A CHARACTERIZATION RELATED TO A TWO-POINT BOUNDARY VALUE PROBLEM

BIAGIO RICCERI

Dedicated to Professor Sompong Dhompongsa on his 65th birthday

Abstract. In this short note, we establish the following result: Let $f:[0,+\infty[\rightarrow$ $[0,+\infty[, \alpha:[0,1] \rightarrow] 0,+\infty[$ be two continuous functions, with $f(0)=0$. Assume that, for some $a>0$, the function $\xi \rightarrow \frac{\int_{0}^{\xi} f(t) d t}{\xi^{2}}$ is non-increasing in $\left.] 0, a\right]$.

Then, the following assertions are equivalent:
(i) for each $b>0$, the function $\xi \rightarrow \frac{\int_{0}^{\xi} f(t) d t}{\xi^{2}}$ is not constant in $\left.] 0, b\right]$;
(ii) for each $r>0$, there exists an open interval $I \subseteq] 0,+\infty[$ such that, for every $\lambda \in I$, the problem

$$
\begin{cases}-u^{\prime \prime}=\lambda \alpha(t) f(u) & \text { in }[0,1] \\ u>0 & \text { in }] 0,1[\\ u(0)=u(1)=0 & \end{cases}
$$

has a solution u satisfying

$$
\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t<r
$$

The aim of this very short note is to establish a characterization concerning the problem

$$
(D) \begin{cases}-u^{\prime \prime}=\lambda \alpha(t) f(u) & \text { in }[0,1] \\ u>0 & \text { in }] 0,1[\\ u(0)=u(1)=0 & \end{cases}
$$

where $f:[0,+\infty[\rightarrow[0,+\infty[, \alpha:[0,1] \rightarrow] 0,+\infty[$ are continuous functions, with $f(0)=0$, and $\lambda>0$.

For each $\xi \geq 0$, set

$$
F(\xi)=\int_{0}^{\xi} f(t) d t
$$

Here is our result:
Theorem 1. Assume that, for some $a>0$, the function $\xi \rightarrow \frac{F(\xi)}{\xi^{2}}$ is non-increasing in $10, a]$.

Then, the following assertions are equivalent:
(i) for each $b>0$, the function $\xi \rightarrow \frac{F(\xi)}{\xi^{2}}$ is not constant in $\left.] 0, b\right]$;

[^0](ii) for each $r>0$, there exists an open interval $I \subseteq] 0,+\infty[$ such that, for every $\lambda \in I$, problem (D) has a solution u satisfying
$$
\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t<r
$$

Let $(X,\langle\cdot, \cdot\rangle)$ be a real Hilbert space. For each $r>0$, set

$$
B_{r}=\left\{x \in X:\|x\|^{2} \leq r\right\}
$$

The key tool in our proof of Theorem 1 is provided by the following result which is entirely based on the very recent [1]:

Theorem 2. Let $J: X \rightarrow \mathbf{R}$ be a sequentially weakly upper semicontinuos and Gâteaux differentiable functional, with $J(0)=0$. Assume that, for some $r>0$, there exists a global maximum \hat{x} of $J_{\mid B_{r}}$ such that

$$
\left\langle J^{\prime}(\hat{x}), \hat{x}\right\rangle<2 J(\hat{x})
$$

Then, there exists an open interval $I \subseteq] 0,+\infty[$ such that, for every $\lambda \in I$, the equation

$$
x=\lambda J^{\prime}(x)
$$

has a non-zero solution lying in $\operatorname{int}\left(B_{r}\right)$.
Proof. Set

$$
\begin{gathered}
\beta_{r}=\sup _{B_{r}} J \\
\delta_{r}=\sup _{x \in B_{r} \backslash\{0\}} \frac{J(x)}{\|x\|^{2}}
\end{gathered}
$$

and

$$
\eta(s)=\sup _{y \in B_{r}} \frac{r-\|y\|^{2}}{s-J(y)}
$$

for all $s \in] \beta_{r},+\infty[$. From Proposition 2 of [1], it follows that

$$
\frac{\beta_{r}}{r}<\delta_{r}
$$

As a consequence, by Theorem 1 of [1], for each $s \in] \beta_{r}, r \delta_{r}[$, the equation

$$
x=\frac{\eta(s)}{2} J^{\prime}(x)
$$

has a non-zero solution lying in $\operatorname{int}\left(B_{r}\right)$. From Theorem 1 of [1] again, we know that the function η is convex and decreasing in $] \beta_{r},+\infty[$. As a consequence, the set $\eta(] \beta_{r}, r \delta_{r}[)$ is an open interval. So, the conclusion is satisfied taking

$$
I=\frac{1}{2} \eta(] \beta_{r}, r \delta_{r}[)
$$

and the proof is complete.

Now, we are able to prove Theorem 1.
Proof of Theorem 1. We adopt the variational point of view. So, let X be the space $H_{0}^{1}(0,1)$ with the usual inner product

$$
\langle u, v\rangle=\int_{0}^{1} u^{\prime}(t) v^{\prime}(t) d t
$$

Extend the definition of f (and of F as well) putting it zero in $]-\infty, 0[$. Let $J: X \rightarrow \mathbf{R}$ be the functional defined by setting

$$
J(u)=\int_{0}^{1} \alpha(t) F(u(t)) d t
$$

for all $u \in X$. By classical results, J is C^{1} and sequentially weakly continuous, and (since $f \geq 0$) the solutions of problem (D) are exactly the non-zero solutions in X of the equation

$$
u=\lambda J^{\prime}(u)
$$

Let us prove that $(i) \rightarrow(i i)$. First of all, observe that, since $\xi \rightarrow \frac{F(\xi)}{\xi^{2}}$ is nonincreasing in $] 0, a]$, we have

$$
\begin{equation*}
f(\xi) \xi \leq 2 F(\xi) \tag{1}
\end{equation*}
$$

for all $\xi \in] 0, a]$. Now, fix $\left.r \in] 0, a^{2}\right]$. Since

$$
\begin{equation*}
\sup _{u \in X} \frac{\max _{[0,1]}|u|}{\|u\|} \leq \frac{1}{2} \tag{2}
\end{equation*}
$$

from (1) it follows that

$$
\begin{equation*}
f(u(t)) u(t) \leq 2 F(u(t)) \tag{3}
\end{equation*}
$$

for all $u \in B_{r}$ and for all $t \in[0,1]$. Now, let $u \in B_{r}$, with $\sup _{[0,1]} u>0$. Observe that

$$
\begin{equation*}
\{t \in[0,1]: f(u(t)) u(t)<2 F(u(t))\} \neq \emptyset \tag{4}
\end{equation*}
$$

Indeed, otherwise, in view of (3) we would have

$$
f(u(t)) u(t)=2 F(u(t))
$$

for all $t \in[0,1]$ and so the function $\xi \rightarrow \frac{F(\xi)}{\xi^{2}}$ would be constant in the interval $\left.] 0, \sup _{[0,1]} u\right]$, against (i). Then, since α is positive in $[0,1]$, from (4) we infer that

$$
\int_{0}^{1} \alpha(t) f(u(t)) u(t) d t<2 \int_{0}^{1} \alpha(t) F(u(t)) d t
$$

This inequality can be rewritten as

$$
\left\langle J^{\prime}(u), u\right\rangle<2 J(u)
$$

Therefore, all the assumptions of Theorem 2 are satisfied and (ii) follows directly from it.

Now, let us prove that $(i i) \rightarrow(i)$. Arguing by contradiction, assume that there are $b, c>0$ such that

$$
F(\xi)=c \xi^{2}
$$

and hence

$$
f(\xi)=2 c \xi
$$

for all $\xi \in[0, b]$. Fix $\left.r \in] 0, b^{2}\right]$. By $(i i)$, there exists an open interval I such that, for every $\lambda \in I$, problem (D) has a solution u satisfying

$$
\int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t<r
$$

In view of (2), we have

$$
\max _{[0,1]} u \leq b
$$

and so

$$
f(u(t))=2 c u(t)
$$

for all $t \in[0,1]$. In other words, for every $\lambda \in I$, the problem

$$
\begin{cases}-u^{\prime \prime}=2 \lambda c \alpha(t) u & \text { in }[0,1] \\ u>0 & \text { in }] 0,1[\\ u(0)=u(1)=0 & \end{cases}
$$

would have a solution. This contradicts the classical fact that the above problem has a solution only for countably many $\lambda>0$.

Remark 3. It is worth noticing the following wide class of functions f for which Theorem 1 applies. Namely, assume that f is $2 k+1$ times derivable (in a right neighbourhood of 0) and that $f^{(2 k)}(0)<0$ and $f^{(2 m)}(0)=0$ for all $m=1, \ldots, k-1$ if $k \geq 2$. Then, there exists some $a>0$ such that the function $\xi \rightarrow \frac{F(\xi)}{\xi^{2}}$ is decreasing in $] 0, a]$. Indeed, if we put

$$
\varphi(\xi)=2 F(\xi)-\xi f(\xi)
$$

we have $\varphi^{(2 m)}(\xi)=-\xi f^{(2 m)}(\xi)$ and $\varphi^{(2 m+1)}(\xi)=-f^{(2 m)}(\xi)-\xi f^{(2 m+1)}(\xi)$ for all $m=1, \ldots, k$. Hence, $\varphi(0)=\varphi^{(m)}(0)=0$ for all $m=1, \ldots, 2 k$ and $\varphi^{(2 k+1)}(0)>0$. This clearly implies that, for some $a>0$, one has $\varphi(\xi)>0$ for all $\xi \in] 0, a]$, as claimed.

References

[1] B. Ricceri, A note on spherical maxima sharing the same Lagrange multiplier, Fixed Point Theory Appl. 2014, 2014: 25.

Biagio Ricceri

Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
E-mail address: ricceri@dmi.unict.it

[^0]: 2010 Mathematics Subject Classification. 34B09, 34B18, 47J30.
 Key words and phrases. Positive solutions, two-point boundary value problem, variational methods.

 The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

