)
= d

(
xn,W

(
Tn
j−1U(j−2)nxn, xn, a(j−1)n

))
≤ a(j−1)nd

(
Tn
j−1U(j−2)nxn, xn

)
→ 0.

(3.7)

Since Tj is uniformly Hölder continuous, therefore the inequality

d
(
Tn
j xn, xn

)
≤ d

(
Tn
j xn, T

n
j U(j−1)nxn

)
+ d

(
Tn
j U(j−1)nxn, xn

)
≤ Ld

(
xn, U(j−1)nxn

)γ
+ d

(
Tn
j U(j−1)nxn, xn

)
,

together with (3.6) and (3.7) gives that

lim
n→∞

d
(
Tn
j xn, xn

)
= 0.

Hence,

(3.8) d
(
Tn
j xn, xn

)
→ 0 as n → ∞ for 1 ≤ j ≤ r.
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Since

d (xn, xn+1) = d (xn,W (f (xn) , Snxn, αn))

≤ αnd (xn, f (xn)) + (1− αn) d (xn, Snxn)

≤ αn [d (xn, p) + d (p, f (p)) + d (f (p) , f (xn))]

+ (1− αn) arnd
(
xn, T

n
r U(r−1)nxn

)
≤ αn (1 + α) d (xn, p) + αnd (p, f (p))

+ (1− αn) arnd
(
xn, T

n
r U(r−1)nxn

)
,

therefore

(3.9) lim
n→∞

d (xn, xn+1) = 0.

Let us observe that:

d (xn, Tjxn) ≤ d (xn, xn+1) + d
(
xn+1, T

n+1
j xn+1

)
+d
(
Tn+1
j xn+1, T

n+1
j xn

)
+ d

(
Tn+1
j xn, Tjxn

)
≤ d (xn, xn+1) + d

(
xn+1, T

n+1
j xn+1

)
+Ld (xn+1, xn)

γ + Ld
(
Tn
j xn, xn

)γ
.

By uniform Hölder continuity of Tj , (3.8) and (3.9) , we get

(3.10) lim
n→∞

d (xn, Tjxn) = 0, 1 ≤ j ≤ r.

�
Theorem 3.2. Under the hypotheses of Lemma 3.1, assume, for some 1 ≤ j ≤ r,
Tm
j is semi-compact for some positive integer m. If X is complete, then {xn} in

(1.4), converges strongly to a point in F.

Proof. Fix j ∈ I and suppose Tm
j is semi-compact for some m ≥ 1. By (3.10), we

obtain

d
(
Tm
j xn, xn

)
≤ d

(
Tm
j xn, T

m−1
j xn

)
+ d

(
Tm−1
j xn, T

m−2
j xn

)
+ · · ·+ d

(
T 2
j xn, Tjxn

)
+ d (Tjxn, xn)

≤ d (Tjxn, xn) + (m− 1)Ld (Tjxn, xn)
γ → 0.

Since {xn} is bounded and Tm
j is semi-compact, {xn} has a convergent subsequence

{xni} such that xni → q ∈ C. Hence, by (3.10), we have

d (q, Tiq) = lim
n→∞

d
(
xnj , Tixnj

)
= 0, i ∈ I.

Thus q ∈ F and so by Corollary 2.4, {xn} converges strongly to a common fixed
point q of the family {Ti : i ∈ I}. �

An immediate consequence of Lemma 3.1 and Theorem 2.6 is the following strong
convergence result in a uniformly convex metric space.

Theorem 3.3. Let C, {Ti : i ∈ I}, F, {uin} and {cin} be as in Lemma 3.1. If there
exists a constant M such that d (xn, Tjxn) ≥ Md(xn, F ), for all n ≥ 1 and X is
complete, then the sequence {xn} in (1.4), converges strongly to a point in F .
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Remark 3.4. (i) Theorem 2.2 and Theorems 3.2–3.3, respectively, contain as spe-
cial cases, Theorem 2.2 and Theorems 3.2–3.3 in [9] which themselves improve the
results of Khan and Takahashi [12], Suantai [19] and Xu and Noor [22].
(ii) Theorems 2.3, 3.2–3.3 are analogues of the corresponding results in [18, 23] for
a general viscosity iterative method in a uniformly convex metric space.
(iii) All the results in this paper are new in CAT (0) spaces.

References

[1] M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Springer-Verlag, Berlin,
Heidelberg, New York, 1999.

[2] S. S. Chang, H. W. J. Lee, C. K. Chan and J. K. Kim, Approximating solutions of variational
inequalities for asymptotically nonexpansive mappings, Appl. Math. Comput. 212 (2009), 51–
59.

[3] W. Cholamjiak and S. Suantai, Weak and strong convergence theorems for a finite family
of generalized asymptotically quasi-nonexpansive mappings, Comput. Math. Appl. 60 (2010),
1917–1923.

[4] S. Dhompongsa, W. A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings in
metric spaces, Nonlinear Anal. 65 (2006), 762–772.

[5] S. Dhompongsa, W. Fupinwong and A. Kaewkhao, Common fixed points of a nonexpansive
semigroup and a convergence theorem for Mann iterations in geodesic metric spaces, Nonlinear
Anal. 70 (2009), 4268–4273.

[6] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in
Nonlinear Mechanics, SIAM, Philadelphia, 1989.

[7] K. Goebel and W. Kirk, A fixed point theorem for asymptotically nonexpansive mappings,
Proc. Amer. Math. Soc. 35 (1972), 171–174.

[8] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–
150.

[9] A. R. Khan, A. A. Domlo, H. Fukhar-ud-din, Common fixed points Noor iteration for a finite
family of asymptotically quasi-nonexpansive mappings in Banach space, J. Math. Anal. Appl.
341 (2008), 1–11.

[10] A. R. Khan, H. Fukhar-ud-din and M. A. A. Khan, An implicit algorithm for two finite
families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory and Applications,
2012, 2012:54.

[11] A. R. Khan, M. A. Khamsi and H. Fukhar-ud-din, Strong convergence of a general iteration
scheme in CAT(0)-spaces, Nonlinear Anal. 74 (2011), 783-791.

[12] S. H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically
nonexpansive mappings, Sci. Math. Japon. 53 (2001), 133–138.

[13] P. Kumam and S. Plubtieng, Viscosity approximation methods for monotone mappings and a
countable family of nonexpansive mappings, Mathematica Slovaca 61 (2012), 257–274.

[14] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[15] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl.

241 (2000), 46–55.
[16] S. Plubtieng and T. Thammathiwat, A viscosity approximation method for finding a common

solution of fixed points and equilibrium problems in Hilbert spaces, J. Global Optim. 50 (2011),
313–327.

[17] S. Plubtieng, K. Ungchittrakool and R. Wangkeeree, Implicit iterations of two finite families
for nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 28 (2007), 737–749.

[18] N. Shahzad and H. Zegeye, Strong convergence of an implicit iteration process for a finite fam-
ily of generalized asymptotically quasi-nonexpansive maps. Appl. Math. Comput. 189 (2007),
1058–1065.

[19] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonex-
pansive mappings, J. Math. Anal. Appl. 311 (2005), 506–517.



58 H. FUKHAR-UD-DIN, M. A. KHAMSI, AND A. R. KHAN

[20] W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai. Math. Sem.
Rep. 22 (1970), 142–149.

[21] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl.
298 (2004), 279–291.

[22] B. Xu and M. A. Noor, Fixed-point iterations for asymptotically nonexpansive mappings in
Banach spaes, J. Math. Anal. Appl. 267 (2002), 444–453.

[23] J. Zhao, S. He and G. Liu, Strong convergence theorems for generalized asymptotically quasi-
nonexpansive mappings, J. Appl. Math. Comput. 30 (2009), 53–64.

Manuscript received November 30, 2013

revised April 14, 2014

H. Fukhar-ud-din
Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia; Department of Mathematics Islamia University Bahawlpur 63100,
Pakistan

E-mail address: hfdin@kfupm.edu.sa, hfdin@yahoo.com

M. A. Khamsi
Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia; Department of Mathematical Sciences, University of Texas at El
Paso, El Paso, TX 79968, USA

E-mail address: mohamed@math.utep.edu, mkhamsi@kfupm.edu.sa

A. R. Khan
Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia

E-mail address: arahim@kfupm.edu.sa


