Journal of Nonlinear and Convex Analysis Volume 16, Number 1, 2015, 79-82



## A CHARACTERIZATION RELATED TO A TWO-POINT **BOUNDARY VALUE PROBLEM**

## BIAGIO RICCERI

Dedicated to Professor Sompong Dhompongsa on his 65th birthday

ABSTRACT. In this short note, we establish the following result: Let  $f: [0, +\infty[ \rightarrow$  $[0, +\infty[, \alpha : [0, 1] \rightarrow ]0, +\infty[$  be two continuous functions, with f(0) = 0. Assume that, for some a > 0, the function  $\xi \to \frac{\int_0^{\xi} f(t)dt}{\xi^2}$  is non-increasing in ]0, a]. Then, the following assertions are equivalent: (i) for each b > 0, the function  $\xi \to \frac{\int_0^{\xi} f(t)dt}{\xi^2}$  is not constant in ]0, b];

(ii) for each r > 0, there exists an open interval  $I \subseteq [0, +\infty)$  such that, for every  $\lambda \in I$ , the problem

has a solution u satisfying

$$\int_0^1 |u'(t)|^2 dt < r \; .$$

The aim of this very short note is to establish a characterization concerning the problem

$$(D) \begin{cases} -u'' = \lambda \alpha(t) f(u) & \text{in } [0, 1] \\ u > 0 & \text{in } ]0, 1[ \\ u(0) = u(1) = 0 \end{cases}$$

where  $f: [0, +\infty[ \rightarrow [0, +\infty[, \alpha : [0, 1] \rightarrow ]0, +\infty]]$  are continuous functions, with f(0) = 0, and  $\lambda > 0$ .

For each  $\xi \geq 0$ , set

$$F(\xi) = \int_0^{\xi} f(t) dt$$

Here is our result:

**Theorem 1.** Assume that, for some a > 0, the function  $\xi \to \frac{F(\xi)}{\xi^2}$  is non-increasing in [0, a].

Then, the following assertions are equivalent:

(i) for each b > 0, the function  $\xi \to \frac{F(\xi)}{\xi^2}$  is not constant in [0, b];

<sup>2010</sup> Mathematics Subject Classification. 34B09, 34B18, 47J30.

Key words and phrases. Positive solutions, two-point boundary value problem, variational methods.

The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

## BIAGIO RICCERI

(ii) for each r > 0, there exists an open interval  $I \subseteq ]0, +\infty[$  such that, for every  $\lambda \in I$ , problem (D) has a solution u satisfying

$$\int_0^1 |u'(t)|^2 dt < r \; .$$

Let  $(X, \langle \cdot, \cdot \rangle)$  be a real Hilbert space. For each r > 0, set

$$B_r = \{x \in X : ||x||^2 \le r\}$$
.

The key tool in our proof of Theorem 1 is provided by the following result which is entirely based on the very recent [1]:

**Theorem 2.** Let  $J : X \to \mathbf{R}$  be a sequentially weakly upper semicontinuos and Gâteaux differentiable functional, with J(0) = 0. Assume that, for some r > 0, there exists a global maximum  $\hat{x}$  of  $J_{|B_r}$  such that

$$\langle J'(\hat{x}), \hat{x} \rangle < 2J(\hat{x})$$
.

Then, there exists an open interval  $I \subseteq ]0, +\infty[$  such that, for every  $\lambda \in I$ , the equation

$$x = \lambda J'(x)$$

has a non-zero solution lying in  $int(B_r)$ .

Proof. Set

$$\beta_r = \sup_{B_r} J ,$$
  
$$\delta_r = \sup_{x \in B_r \setminus \{0\}} \frac{J(x)}{\|x\|^2}$$

and

$$\eta(s) = \sup_{y \in B_r} \frac{r - \|y\|^2}{s - J(y)}$$

for all  $s \in [\beta_r, +\infty)$ . From Proposition 2 of [1], it follows that

$$\frac{\beta_r}{r} < \delta_r \; .$$

As a consequence, by Theorem 1 of [1], for each  $s \in \beta_r$ ,  $r\delta_r$ , the equation

$$x = \frac{\eta(s)}{2}J'(x)$$

has a non-zero solution lying in  $int(B_r)$ . From Theorem 1 of [1] again, we know that the function  $\eta$  is convex and decreasing in  $]\beta_r, +\infty[$ . As a consequence, the set  $\eta(]\beta_r, r\delta_r[)$  is an open interval. So, the conclusion is satisfied taking

$$I = \frac{1}{2}\eta(\beta_r, r\delta_r[)$$

and the proof is complete.



Now, we are able to prove Theorem 1.

*Proof of Theorem 1.* We adopt the variational point of view. So, let X be the space  $H_0^1(0,1)$  with the usual inner product

$$\langle u,v\rangle = \int_0^1 u'(t)v'(t)dt$$
.

Extend the definition of f (and of F as well) putting it zero in  $] - \infty, 0[$ . Let  $J: X \to \mathbf{R}$  be the functional defined by setting

$$J(u) = \int_0^1 \alpha(t) F(u(t)) dt$$

for all  $u \in X$ . By classical results, J is  $C^1$  and sequentially weakly continuous, and (since  $f \ge 0$ ) the solutions of problem (D) are exactly the non-zero solutions in X of the equation

$$u = \lambda J'(u)$$

Let us prove that  $(i) \to (ii)$ . First of all, observe that, since  $\xi \to \frac{F(\xi)}{\xi^2}$  is non-increasing in [0, a], we have

(1) 
$$f(\xi)\xi \le 2F(\xi)$$

for all  $\xi \in [0, a]$ . Now, fix  $r \in [0, a^2]$ . Since

(2) 
$$\sup_{u \in X} \frac{\max_{[0,1]} |u|}{\|u\|} \le \frac{1}{2}$$

from (1) it follows that

(3) 
$$f(u(t))u(t) \le 2F(u(t))$$

for all  $u \in B_r$  and for all  $t \in [0, 1]$ . Now, let  $u \in B_r$ , with  $\sup_{[0,1]} u > 0$ . Observe that

(4) 
$$\{t \in [0,1] : f(u(t))u(t) < 2F(u(t))\} \neq \emptyset .$$

Indeed, otherwise, in view of (3) we would have

$$f(u(t))u(t) = 2F(u(t))$$

for all  $t \in [0,1]$  and so the function  $\xi \to \frac{F(\xi)}{\xi^2}$  would be constant in the interval  $[0, \sup_{[0,1]} u]$ , against (i). Then, since  $\alpha$  is positive in [0,1], from (4) we infer that

$$\int_0^1 \alpha(t) f(u(t)) u(t) dt < 2 \int_0^1 \alpha(t) F(u(t)) dt$$

This inequality can be rewritten as

$$\langle J'(u), u \rangle < 2J(u)$$
.

Therefore, all the assumptions of Theorem 2 are satisfied and (ii) follows directly from it.

Now, let us prove that  $(ii) \rightarrow (i)$ . Arguing by contradiction, assume that there are b, c > 0 such that

$$F(\xi) = c\xi^2$$

and hence

$$f(\xi) = 2c\xi$$

for all  $\xi \in [0, b]$ . Fix  $r \in ]0, b^2]$ . By (*ii*), there exists an open interval I such that, for every  $\lambda \in I$ , problem (*D*) has a solution u satisfying

$$\int_0^1 |u'(t)|^2 dt < r \; .$$

In view of (2), we have

$$\max_{[0,1]} u \le b$$

and so

$$f(u(t)) = 2cu(t)$$

for all  $t \in [0,1]$ . In other words, for every  $\lambda \in I$ , the problem

$$\begin{cases} -u'' = 2\lambda c\alpha(t)u & \text{in } [0,1] \\ u > 0 & \text{in } ]0,1[ \\ u(0) = u(1) = 0 \end{cases}$$

would have a solution. This contradicts the classical fact that the above problem has a solution only for countably many  $\lambda > 0$ .

**Remark 3.** It is worth noticing the following wide class of functions f for which Theorem 1 applies. Namely, assume that f is 2k + 1 times derivable (in a right neighbourhood of 0) and that  $f^{(2k)}(0) < 0$  and  $f^{(2m)}(0) = 0$  for all  $m = 1, \ldots, k - 1$ if  $k \ge 2$ . Then, there exists some a > 0 such that the function  $\xi \to \frac{F(\xi)}{\xi^2}$  is decreasing in [0, a]. Indeed, if we put

$$\varphi(\xi) = 2F(\xi) - \xi f(\xi) ,$$

we have  $\varphi^{(2m)}(\xi) = -\xi f^{(2m)}(\xi)$  and  $\varphi^{(2m+1)}(\xi) = -f^{(2m)}(\xi) - \xi f^{(2m+1)}(\xi)$  for all  $m = 1, \ldots, k$ . Hence,  $\varphi(0) = \varphi^{(m)}(0) = 0$  for all  $m = 1, \ldots, 2k$  and  $\varphi^{(2k+1)}(0) > 0$ . This clearly implies that, for some a > 0, one has  $\varphi(\xi) > 0$  for all  $\xi \in ]0, a]$ , as claimed.

## References

 B. Ricceri, A note on spherical maxima sharing the same Lagrange multiplier, Fixed Point Theory Appl. 2014, 2014: 25.

> Manuscript received November 30, 2013 revised March 8, 2014

BIAGIO RICCERI

Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy *E-mail address:* ricceri@dmi.unict.it

82