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where {αn} ⊂ [0, 1] satisfies

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,

∞∑
n=1

|αn − αn+1| < ∞.

Then, {xn} converges strongly to PF (T )x, where PF (T ) is the metric projection from
H onto F (T ).

Motivated by Takahashi and Takeuchi [19], Akashi and Takahashi [2] proved a
strong convergence theorem of Halpern’s type [11] for nonexpansive mappings in a
star-shapes subset of a Hilbert space. On the other hand, Domingues Benavides,
Acedo and Xu [10] proved strong convergence theorems of Halpern’s type [11] for
uniformly asymptotically regular one-parameter nonexpansive semigroups. They
[10] also proved Browder’s type [9] strong convergence theorems for the semigroups.
Acedo and Suzuki [1] generalized Domingues Benavides, Acedo and Xu’s results
which is Browder’s type [9] concerning the condition of the sequences in real num-
bers. Atsushiba [4] studied Browder’s type iterations for nonexpansive semigroups
and proved strong convergence theorems for uniformly asymptotically regular non-
expansive semigroups in Hilbert spaces (see also [5, 17,18]).

In this paper, we study Halpern’s type iterations [11] for nonexpansive semigroups
and prove strong convergence to common attractive points of uniformly asymptot-
ically left regular nonexpansive semigroups in Hilbert spaces. Using this result, we
obtain some strong convergence theorems in Hilbert spaces.

2. Preliminaries and notations

Throughout this paper, we denote by N and R the set of all positive integers and
the set of all real numbers, respectively. We also denote by Z+ and R+ the set of
all nonnegative integers and the set of all nonnegative real numbers, respectively.
Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. We know the
following basic equality from [18]. For x, y ∈ H and λ ∈ R, we have

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Furthermore, we obtain that for all x, y, w ∈ H,

(2.2) ⟨(x− y) + (x− w), y − w⟩ = ∥x− w∥2 − ∥x− y∥2.
In fact, we have that

⟨(x− y) + (x− w), y − w⟩ = ⟨(x− y) + (x− w), (y − x) + (x− w)⟩
= ∥x− w∥2 − ∥x− y∥2 + ⟨x− y, x− w⟩+ ⟨x− w, y − x⟩
= ∥x− w∥2 − ∥x− y∥2.

Let C be a closed and convex subset of H. For every point x ∈ H, there exists a
unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥
for all y ∈ C. The mapping PC is called the metric projection of H onto C. It is
characterized by

⟨PCx− y, x− PCx⟩ ≥ 0
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for all y ∈ C. See [18] for more details. The following result is well-known; see [18].

Lemma 2.1. Let C be a nonempty, bounded, closed and convex subset of a Hilbert
space H and let T be a nonexpansive mapping of C into itself. Then, F (T ) ̸= ∅.

We write xn → x (or lim
n→∞

xn = x) to indicate that the sequence {xn} of vectors

in H converges strongly to x. We also write xn ⇀ x (or w- lim
n→∞

xn = x) to indicate

that the sequence {xn} of vectors in H converges weakly to x. In a Hilbert space,
it is well known that xn ⇀ x and ∥xn∥ → ∥x∥ imply xn → x. We say that a
Banach space E satisfies Opial’s condition [15] if for each sequence {xn} in E which
converges weakly to x,

(2.3) lim
n→∞

∥xn − x∥ < lim
n→∞

∥xn − y∥

for each y ∈ E with y ̸= x. In a reflexive Banach space, this condition is equivalent
to the analogous condition for a bounded net which has been introduced in [13]. It
is also known that this condition is equivalent to the analogous condition of lim

n→∞
(see [6]). It is known that Hilbert spaces satisfy Opial’s condition (see [15,18]).

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s 7→ a · s and s 7→ s · a from S to S
are continuous. S is called right reversible if any two closed left ideals of S has non-
void intersection. If S is right reversible, (S,≤) is a directed system when the binary
relation “≤” on S is defined by s ≤ t if and only if {s} ∪ Ss ⊃ {t} ∪ St, s, t ∈ S,
where A is the closure of A. Right reversible semitopological semigroups include
all commutative semigroups and all semitopological semigroups which are right
amenable as discrete semigroups (see [14, p.335]). Left reversibility of S is defined
similarly. S is called reversible if it is both left and right reversible.

Let C be a nonempty subset of a Hilbert space H and let S be a semigroup. A
family S = {T (t) : t ∈ S} of mappings of C into itself is said to be a nonexpansive
semigroup on C if it satisfies the following conditions:

(i) For each t ∈ S, T (t) is nonexpansive;
(ii) T (ts) = T (t)T (s) for each t, s ∈ S;
(iii) for each x ∈ C, t 7→ T (t)x is continuous.

We denote by F (S) the set of all common fixed points of a nonexpansive semigroup
S, i.e.,

F (S) =
∩
t∈S

F (T (t)).

Motivated by Takahashi and Takeuchi [19], the author and Takahashi [7] introduced
the set A(S) of all common attractive points of the family S = {T (t) : t ∈ S} of
mappings on C, i.e.,

A(S) = {x ∈ H : ∥T (t)y − x∥ ≤ ∥y − x∥, ∀y ∈ C, t ∈ S}.

3. Lemmas

In this section, we give some lemmas which are used in the proof of our main
theorem. They are basic properties of common attractive points of nonexpansive
semigroups in a Hilbert space. Let S be a semigroup. We get the following lemmas
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as in the proof of lemmas in the case of commutative semigroups ( [7]). For the
sake of completeness, we give the proof.

Lemma 3.1. Let H be a Hilbert space, let C be a nonempty, closed and convex
subset of H, and let S be a semigroup. Let S = {T (t) : t ∈ S} be a family of
mappings on C. If A(S) ̸= ∅, then F (S) ̸= ∅.

Proof. Let u ∈ A(S) and y = PCu ∈ C. Then, we have T (t)y ∈ C from T (t)C ⊂ C.
Furthermore, we have

∥T (t)y − u∥ ≤ ∥y − u∥ = ∥PCu− u∥.
By the properties of PC , we have T (t)y = PCu = y. Therefore y ∈ F (S). �
Lemma 3.2. Let H be a Hilbert space, let C be a nonempty subset of H, and let S
be a semigroup. Let S = {T (t) : t ∈ S} be a family of mappings on C. Then, A(S)
is a closed and convex subset of H.

Proof. We show that A(S) is closed. Let {zn} ⊂ A(S) be a sequence which converges
strongly to z ∈ H. Take x ∈ C and t ∈ S. From zn ∈ A(S), we have

∥z − T (t)x∥ ≤ ∥z − zn∥+ ∥zn − T (t)x∥
≤ ∥z − zn∥+ ∥zn − x∥.

Since zn → z, we have
∥z − T (t)x∥ ≤ ∥z − x∥.

This implies that z ∈ A(S). So, A(S) is closed. We prove that A(S) is convex. Let
z1, z2 ∈ A(S), α ∈ [0, 1] and z = αz1 + (1− α)z2. We prove from (2.1) that for any
x ∈ C,

∥z − T (t)x∥2 = ∥αz1 + (1− α)z2 − T (t)x∥2

= α∥z1 − T (t)x∥2 + (1− α)∥z2 − T (t)x∥2 − α(1− α)∥z1 − z2∥2

≤ α∥z1 − x∥2 + (1− α)∥z2 − x∥2 − α(1− α)∥z1 − z2∥2

= ∥α(z1 − x) + (1− α)(z2 − x)∥2 = ∥z − x∥2.
This implies that z ∈ A(S). So, A(S) is convex. �

We also have the following lemma (see also [7, 19]).

Lemma 3.3. Let H be a Hilbert space, let C be a nonempty subset of H, and let S
be a semigroup. Let S = {T (t) : t ∈ S} be a family of mappings on C. Let {un} be
a sequence in H such that

lim
n→∞

⟨(un − y) + (un − T (t)y), y − T (t)y⟩ ≤ 0

for all t ∈ S and y ∈ C. If a subsequence {uni} of {un} converges weakly to u ∈ H,
then u ∈ A(S).

Proof. Since {uni} converses weakly to u ∈ H, we have that for any t ∈ S and
y ∈ C,

⟨(u− y) + (u− T (t)y), y − T (t)y⟩
= lim

i→∞
⟨(uni − y) + (uni − T (t)y), y − T (t)y⟩
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≤ lim
n→∞

⟨(un − y) + (un − T (t)y), y − T (t)y⟩

≤ 0.

On the other hand, we know from (2.2) that

0 ≥ ⟨(u− y) + (u− T (t)y), y − T (t)y⟩ = ∥u− T (t)y∥2 − ∥u− y∥2.
Thus we have

∥u− T (t)y∥ ≤ ∥u− y∥.
for all t ∈ S and y ∈ C. This implies u ∈ A(S). �

We get the following lemma by [7] (see also [19]).

Lemma 3.4. Let H be a Hilbert space, let C be a nonempty subset of H, and let S
be a semigroup. Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Suppose
that there exists an x ∈ C such that {T (t)x : t ∈ S} is bounded. Then, A(S) ̸= ∅.

To prove our main result, we need the following lemma (see [3]; see also [21]).

Lemma 3.5. Let {sn} be a sequence of nonnegative real numbers, let {αn} be
a sequence of [0, 1] with

∑∞
n=1 αn = ∞. Let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞ and let {γn} be a sequence of real numbers with

lim n→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n ∈ N. Then, limn→∞ sn = 0.

4. Strong convergence theorems

In this section, we study Halpern’s type iterations [11] for nonexpansive semi-
groups and prove strong convergence to common attractive points of uniformly
asymptotically left regular nonexpansive semigroups in Hilbert spaces (see also
[2, 4, 7, 10,16–19]).

Let C be a nonempty subset of H. Then, C is called star-shaped if there exists
z ∈ C such that for any x ∈ C and any λ ∈ (0, 1),

λz + (1− λ)x ∈ C.

Throughout the rest of this section, we assume that C is a nonempty subset of
H, and S is a right reversible semitopological semigroup. Let S = {T (t) : t ∈ S}
be a nonexpansive semigroup on C. We say that a nonexpansive semigroup S =
{T (t) : t ∈ S} is asymptotically left regular if

lim
s∈S

∥T (h)T (s)x− T (s)x∥ = 0

for all h ∈ S and x ∈ C (see also [17, 18]). We also say that a nonexpansive
semigroup S = {T (t) : t ∈ S} is uniformly asymptotically left regular if for every
h ∈ S and for every bounded subset K of C,

lim
s∈S

sup
x∈K

∥T (h)T (s)x− T (s)x∥ = 0

holds. We prove a Halpern’s [11] strong convergence theorem for a uniformly asymp-
totically regular nonexpansive semigroup. We also generalize Domingues Benavides,
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Acedo and Xu’s result of Halpern’s type [11] concerning the conditions of the se-
quence {αn} in real numbers.

Theorem 4.1. Let H be a Hilbert space, let C be a star-shaped subset of H
with center z ∈ C. Let S be a right reversible semitopological semigroup. Let
S = {T (t) : t ∈ S} be a uniformly asymptotically left regular nonexpansive semi-
group on C such that A(S) ̸= ∅. Let {mn} be a sequence in Z+ such that mn → ∞.
Let t ∈ S. Let {xn} be a sequence in C defined by x1 ∈ C and

xn+1 = αnz+(1−αn)(T (t))
mnxn

for each n ∈ N, where {αn} ⊂ [0, 1] satisfies

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞.

Then, {xn} converges strongly to PA(S)z, where PA(S) is the metric projection from
H onto A(S).

Proof. Let x1 ∈ C and u ∈ A(S). Define M = ∥x1 − z∥ + ∥z − u∥. It is obvious
that ∥x1 − u∥ ≤ M . Since A(S) ̸= ∅, we have that {T (t)x : t ∈ S} is bounded for
x ∈ C and {xn} is bounded. Indeed,

∥T (t)x1∥ ≤ ∥T (t)x1 − u∥+ ∥u∥
≤ ∥x1 − u∥+ ∥u∥
≤ M + ∥u∥.

So, we have that {T (t)x : t ∈ S} is bounded for x ∈ C. Suppose that ∥xk−u∥ ≤ M
for some k ∈ N. We have that

∥xk+1 − u∥ = ∥αkz + (1− αk)(T (t))
mkxk − u∥

≤ αk∥z − u∥+ (1− αk)∥(T (t))mkxk − u∥
≤ αk∥z − u∥+ (1− αk)∥xk − u∥
≤ αkM + (1− αk)M

= M

By mathematical induction, we have that ∥xk − u∥ ≤ M for each k ∈ N. Thus,
{xn} is bounded. Since

∥T (t)xk − u∥ ≤ ∥xk − u∥
for each t ∈ S and k ∈ N, {T (t)xn} is also bounded. Since S = {T (t) : t ∈ S} is a
nonexpansive semigroup on C, we have that

⟨((T (t))mnxn − y) + ((T (t))mnxn − T (h)y), y − T (h)y⟩
= ∥(T (t))mnxn − T (h)y∥2 − ∥(T (t))mnxn − y∥2

≤ ∥(T (t))mnxn − T (h)y∥2 − ∥T (h)(T (t))mnxn − T (h)y∥2

= (∥(T (t))mnxn − T (h)y∥+ ∥T (h)(T (t))mnxn − T (h)y∥)
× (∥(T (t))mnxn − T (h)y∥ − ∥T (h)(T (t))mnxn − T (h)y∥)

≤ L(∥(T (t))mnxn − T (h)y∥ − ∥T (h)(T (t))mnxn − T (h)y∥)
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≤ L∥(T (t))mnxn − T (h)(T (t))mnxn∥
= L∥T (tmn)xn − T (h)T (tmn)xn∥(4.1)

for all h ∈ S and y ∈ C, where L = sup
s∈S

sup
n∈N

{∥T (s)xn − T (h)y∥+ ∥T (s)xn − y∥}.

For uniformly asymptotically left regular, we have that

(4.2) lim
n→∞

⟨((T (t))mnxn − y) + ((T (t))mnxn − T (h)y), y − T (h)y⟩ ≤ 0

for all h ∈ S and y ∈ C. Furthermore, we have from

xn+1 = αnz + (1− αn)(T (t))
mnxn

and limn→∞ αn = 0 that

(4.3) lim
n→∞

(xn+1 − (T (t))mnxn) = lim
n→∞

αn(z − (T (t))mnxn) = 0.

Set K = supt∈S ∥y − T (t)y∥. We have that

⟨(xn+1 − y) + (xn+1 − T (h)y), y − T (h)y⟩
= ⟨(xn+1 − (T (t))mnxn + (T (t))mnxn − y), y − T (h)y⟩

+ ⟨(xn+1 − (T (t))mnxn + (T (t))mnxn − T (h)y), y − T (h)y⟩
= ⟨2(xn+1 − (T (t))mnxn), y − T (h)y⟩

+ ⟨((T (t))mnxn − y) + ((T (t))mnxn − T (h)y), y − T (h)y⟩
≤ 2∥xn+1 − (T (t))mnxn∥∥y − T (h)y∥

+ ⟨((T (t))mnxn − y) + ((T (t))mnxn − T (h)y), y − T (h)y⟩(4.4)

for all h ∈ S and y ∈ C. By (4.2), (4.3) and (4.4), we have

lim
n→∞

⟨(xn+1 − y) + (xn+1 − T (h)y), y − T (h)y⟩ ≤ 0.

Since {xn+1} is bounded, there exists a subsequence {xni+1} of {xn+1} which con-
verges weakly to a point b ∈ H. By Lemma 3.3, we have b ∈ A(S). By Lemma
3.2, we have that A(S) is closed and convex. So, there exists PA(S)z ∈ A(S), where
PA(S) is the metric projection of H onto A(S).

Next, let us show that

lim
n→∞

⟨xn+1 − PA(S)z, z − PA(S)z⟩ ≤ 0.

Without loss of generality, we may assume that there exists a subsequence {xni+1}
of {xn+1} such that

lim
n→∞

⟨xn+1 − PA(S)z, z − PA(S)z⟩ = lim
i→∞

⟨xni+1 − PA(S)z, z − PA(S)z⟩

and xni+1 ⇀ w. As in the above, we have w ∈ A(S). Thus, we have that

lim
n→∞

⟨xn+1 − PA(S)z, z − PA(S)z⟩ = lim
i→∞

⟨xni+1 − PA(S)z, z − PA(S)z⟩

= ⟨w − PA(S)z, z − PA(S)z⟩
≤ 0.(4.5)
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By PA(S)z ∈ A(S), we also have that

∥(T (t))mnxn − PA(S)z∥ ≤ ∥xn − PA(S)z∥.
Finally, we will show that xn → PA(S)z.

∥xn+1 − PA(S)z∥2

= ∥αnz + (1− αn)(T (t))
mnxn − PA(S)z∥2

= ∥αn(z − PA(S)z) + (1− αn)((T (t))
mnxn − PA(S)z)∥2

≤ (1− αn)
2∥(T (t))mnxn − PA(S)z∥2 + 2⟨αn(z − PA(S)z), xn+1 − PA(S)z⟩

≤ (1− αn)∥(T (t))mnxn − PA(S)z∥2 + 2αn⟨z − PA(S)z, xn+1 − PA(S)z⟩
≤ (1− αn)∥xn − PA(S)z∥2 + 2αn⟨z − PA(S)z, xn+1 − PA(S)z⟩.

From
∑∞

n=1 αn = ∞, (4.5) and Lemma 3.5, we have

lim
n→∞

∥xn+1 − PA(S)z∥ = 0.

This completes the proof. �

5. Deduced theorems

Since we use an abstract semigroup in our main result, we can deduce some
theorems from them. We say that a mapping T on C is asymptotically regular if

lim
n→∞

∥Tn+1x− Tnx∥ = 0

for all x ∈ C (see also [18]). We also say that a mapping T on C is uniformly
asymptotically regular if for every bounded subset K of C,

lim
n→∞

sup
x∈K

∥Tn+1x− Tnx∥ = 0

holds. By Theorems 4.1, we get the following strong convergence theorem. We
also generalize Wittmann’s conditions (Theorem 1.1) of the sequence {αn} in real
numbers.

Theorem 5.1. Let H be a Hilbert space, let C be a star-shaped subset of H with
center z ∈ C. Let T be a uniformly asymptotically regular nonexpansive mapping
on C such that A(T ) ̸= ∅. Let {mn} be a sequence in Z+ such that mn → ∞. Let
{xn} be a sequence in C defined by x1 ∈ C and

xn+1 = αnz+(1−αn)T
mnxn

for each n ∈ N, where {αn} ⊂ [0, 1] satisfies

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞.

Then, {xn} converges strongly to PA(T )z, where PA(T ) is the metric projection from
H onto A(T ).

A family S = {T (t) : t ∈ R+} of mappings of C into itself satisfying the following
conditions is said to be a one-parameter nonexpansive semigroup on C:

(i) For each t ∈ R+, T (t) is nonexpansive;
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(ii) T (0) = I;
(iii) T (t+ s) = T (t)T (s) for every t, s ∈ R+;
(iv) for each x ∈ C, t 7→ T (t)x is continuous.

We say that a one-parameter nonexpansive semigroup S = {T (t) : t ∈ R+} is
asymptotically regular if

lim
s→∞

∥T (h+ s)x− T (s)x∥ = 0

for all h ∈ R+ and x ∈ C (see also [17, 18]). We also say that a one-parameter
nonexpansive semigroup S = {T (t) : t ∈ R+} is uniformly asymptotically regular if
for every h ∈ R+ and for every bounded subset K of C,

lim
s→∞

sup
x∈K

∥T (h+ s)x− T (s)x∥ = 0.

holds.
By Theorems 4.1, we get the following strong convergence theorem for a uniformly

asymptotically regular one-parameter nonexpansive semigroup. We also generalize
Domingues Benavides, Acedo and Xu’s result [10] of Halpern’s type [11] concerning
the conditions of the sequence {αn} in real numbers.

Theorem 5.2. Let H be a Hilbert space, let C be a star-shaped subset of H with
center z ∈ C. Let S = {T (t) : t ∈ R+} be a uniformly asymptotically regular
one-parameter nonexpansive semigroup on C such that A(S) ̸= ∅. Let {mn} be a
sequence in Z+ such that mn → ∞. Let t ∈ R+. Let {xn} be a sequence in C
defined by x1 ∈ C and

xn+1 = αnz+(1−αn)(T (t))
mnxn

for each n ∈ N, where {αn} ⊂ [0, 1] satisfies

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞.

Then, {xn} converges strongly to PA(S)z, where PA(S) is the metric projection from
H onto A(S).
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