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VISCOSITY ITERATIVE METHOD FOR A FINITE FAMILY OF
GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE
MAPPINGS IN CONVEX METRIC SPACES

HAFIZ FUKHAR-UD-DIN, MOHAMED AMINE KHAMSI, AND ABDUL RAHIM KHAN*

ABSTRACT. We introduce a general viscosity iterative method for a finite fam-
ily of generalized asymptotically quasi-nonexpansive mappings in a convex metric
space. The new iterative method contains several well-known iterative methods as
its special case including multistep iterative method of Khan et al. [Common fixed
points Noor iteration for a finite family of asymptotically quasi-nonexpansive
mappings in Banach space, J. Math. Anal. Appl. 341(2008), 1-11] and vis-
cosity iterative method of Chang et al.[Approximating solutions of variational
inequalities for asymptotically nonexpansive mappings, Appl. Math. Comput.,
212(2009), 51-59]. Our results are new in convex metric spaces and generalize
many known results in Banach spaces and C'AT'(0) spaces simultaneously.

1. INTRODUCTION AND PRELIMINARIES

Let C' be a nonempty subset of a metric space X and T : C — C be a map-
ping. Throughout this paper, we assume that F(T), the set of fixed points of
T is nonempty and I = {1,2,3,...,r}. The mapping T is (i) nonexpansive if
d(Tz,Ty) < d(z,y) for z,y € C (ii) quasi-nonexpansive if d (Tz,Ty) < d(z,y)
for x € C,y € F (T) (iii) asymptotically nonexpansive [7] if there exists a sequence
of real numbers {u,} in [0,00) with lim, o u, = 0 such that d(T"z,T"y) <
(1+wuy)d(x,y) for all 2,y € C and n > 1 (iv) asymptotically quasi-nonexpansive
if there exists a sequence of real numbers {u,} in [0,00) with lim, oo up, = 0
such that d(T"xz,p) < (14 up)d(xz,p) for all z € C,p € F(T) and n > 1 (v)
generalized asymptotically quasi-nonexpansive [18] if there exist two sequences of
real numbers {u,} and {c,} in [0,00) with lim,,_o u, = 0 = lim,,_,, ¢, such that
d(T"z,p) < d(x,p)+und(xz,p)+cy forallz € C,p € F(T)and n > 1 (vi) uniformly
L-Lipschitzian if there exists a constant L > 0 such that d (T"z,T"y) < Ld (z,y),
for all z,y € C' and n > 1 (vii) uniformly Holder continuous if there are constants
L > 0,7 > 0 such that d(T"z,T"y) < Ld(z,y)” for all z,y € C and n > 1 and
(viii) semi-compact if for a sequence {x,} in C with lim,,_, d (2, Tz,) = 0, there
exists a subsequence {z,,} of {z,} such that z,, converges to a point in C'.

From these definitions, it is clear that
(1) the class of generalized asymptotically quasi-nonexpansive mappings includes
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the class of asymptotically quasi-nonexpansive mappings and this inclusion is proper
(see [3,18,23)).

(2) a uniformly L-Lipschitzian mapping is uniformly Hélder continuous but the
converse is not true, in general.

Convergence theorems for the mappings, mentioned in (i)-(v), through different
iterative methods have been obtained by a number of authors (e.g., [3,16-18,22, 23]
and the references therein).

The reader interested in fixed points of uniformly Lipschitzian mappings in metric
spaces and Mann iterative methods for nonexpansive mappings in geodesic metric
spaces is referred to Dhompongsa et al. [4,5]

In 2005, Suantai [19] introduced a general three-step iterative method as an
extension of one-step, two-step and three-step iterative methods [6,8, 14, 22].

Let C' be a convex subset of a normed space. Khan et al. [9] introduced the
following multi-step iterative method:

x1 € C,
Tni1 = (1 = arp)2p + app 13" Yir—1)n>
Yor—1n = (1 = ar—1)n)Zn + @10 D71 Yr—2)ns
(1.1) Y2 = (1 = ar—2)n)Tn + a(r—2n 72 Y(r—3)n

Yon = (1 - a2n)xn + aQnT2n Yin,
Yin = (1 - aln)xn + alnTln Yon,

where {T; : i € I'} is a family of selfmappings of C, 0 < a;, < 1,yo, = zy, for all n.

The iterative method (1.1) extends Mann iterative method [14], Ishikawa iterative
method [8], Khan and Takahashi iterative method [12] and the three-step iterative
method of Xu and Noor [22], simultaneously.

Moudafi [15] proposed viscosity iterative method which amounts to selecting a
particular fixed point of a given nonexpansive selfmapping. The so-called viscosity
iterative method have been studied by many authors (see, for example, [13, 16,
21] and references therein). These methods are very important because of their
applicability to convex optimization, linear programming, monotone inclusions and
elliptic differential equations [15].

Recently, Chang et al. [2] introduced and studied the following viscosity iterative
method:

Tn4+1 = (1 - an)f (xn) + anTn Yn
Yn = (1 - Bn)xn + BT, n2>1
where T' is an asymptotically nonexpansive mapping and f is a fixed contraction.
As the iterative methods in (1.1)-(1.2) involve convex combinations, so we need
some convex structure in a metric space to define and investigate their convergence

on a nonlinear domain.
A mapping W : X% x J — X is a convex structure [20] on a metric space X if

d(u, W (z,y,a)) < ad(u,z) + (1 — a)d(u,y)

(1.2)
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for all z,y,u € X and a € J = [0, 1]. The metric space X together with a convex
structure W is known as a convex metric space. A nonempty subset C of a convex
metric space X is convex if W(x,y,«) € C for all z,y € C and « € J. All normed
linear spaces are convex metric spaces but there are convex metric spaces which are
not linear; for example, a C AT (0) space [1,11].

A convex metric space X is uniformly convex if for any € > 0, there exists
d = 6(e) > 0 such that for all » > 0 and z,y,z € X with d(z,z) < r,d(z,y) <r
and d (z,y) > re imply that d (2, W (z,y,3)) < (1 —4)r.

Obviously, uniformly convex Banach spaces are uniformly convex metric spaces.

A convex metric space X has property (C) if W (z,y,a) = W (y,z,1 — «) for
all z,y € X,a € J and property (H) if d(W (z,y, ), W (2,w,)) < ad(x,z) +
(1—-a)d(y,w) for all z,y,z,w € X,a € J.

In general, a convex structure W is not continuous. However, if W satisfies
properties (C') and (H), then W is continuous. In fact, the property (C) always
holds in uniformly convex metric spaces. Therefore W is continuous on a uniformly
convex metric space if and only if it satisfies the property (H).

In a convex metric space, we devise a general iterative method which extends the
methods in (1.1) and (1.2), simultaneously.

We define S,,—mapping generated by a family {7} : ¢ € I} of generalized asymp-
totically quasi-nonexpansive mappings on C' as:

(1.3) Spx =Uppx

where Up, = I (the identity mapping), Ui,z = W(I7Uonz,x,a1n), Uz =
W(T3Urnz, @, a20), - - -, Upne = W(TU(p—1)n®, T, Qrp)-

For {a,,} C J, a fixed contractive mapping f on C and S, given in (1.3), we
define {x,} as follows:

(1-4) z1 € C,rpg1 = W(f (xn) , SnTn, an)a

and call it a general viscosity iterative method in a convex metric space.

The purpose of this paper is to:
(i) establish a necessary and sufficient condition for convergence of iterative method
(1.4) to a common fixed point of a finite family of generalized asymptotically quasi-
nonexpansive mappings on a convex metric space;
(ii) prove strong convergence results for the iterative method (1.4) to a common
fixed point of a finite family of uniformly Holder continuous and generalized asymp-
totically quasi-nonexpansive mappings on a uniformly convex metric space.

Our work is a significant generalization of the corresponding results in Banach
spaces and C'AT (0) spaces.

We assume that F = (,.; F(T;) # 0.

We need the following known results for our convergence analysis.

Lemma 1.1 ([9]). Let the sequences {an} and {un} of real numbers satisfy:

0o
An+1 < (1 + un)ana G, > 07 Up, > 07 Zun < +o00.

n=1

Then (1) limy, 00 ay, exists; (ii) if liminf,, o an = 0, then lim,_ o a, = 0.
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Lemma 1.2 ([10]). Let X be a uniformly conver metric space satisfying property
(H). Let x € X and {a,} be a sequence in [b,c| for some b,c € (0,1). If {u,} and
{vn} are sequences in X such thatlimsup,,__, . d(un,z) < r, limsup,__, . d(v,,z) <
r and lim, oo d(W (up, vp, ay), ) =1 for some r > 0, then lim, oo d(tn, v,) = 0.

2. CONVERGENCE THEOREMS IN CONVEX METRIC SPACES

The aim of this section is to prove some results for the viscosity iteration method
(1.4) to converge to a common fixed point of a finite family of generalized asymp-
totically quasi-nonexpansive mappings in a convex metric space.

Lemma 2.1. Let C be a nonempty, closed and convexr subset of a conver met-
ric space X and {T; : i € I} be a family of generalized asymptotically quasi-
nonexpansiwe selfmappings of C, i.e., d(T'x,p;) < (1 + win)d (x,p;) + cin for all
x € C and p; € F(T;), i € I where {uy,} and {c;n} are sequences in [0, 00)
with Y07 Wi < 00, 07 Cin < 00 for each i. Then, for the sequence {xy,} in
(1.4) with 307 an < 00, there are sequences {vn} and {&,} in [0,00) satisfying
Yo VU < 00,307 &y < 00 such that

(@) d(xnt1,p) < (L4 vpn)" d(xn,p) + &, for allp € F and alln > 1;

(b) d(zntm,p) < My (d(zn,p) + D onrién), forallp e F andn > 1,m > 1,M; > 0.

o0

Proof. (a) Let p € F and vy, = max;es u;p, for all n > 1. Since Y 7, ujp < oo for
each 7, therefore "> | v, < co.

Now we have

d (Ulnxnap)

|
=y

(W(TanOnxny Tn, aln)7p)

(1 = awn)d (zn,p) + oan (11" 2n, p)

(1 — a1p)d (2, p) + a1n [(1 + win)d (20, p) + c1n)
(14 uin)d (Tn,p) + C1n

(14 ) d (2, p) + cin.

VAN VARVAN

Assume that d (Upn@n, p) < (14 10)5d (20, p) + (1 + v)* 1 2% ¢4, holds for some
kE>1.
Consider

d (W(T]gl+1 UknTn, Tn, a(k+1)n)7p)

d (U(k+1)nxn7p)

< (1= agriyn)d (@0, p) + Ay 1)nd (Ti1 Uknn, )

< (1= a@snn)d(@n,p) + a@s1)n(l + wrr1yn)d (Ukntn, p)
TA(k+1)nCh+1n

< (1= a@yn)d (@n,p) + Akt 1)nCrt1)n
+a(k+1)n(1 + u(k—i—l)n)d (UknTn, p)

< (1= a@e1yn)d (T, P) + At 1)nClkt1)n

k
Fagryn(1+vn) | (1+ va)Rd (20, p) + (1 + 1)t Z Cin
=1
< (1= agnyn) L+ v) 7 d (@, p) + apern(1 4 Vn)c(ptimn
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k+1

+a(k:+1)n(1 + Vn)k+1d (Tn,p) + a(k—l—l)n(]- + Vn)k_l Z Cin

i=1
k+1
< (1 + Vn)k—Hd (l‘n,p) + (1 + Vn)k Z Cin
i=1

By mathematical induction, we have
J
(2.1) d(Ujnan,p) < (14 vn)d (0, p) + (14 1) 71D cim, 1< <
=1
Hence

(2.2) d (Snn,p) = d(Upmzn,p) < (14 vp)"d (zn,p) + (14 v,)" Z Cin.

Now, by (1.4) and (2.2), we obtain

d ($n+17p) = d (W(f (l‘n) y Sns an),p)
and (f (zn),p) + (1 — an) d (Snn, p)
anad (n, p) + and (f (p),p)

+(1—ap) ((1 + )" d (T, p) + (L4 1)) cm>
i=1

r

< (1 + Vn)rd (xnap) + (1 - an) (1 + Vn)r_l Zcin
=1

IA A

+apd (f (p) ’p)

< (L4 vn)"d(@n,p) + and (f () ,p) + (L+ 1) ™" Cin.
=1

Setting max {d (f (p),p),sup(l + l/n)“l} = M, we get that

d (anrlap) < (1 + Vn)rd (-Tnvp) + M (an + Z Cin) .
i=1
That is,
d(zpt1,p) < (1+ )" d (70, p) + &n,
where &, = M (o + > iy ¢in) and >0 | &, < 00.
(b) We know that 1+ ¢ < e’ for ¢ > 0. Thus, by part (a), we have
(]- + Vn—&—m—l)rd (xn-l—m—hp) + 'Sn+m—1
eTVn+m_1d (xn+m—17p) + §n+m—1

er(yn+m71+yn+m72)d ($n+m72a p) + £n+m71 + £n+mf2

d (xn—i-map)

VAN VANVAN

n+m—1 n+m—1

S i () b Y v Y &

i=n-+1 i=n

IN
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< e (d (0, ) + Z@-)
1=1

o
= M (d (n,p) + Z§z> ,where M) = e 2=V,
i=1

O

The next result deals with a necessary and sufficient condition for the convergence
of {x,} in (1.4) to a point of F'; for this we follow the arguments of Khan et al. ([9],
Theorem 2.2).

Theorem 2.2. Let C be a nonempty, closed and conver subset of a complete con-
vex metric space X and {T; : i € I} a family of generalized asymptotically quasi-
nonexpansiwe selfmappings of C, i.e., d(T'x,p;) < (1 + win)d (x,p;) + cin for all
x € C and p; € F(T;), © € I where {ujn} and {cin} are sequences in [0, 0c0)
with Y 07 Ui < 00, 00 Cin < 00 for all i. Then, for the sequence {x,} in
(1.4) with >~ ay < 00, {zn} converges strongly to a point in F if and only if
liminf,, o0 d(zp, F') = 0, where d(z, F') = inf,cp (2, p).

Proof. The necessity is obvious; we only prove the sufficiency. By Lemma 2.1 (a),
we have

d(zp+1,p) < (14 vp) d(xn,p) + &, for all p € F and n > 1.
Therefore,

d(l'nJrl»F) < (1 + Vn)rd(me) +€TL3

= <1+zr:r(r—1)~];!(r—k+l)ys> d(zp, F) + &p.

k=1

As D00 vn < Ho0, 80 D000 DT W’%ﬁ < oo. Now }37°, &, < o0
in Lemma 2.1 (a), so by by Lemma 1.1 and liminf,, o d(x,, F) = 0, we get that
limy, o0 d(zp, F) = 0. Next, we prove that {z,,} is a Cauchy sequence in X. Let
e > 0. From the proof of Lemma 2.1 (b), we have

(2.3)  d(Tnpm:Tn) < d(Tpim, F) +d (20, F) < (1+ M) d (20, F) + My > _ &,

Since limy, 00 d(2y, F) = 0 and Y ;2 & < oo, there exists a natural number ng such
that

€ s €
d(zp, F) < ——————— and i < —— for all n > ny.
(zp, F) IEA an ;{ < A or all n > ng

So for all integers n > ng, m > 1, we obtain from (2.3) that

9 9

M-S =«
A+ ot

d (Tpsm,Tn) < (M1 +1) 5
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Thus, {z,} is a Cauchy sequence in X and so converges to ¢ € X. Finally, we show
that ¢ € F'. For any € > 0, there exists natural number n; such that

d(xn, F) = inf d (z,,p) < S and d(zn,q) < E,for all n > nj.
pEF 3 2

There must exist p* € F such that d(z,,p*) < % for all n > ny; in particular,

d(xn,,p*) < 5 and d (zp,,q) < 5.
Hence
d (p*7 Q) S d (xnpp*) + d (x’nd?q) < E
Since € is arbitrary, therefore d (p*,q) = 0. That is, ¢ = p* € F. O

A generalized asymptotically nonexpansive mapping is a generalized asymptoti-
cally quasi-nonexpansive, so we have the following important new results:

Corollary 2.3. Let C be a nonempty, closed and convex subset of a complete convex
metric space X and {T; : i € I} a family of generalized asymsptotically nonexpansive
selfmappings of C, i.e., d (T/'x,T'y) < (1 + win)d (z,y) + Cin, for all x,y € C and
i € I where {uj,} and {cin} are sequences in [0,00) with Y 2wy < 0o and
Yon2 i Cin < 00 for all i. Then the sequence {xy} in (1.4), converges strongly to a
point p € F if and only if liminf, . d(z,, F) = 0.

Corollary 2.4. Let C, {T;: 1 € I}, F and {uin},{cin} be as in Theorem 2.2. Then
the sequence {xy} in (1.4), converges strongly to a point p € F if and only if there
exists a subsequence {x;} of {x,} which converges strongly to p.

Theorem 2.5. Let C' be a nonempty, closed and convex subset of a complete convex
metric space X, and {T; : i € I} a family of generalized asymptotically nonexpansive
selfmappings of C, i.e., d(T/'x, T"y) < (1 + uin)d (z,y) + Cin, for all x,y € C and
i € I where {ujn} and {cin} are sequences in [0,00) with Y 2wy < 0o and
Y onZ ) Cin < 00 for alli. If limy, o0 d (2, Tizn) = 0 for the sequence {x,} in (1.4),
i € I and one of the mappings is semi-compact, then {x,} converges strongly to
peF.

Proof. Let Ty be semi-compact for some 1 < £ < r. Then there exists a subsequence
{z;} of {x,,} such that z; — p € C. Hence

11— 00

Thus, p € F and so by Corollary 2.4, {x,} converges strongly to a common fixed
point of the family of mappings. O

Theorem 2.6. Let C, {T; : i € I}, F,{uin} and {cin} be as in Theorem 2.5.
Suppose that there exists a mapping T; which satisfies the following conditions:

(i) limp—o00 d (2y, Tjxy) = 0;

(ii) there exists a constant M such that d (zy, Tjzy,) > Md(xy,, F), for alln > 1. Then
the sequence {x,} in (1.4), converges strongly to a point p € F.

Proof. From (i) and (ii), it follows that lim, . d(z,, F) = 0. By Theorem 2.2,
{z,} converges strongly to a common fixed point of the family of mappings. O
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3. RESULTS IN A UNIFORMLY CONVEX METRIC SPACE

In this section, we establish some convergence results for the iterative method
(1.4) of generalized asymptotically quasi-nonexpansive mappings on a uniformly
convex metric space.

Lemma 3.1. Let C be a nonempty, closed and convex subset of a uniformly convex
metric space X and {T; : i € I} be a family of uniformly Hélder continuous and
generalized asymptotically quasi-nonezpansive selfmappings of C, i.e., d (T]'x,p;) <
(1 + win) (z,pi) + cin for all x € C and p; € F(T;), where {uin} and {cin} are
sequences in [0,00) with Y o7 | Uip < 00 and Y o7 Ciyn < 00, respectively, for each
i € I. Then, for the sequence {x,} in (1.4) with a;, € [5,1— 6] for some & € (0, 3)
and Y27 | oy, < 00, we have

(a) limy, o0 d (:Un,p) exists for allp € F

(b) limp, 00 d (zp, Tjxn) =0, for each j € I.

Proof. (a) Let p € F and v, = max;e uip, for all n > 1.By Lemma 1.1 (i) and
Lemma 2.1 (a), it follows that lim, o d (2, p) exists for all p € F. Assume that

(3.1) nlbn;od(mn,p) =c.

(b) The inequality (2.1 ) together with (3.1) gives that
(3.2) limsupd (Ujpxn,p) <c,1 <j<r.

n—oo

By (1.4), we have
d(zpt1,p) = d(W(f (zn), Sn, om), p)
(3.3) < and (f (zn),p) + (1 — an) d (Shap, p)
< and (f (zn),p) + and (f (p),p) + (1 — an) d (Upnn, p)
and hence
(3.4) c< linrr_l)ioréfd (Upn@n, p)

Combining (3.2) and (3.4), we get
lim d(Uppzy,p) =c
n—oo

Note that
d(Upn@n,p) = d(W(T Up—1ynn, T, arn), D)
< pnd (T7U(p_1ynn, ) + (1 = arp) d (2, p)
< apn [(1+ vn) d (Ug—1yn@n, p) + ¢ + (1 — arn) d (20, p)
= am (1+vyn)d(W(T 1Ur—2)nTn, Tn, A(r—1)n)Tns D)
+arnCrn + (1 — app) d (zy, p)
< arn (1+wp) [a’(r 1)n ( ;l—lU(T—Q)nxnvp) + (1 - a(r—l)n) d(xn,p)]
+arncrn + (1 = arn) d (25, p)
< amag_nyy, (1 + ) (U(r—z)nxmp)

+ (1 - a?‘na(r—l)n) (1 + Vn)2 d (wmp)
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TLarna(r—l)n (1 + Vn)2 Clr—1)n + arn (1 + Vn)2 Crn

r
< H Ain (1 + Vn)r_] d (anxnap)
i=j+1

+<1 - ﬁ am> (1+ )" 7 d(zn,p)

i=j+1
+ IT am Q4+ v) 7 ejrm+ [ ain 1+ v)" 7 ¢jn
i=j+1 i=j+2
4t e (L4 1)"7 .
and therefore, we have
d (a:n,p) d (Urnxmp)

d(p, < ~ — : -+ d (Uipxny,
(zn,p) 57 5i (Lt ) (Ujnn, p)
Cin Crn
+Cj+1n+7++ﬁ
Hence
(3.5) c <liminfd (Ujpzp,p),1 <j <.

n—o0

Using (3.2) and (3.5), we have
lim d(Ujpzp,p) = c.

n—oo
That is,
Jgrgod (W(]}-"U(j,l)nxn,xn,ajn),p) =cfor1<j<r.
This together with (3.1) and (3.2) gives that
(3.6) 7}1—>Holod (T7U(j—1yn®n; Tn,) = 0 for 1 < j <.

If j = 1,we have by (3.6),
lim d (17'xn, zn) = 0.

In case j € {2,3,4,...,1}, we T)g:::rve that
37 d (2, Ugj-1yntn) = d (20, W (T1U(-2)nn, Tns A -1)n) )
< ag—1ynd (T} 1 U(j-2)n%n; ¥n) — 0.
Since T is uniformly Hélder continuous, therefore the inequality
d(TPap,z) < d(TP20, TPUG 1ynwn) + d (TFUG 1y, o)
< Ld (@, Uj-aynn) +d (T7UG-1ynn, o)

together with (3.6) and (3.7) gives that
lim d (T}'zn, z,) = 0.

n—o0

Hence,

(3.8) d (Tjnxn,ﬂcn) —0asn—ooforl <j<r

55
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Since

d(xn, W(f (zn) , Snn, an))

and (T, f (zn)) + (1 — an) d (25, Spn)

an [d(zn,p) +d(p, f () +d(f(p), [ (zn))]
+ (1 — ap) appd (a:n, TfU(T,l)na:n)

an (1+ a)d(zn,p) + and (p, f (p))

+ (1 — ay) appd (a;n, T,?U(T_l)na:n) ,

d (l’n, .’En+1)

(VANVA

IN

therefore
(3.9) lim d(zp,2n+1) = 0.

n—o0

Let us observe that:

d(zn, Tjzp)

IN

d (Tn, Tpt1) +d <xn+1, T}“‘HWH)

+d (r;l—i_ll'n—&—la Tjn—i&xn) +d <Tjn+1xna T'].’L'n)

IN

d(zp, Tpy1) +d (xn-i-la T7n+lxn+l>

+Ld (zps1,1n)" + Ld (Tj"xn, a:n)7

By uniform Hoélder continuity of T}, (3.8) and (3.9) , we get

(3.10) nlirgod(xn,ﬂmn) =0,1<j<r

U

Theorem 3.2. Under the hypotheses of Lemma 3.1, assume, for some 1 < j <r,
ij is semi-compact for some positive integer m. If X is complete, then {x,} in
(1.4), converges strongly to a point in F.

Proof. Fix j € I and suppose ij is semi-compact for some m > 1. By (3.10), we
obtain

(T e wn) < d (T, T ) + d (T w0, T2, )
+--+d (T]an, T]$n> +d (zjny xn)
< d(Tjxn,xn) + (m — 1) Ld (Tjzp, x,)" — 0.
Since {z,} is bounded and T7" is semi-compact, {zy} has a convergent subsequence
{zp,} such that z,, — ¢ € C. Hence, by (3.10), we have
d(q,Tiq) = nllnéod(x”j’nx"f) =0,iel.

Thus ¢ € F and so by Corollary 2.4, {x,} converges strongly to a common fixed
point g of the family {7} : i € I'}. O

An immediate consequence of Lemma 3.1 and Theorem 2.6 is the following strong
convergence result in a uniformly convex metric space.

Theorem 3.3. Let C, {T; :i € I}, F,{uin} and {cin} be as in Lemma 3.1. If there
exists a constant M such that d (zp,Tjx,) > Md(z,, F), for alln > 1 and X is
complete, then the sequence {x,} in (1.4), converges strongly to a point in F.
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Remark 3.4. (i) Theorem 2.2 and Theorems 3.2-3.3, respectively, contain as spe-
cial cases, Theorem 2.2 and Theorems 3.2-3.3 in [9] which themselves improve the
results of Khan and Takahashi [12], Suantai [19] and Xu and Noor [22].

(if)

Theorems 2.3, 3.2-3.3 are analogues of the corresponding results in [18,23] for

a general viscosity iterative method in a uniformly convex metric space.
(iii) All the results in this paper are new in CAT(0) spaces.
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