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CONVERGENCE OF THE PATH AND ITS DISCRETIZATION
TO THE MINIMUM-NORM FIXED POINT OF
PSEUDOCONTRACTIONS

XIAOFEI DONG, YONGHONG YAO, RUDONG CHEN, AND YEONG-CHENG LIOU

ABSTRACT. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C — C be a Lipschitz pseudocontractive mapping with Fiz(T) # (. In
this paper, we first show that as t — 0+, the path  — z,¢ € (0, 1), in C, defined
by z; = (1 — B8)Pc[(1 — t)x¢] + BTz converges strongly to the minimum-norm
fixed point of 7. Subsequently, by discreting the path, we suggest an explicit
method zpy1 = (1 — Bn)Pc[(1 — an)zn] + BrTzn. Under some assumptions,
we prove the sequence {z,} also converges strongly to the minimum-norm fixed
point of T'.

1. INTRODUCTION

The interest of pseudocontractions lies in their connection with monotone oper-
ators; namely, T is a pseudocontraction if and only if the complement I — T is a
monotone operator. However, it is now well-known that Mann’s algorithm fails to
converge for Lipschitzian pseudocontractions (see the counterexample of Chidume
and Mutangadura [1]). It is therefore an interesting question of inventing iterative
algorithms which generate a sequence converging in the norm topology to a fixed
point of a Lipschitzian pseudocontraction (if any). On the other hand, it is quite
often to seek a particular solution of a given nonlinear problem, in particular, the
minimum-norm solution.

Recently, in order to find the minimum-norm fixed point of Lipschitzian pseu-
docontractions, Yao, Colao, Marino and Xu [4] suggested the following implicit
algorithm

(1.1) Tp = Bnxn-1+ (1 —ayn — Bp)Txn,n > 0.

They proved that under some mild assumptions on algorithm parameters {a,,} and
{Bn}, the sequence {z,} defined by (1.1) converges strongly to the minimum-norm
fixed point of T provided 0 € C'. They pointed out that this assumption 0 € C
cannot be removed due to the algorithm (1.1) may not be well-defined. Afterwards,
they further put forth the following interesting topic: It is of interest to adapt the
algorithm (1.1) to suit for the general case (i.e., without assuming 0 € C') of find
the minimum-norm fixed point of a Lipschitz pseudocontraction.
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The purpose of this paper is to construct an implicit algorithm which defines a
net {z;} converging strongly to the minimum-norm fixed point of a Lipschitz pseu-
docontraction without assuming 0 € C. Subsequently, by discreting the net, we
suggest an explicit method which generates a sequence {x,}. Under some assump-
tions, we prove the sequence {x,} also converges strongly to the minimum-norm
fixed point of T

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || ||, respectively.
Let C be a nonempty closed convex subset of H. Recall the following notions for a
mapping T : C — C.

e T is called pseudocontractive (or a pseudocontraction) if
(Tz =Ty, x —y) < |lz—yl*, zyeC;
e T is nonexpansive if
[Tz =Tyl < |lz—yll, Vao,yeCl.

The (nearest point or metric) projection from H onto C' is defined as follows: for
each point x € H, Pox is the unique point in C with the property:

|z = Pox| < [lz—yl, yeC.
Note that Pg is characterized by the inequality:
Pox € C, (x— Pox,y— Pex) <0, yeC.

We adopt the following notations:

e Fix(T) stands for the set of fixed points of T’;
e 1, — x stands for the weak convergence of {z,} to x;
e 1, — x stands for the strong convergence of {x,} to .

We need the following lemma for proof of our main results.
Lemma 2.1 ([5]). Let C be a closed conver subset of a Hilbert space H. Let
T : C — C be a Lipschitz pseudocontraction. Then Fixz(T) is a closed convex

subset of C' and the mapping I — T is demiclosed at 0, i.e. whenever {z,} C C is
such that x,, = x and (I —T)xy, — 0, then (I —T)x = 0.

Lemma 2.2 ([3]). Assume {a,} is a sequence of nonnegative real numbers such
that

ant1 < (1= m)an + Wbn, 1 =0,
where {yn} is a sequence in (0,1) and {6} is a sequence in R such that

(1) 2nZom = 0
(ZZ) lim sup,, op <0 or ZZO:O ‘571'771’ < 00.

Then lim,, oo an = 0.
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3. MAIN RESULTS

In this section, we introduce our algorithms and prove the strong convergence of

these algorithms to the minimum norm fixed point of pseudocontractive mapping
T.

First, we introduce an implicit path on pseudocontractive mappings.

Algorithm 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let T : C — C be Lipschitz a pseudocontraction. Let 5 € (0,1) be a constant.

For each t € (0,1), let the net {x;} be defined as the unique solution of fized point
equation

(3.1) 2y = (1= pB)Pc(l —t)x] + STxy, t € (0,1),
where Po : H — C' is the metric projection from H on C.

Remark 3.2. We note that the algorithm (3.1) is well-defined. Indeed, for j3,t €
(0,1) define a mapping U : C — C by
U = (1 - B)Pcl(l —t)x] + BTz, x€C.
It is clear that Uy is a self-mapping of C. For x,y € C, we have
(Ur = Uy, v —y) = (1 = B)(Pel(1 — t)x] — Pe[(1 = D)yl z —y)
+ 8Tz —Ty,z—y)
< (1= B)Peld —t)z] — Pe[(L = )ylllllz — vl
+ Bz —yl?
< (1 =81 =tz —yl* + Bllz -yl
=[1— (1= B)]llz —y|*.

This implies that U, is strongly pseudocontractive. So, by Deimling [2], U; has a
unique fixed point z; € C' which is the unique solution of the fixed point equation

(3.1).

We are now in a position to prove the strong convergence of the implicit algorithm
(3.1) to the minimum-norm fixed point of the pseudocontractive mapping 7'

Theorem 3.3. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let T : C — C be a Lipschitz pseudocontraction with Fixz(T) # 0. Then the net

{z+} defined by (3.1) converges in norm, as t — 0%, to the minimum-norm fized
point of T.

Proof. We first show that the net {z;} is bounded.
Taking p € Fiz(T), we get from (3.1) that

lze = pll* = (1 = B)(Pol(1 — t)a] — p,w — p) + B(Txr — p,x — p)
— B)IPcl(1 = t)as] — pllllz: — pll + Blla: — pl|®

)

)

IN A

— B = t)ae — pl|lze — pll + Bllze — pl?
1—B3)[(1 = t)||lze — pll + tlpl]llze — pll + Bllz: — pl|*.

(1
(1
< (
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It turns that

[l = pll < llpll

Consequently, {x;} is bounded and so is {T'z:}.
Next, we show that lim;_,g+ ||z — T'z¢|| = 0.
From (3.1), we have

|zt — Tael| = |(1 = B)Pol(1 — t)xe] + BTxe — Tay|
< (1= BPcl(l = t)ze] — Tyl
< (1= B)lllze — Ty + tflae ]

Therefore,

(3.2) |y — Ty < “;f)tnmtu — 0.

Next we show that {z;} is relatively norm-compact as t — 07. Let {t,} C (0,1) be
a sequence such that ¢, — 0% as n — co. Put z,, := z¢,. From (3.2), we have

(3.3) |xyn — Txy| — 0.
Again from (3.1), we get
lze = plI* = (1 = B)(Pcl(1 = t)zd — p,xe — p) + B{Tz — p,2e — p)
< (1= B)|Pol(1 = t)xi) — pll|la: — pll + Bllx: — pl|®
< (1= B)5 (1Pl ~ )z = pl1> + llze — pIP) + Bllze — ol
It follows that
lz¢ = plI* < [|1Pc[(1 = t)a] — p|®
< |z — p — tay?
= |lzs — plI* = 2t(ws, 2 — p) + 7]
= ||z — p||* — 2t{we — p, 2y — p) — 2t{p, 2 — p) + 2]}z
= (1= 2t)[|z; — plI* — 2t(p, & — p) + t*]}a]*.
It turns out that

t
|ze —p|* < <p7p—$t>+§||$tu2
(3.4) < (p,p—x) +tM.

where M > 0 is some constant such that sup{%|jz¢||* : t € (0,1)} < M. In particu-
lar, we get from (3.4)

(3.5) | — pl|> < (p,p — zn) +t, M, p € Fiz(T).

Since {x,} is bounded, without loss of generality, we may assume that {z,} con-
verges weakly to a point z* € C. Noticing (3.3) we can use Lemma 2.1 to get
x* € Fixz(T). Therefore we can substitute z* for p in (3.5) to get

(3.6) zn — 2*|? < (&%, 2% — z,) + t, M.
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However, z,, — x*. This together with (3.6) guarantees that x,, — z*. The net
{z¢} is therefore relatively compact, as t — 0T, in the norm topology.

Now we return to (3.5) and take the limit as n — oo to get

|z* = pll® < (p,p—2*), pe Fiz(T).
This is equivalent to
(3.7) 0<(z*,p—2a*), pe Fiz(T).
Therefore, 2% = Ppjy1)0. This is sufficient to conclude that the entire net {:}
converges in norm to x* and z* is the minimum-norm fixed point of T. As a matter
of fact, from (3.7), we have
lz*|* < (2, p) < l2*[lllpll,  » € Fiz(T).
It follows that
lz*| < [lpll, p € Fia(T).

This completes the proof. O

Now, we introduce an explicit algorithm which is the discretization of (3.1) and
prove its strong convergence to the minimum-norm fixed point of 7.

Algorithm 3.4. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let T : C — C be a pseudocontraction. Let {an} and {B,} be two real number
sequences in (0,1). For chosen xzo € C arbitrarily, we define a sequence {xy}
iteratively by the following manner

(3.8) Tpt1 = (1 = Bn)Pol(1 — apn)zn] + BnTxn, n>0.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H,
and let T : C — C be an L— Lipschitzian pseudocontraction with Fixz(T) # 0. If the
2

sequences {an} and {B,} satisfy the condition lim o, = lim S T P _ 0,
n—00 n—oo 3, n—00 (up,
then the following hold:
(i) the sequence {x,} defined by (3.8) is bounded;
(7i) the sequence {xy} is asymptotically regular, that is, im, o ||Zn+1—2n| = 0.

Further, if Y % oy, = 0o and lim,, o 1Znti=2all _ 0, then the sequence {x,}

converges strongly to the minimum-norm ﬁxednpomt of T.

Proof. First we prove that the sequence {x,} is bounded. We will show this fact
by induction. According to the assumption, there exists a sufficiently large positive
integer m such that

(3.9) 1 (L +1)(L+2) (o + 2B + (B2 /am)) >0, n>m.

1
1/2 - Bm
Fix a p € Fiz(T) and take a constant M; > 0 such that
(3.10)  max{|lzo —pl, lz1 —pll, -, |lzm-1 — P, 4l|zm — pl + 8llplI} < M.

Next, we show that ||xm,+1 — p|| < M. Set ym = Pol(1 — am)Tm], thus zp1 =
(1 = Bm)Ym + BTz, By the fact that I — T is monotone, we have

(3.11) (I -T)xmyr — (I —T)p,zpmy1 —p) > 0.



64 X. DONG, Y. YAO, R. CHEN, AND Y.-C. LIOU
From (3.8), we obtain

|Zm+1 —pH2 = (1= Bm)Wm — 0;Tms1 — P) + BT — P, Tmy1 — p)

= (1= Bm)(ym — (1 = o) T, Tmi1 — p)
+ (1= Bm){(1 = ) @m — P, Timt1 — p)
+ BT T, — D, Tyny1 — D)

= (1= Bm)(ym — (1 = o) T, Tmi1 — p)
+ (1 = Bn)(@m — P, Tmt1 — p) — (1 = B) m (T, Trm+1 — D)
+ Bin{Txp, — D, Tyny1 — D)

= (1= Bm)(ym — (1 = o) T, Tmi1 — p)
+(Tm — P, Tmt1 — P) — (1 = Br) @ (Tmt1 — P, Tint1 — p)
— (1 = Br)am(Tm — Tm+1, Tmt1 — D)
— (1= Bm)am(p; Tm+1 — p) + Bn(TTm — TTm1, Tmt1 — P)

+ B Tm+1 — Ty Tmt1 — P) — B @mt1 — T 1, Tl — P)-

Then, from (3.11), we get

[#me1 =2l < (1= Ba)llym — (1 = am)mll|2ms1 = pll + |2 — plll[€mer — pl
— (1= Bm)aml@mer = pl? + (1 = Bu)amllpll [ 2mr1 — ol
+ (1= Bm)am([[xmr — zmll + [lpl) |21 — pll
+ B (I Tzm — Tzl + | Zmer — ml) |2mes — pl|
< llzm = pllllem+1 = pll + 2(1 = Bm)am(|zm — pll + [l |2m+1 —
— (1= Bm)aml@mer = pl? + (1 = Bu)amllpll [ 2mr1 — o]
+ (1 = Bm)am([[xmir — zmll + [Ip) |zms1 — pll
+ Bm(L 4 D)[lzmsr — zm |l |zme1 — pll
< zm = pllllemsr — pll + (L = B ) (2] wm — pll + 4|lpl)) [Zm+1 — Pl
— (1 = Bm)amlTms1 —p”2
+ (am + Bm) (L + D[ #mir — Zml|2mir — pl|-
It follows that

1+ (1 = Bm)am]|Tmir —pll < [l@m = pll + am2l|m — pll +4llp])
(3.12) +(L + D)(am + B |Tms1 — zml|-

By (3.8), we have

(1= B Pel(1 = am)xm] — Polzm]ll + BullT2m — ol

(1 = Bm)am(lzm — pll + lIpl]) + Bn (| T2m — pll + [P — 2ml)
m (lzm = pll + lIpll) + B (L + L)||zm — pll

(L + 1) (e + B)[|#m — pll + cum|lpl]

(L + 2)(tm + Bm) M.

[Zm+1 — Zml

VAN VAN VAR VAR VAN

(3.13)
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Substitute (3.13) into (3.12) to obtain

[1+ (1= Bm)am]lzms1 — pll
1z — pll + o (2llzm — pll + 4llpl) + (L + 1)(L + 2)(am + Bm)* M

S (Ut Gom) M+ (L4 1)L+ 2)(am + Bn) M.

IN

This together with (3.9) and (3.10) imply that

_ QU — s + Bn)?

- L s3]
_ 1 (1/2—5m)am[l—m(L+l)(L+2) (am—|—2ﬂm+( %/am))} y
U L+ (1= Bm)am 1

< M.
By induction, we get
|zn —pl < My, Vn >0,

which implies that {x,} is bounded and so is {T'z,}.
By (3.8), we have

< lzn — zpga |l + lzn1 — Tyl
< loen = Tpgall + (1= Bu) |1 Pol(1 — an)zn] — Tz, ||
< lzn = zpall + (1= Bo)llwn — Tap|| + a2

|Zn — Ty ||

It follows that

1 «
2 = Tapll < —=llzn — sl + 2= ll2all
ﬁn n
1 «o
< E\Ixn — Ty + B*:Hxnll-
By the assumptions, we have
(3.14) lim ||z, — Tzy,|| = 0.
n—oo

Next, we prove that
lim sup(z*, 2" — y,) < 0.

n—o0
where z* = lim;_,¢ 2; and {z:} is a net defined by z; = (1 — B)Pc[(1 — t)z] + BT 2.
From the definition of {z:}, we obtain
2 —axp = (1= B)(Pcl(l —t)z] — xn) + B(T2 — Tay) + BTy — xp).
It follows that
llzt — znl|® = (1 = BY(Pe[(1 — t) 2] — @, 26 — ) + B(T 2 — T, 2t — )
+ B(Txy — xp, 2t — Tp,)
= (1= PB)(Pol[(1 —t)ze) — (1 —t)2t, 2t — xn)
+ (1 =81 =)zt —xpy 2t — ) + BTzt — Ty, 2t — xp)
+ B(Txy — Ty 2t — Tp).
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Noting that x,, € C' and by using the property of the metric projection Pg, we have
(Pel(T=t)z] — (1 = t)ze, 20 — an) < 0.
So,
Izt = @all* < (1= B){(1 = t)2 — Ty 2 — @n) + Bll2t — za)?
+ Bl Twn — anlll|2e — nll
= (1= B)lze = zall® = (1 = B)t{ze, 20 — @) + Bllze — 2
+ BTy — x|z — 0.

It follows that 5

(1—p)t

(21,2t — wp) < 1T xn — znllllze — znl|-

By (3.14), we deduce

(3.15) lim sup lim sup(z, 2 — ) < 0.
t—0 n—o0

Note the fact that the two limits limsup,_,o and limsup,,_,,, are interchangeable.
As a matter of fact, we have

(¥, 2" —xp) = (&%, 2" — 2¢) + (&% — 2,20 — Tp) + (24, 2t — Tn)
< (%2 —z) + |2 — 2zl — zall + (20,20 — )
< (™[ + lze = znlDlle” = 2ell + (26, 2 = 20)-
This together with z; — z* and (3.15) imply that

lim sup(z™, z* — z,,) <O0.
n—oo
Note that ||y, — x| — 0. We derive that
(3.16) limsup(z*, 2" — y,,) <O0.
n—oo

Finally, we will show that x, — «*. First, we have

(Txy — %, xpt1 — %) = (Top—ax%,x, —2%) + (Try — 2%, Tpt1 — Tp)
(3.17) < =P + 1 T2n — 27241 = zall,
and
50— 212 = (g = (L= @)a g — ) + (1= Al — 2%, — 2°)
< {1 —an)wn —a®,yn —a¥)
= (I—an)(zn — 2% yn —27) — an(a”, yn — 27)
< B0 o o124 L — 0~ onde o — ).
Thus,
(3.18)  flyn — 271 < (1 — o) ln — 72 — 20m(a" g0 — 27).
Therefore, from (3.8), (3.13), (3.17) and (3.18), we get
|znsr = 2> = (1= Ba)(yn — 2*) + Bu(Tay — )|

< @ = Ba) (Y — 7)1 + 2680 (Tn — 27, Tpg1 — 2¥)
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< (=821 = an)llen — 2|7 = 20 (1 = B) (2", yn — 2¥)
+2Bn|n — x*”Q + 280 || Txn — ||| 2011 — zn |

< [1= (1= 280)an]llen — 2 + 200 (1 = Ba)*(@*, 2% — yn)
+5121Hmn - m*||2 + 2Bn||Txy — 2*|[(L + 2)(an + Bn) M

(3.19) = (1 =9)lzn — 93”‘||2 + YnOn,
where v, = (1 — 23,)a, and
21 - 6,)° 52 )
S, = o TO0) sk gx vy POn g
(e = )+ gl =)
26, 262
—— Tz, — || (L +2)M; + ———2——||T'xz,, — z*||(L + 2)M;.

It is clear that > 2 v, = oo and limsup,,_,,, 6, < 0. We can therefore apply
Lemma 2.2 to (3.19) and conclude that x, — x* as n — oco. This completes the
proof. O
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