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Theorem 1.3 ([9]). Let A and B be two nonempty closed convex subsets of a
uniformly convex Banach space X and T : A ∪ B → A ∪ B a cyclic contraction
mapping, that is, T is cyclic and satisfies

∥Tx− Ty∥ ≤ α∥x− y∥+ (1− α)dist(A,B)

for some α ∈ (0, 1) and for all x ∈ A, y ∈ B. For x0 ∈ A, define xn+1 := Txn for
each n ≥ 0. Then there exists a unique x∗ ∈ A such that x2n → x and ∥x∗−Tx∗∥ =
dist(A,B).

Di Bari et al. [7] extended Theorem 1.3 to cyclic Meir-Keeler contractions.
Afterward, Suzuki et al. [18] introduced the property UC (see Definition 1.4) and
extended the same result in metric spaces having the property UC.

Definition 1.4 ([18]). Let A and B be nonempty subsets of a metric space (X, d).
Then (A,B) is said to satisfy the property UC provided if {xn} and {zn} are se-
quences in A and {yn} is a sequence in B such that limn→∞ d(xn, yn) = dist(A,B)
and limn→∞ d(zn, yn) = dist(A,B), then

lim
n→∞

d(xn, zn) = 0.

Example 1.5 ([9]). Let A and B be two nonempty subsets of a uniformly convex
Banach space X such that A is convex. Then (A,B) satisfies the property UC.

Other examples of pairs having the property UC can be found in [18].

The following lemma is needed in the sequel.

Lemma 1.6 ([18]). Let A and B be two nonempty subsets of a metric space (X, d).
Assume that (A,B) satisfies the property UC. Let {xn} and {yn} be sequences in A
and B, respectively, such that either of the following holds:

lim
m→∞

sup
n≥m

d(xm, yn) = d(A,B) or lim
n→∞

sup
m≥n

d(xm, yn) = d(A,B).

Then {xn} is a Cauchy sequence.

2. Preliminaries

In [10], Kirk introduced the notion of asymptotic contraction mappings as follows.

Definition 2.1 ([10]). A mapping T : X → X is said to be asymptotic contraction
with φ,φi : [0,∞) → [0,∞) if φ, φi are continuous, φ(s) < s for s > 0 and for all
x, y ∈ X

(2.1) d(T ix, T iy) ≤ φi(d(x, y)),

where φi → φ uniformly on the range of d.

Theorem 2.2 ([10]). Let (X, d) be a complete metric space and T : X → X a
continuous asymptotic contraction such that (φi) in (2.1) are continuous. Assume
also that some orbit of T is bounded. Then T has a fixed point z ∈ X, and moreover
the Picard iterates {Tn(x)} converges to z for each x ∈ X.

Using of the notion of Meir-Keeler-type function [14], Chen in [5] defined the
notion of the weaker Meir-Keeler-type function as follows.
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Definition 2.3 ([5]). The function ψ : R+ → R+ is called a weaker Meir-Keeler-
type function, if for each η > 0, there exists δ > η such that for t ∈ R+ with
η ≤ t < δ, there exists n0 ∈ N such that ψn0(t) < η.

Also, the notion of asymptotic pointwise weaker Meir-Keeler-type ψ-contractions
was introduced in [5] as follows.

Definition 2.4 ([5]). Let X be a Banach space, and ψ : R+ → R+ a weaker Meir-
Keeler-type function. Then the mapping T : X → X is said to be an asymptotic
pointwise weaker Meir-Keeler-type ψ-contraction, if for each i ∈ N and for each
x, y ∈ X,

||T ix− T iy|| ≤ ψi(||x||)||x− y||.
The following is the main result in [5].

Theorem 2.5 ([5]). Let A be nonempty weakly compact convex subset of a Banach
space X and ψ : R+ → R+ a weaker Meir-Keeler-type function such that for each
t ∈ R+, {ψi(t)}i∈N is nonincreasing. Suppose that T : A → A is an asymptotic
pointwise weaker Meir-Keeler-type ψ-contraction. Then, T has a unique fixed point
z ∈ A, and for each x ∈ A, the sequence of Picard iterates, {Tn(x)} converges in
norm to z.

The aim of this paper is to prove best proximity point theorems for weaker
Meir-Keeler-type cyclic contractions and asymptotic pointwise cyclic contractions.
Examples are also given to illustrate our main results.

3. Weaker Meir-Keeler-type cyclic contractions

Lemma 3.1. Let (A,B) be a nonempty weakly compact convex pair of subsets of
a Banach space X. Let T : A ∪ B → A ∪ B be a cyclic mapping. Suppose that
ψ : R+ → R+ is a weaker Meir-Keeler-type function such that for each t ∈ R,
{ψi(t)}i∈N is nonincreasing and for each (x, y) ∈ A×B

||T 2ix− T 2iy||∗ ≤ ψi(||x||)||x− y||∗, ∀y ∈ B,(3.1)

||T 2ix− T 2iy||∗ ≤ ψi(||y||)||x− y||∗, ∀x ∈ A,(3.2)

where ||x − y||∗ := ||x − y|| − dist(A,B). Then for each (x, y) ∈ A × B there exits
a pair (v, w) ∈ A×B such that

lim sup
i→∞

||T 2ix− w|| = dist(A,B) = lim sup
i→∞

||v − T 2iy||.

Proof. Assume that x is an arbitrary point in A and define f : B → [0,∞) by

f(y) = lim sup
i→∞

||T 2ix− y||∗, ∀y ∈ B.

Since B is weakly compact and convex, f attains its minimum at one point w ∈ B.
On the other hand,

f(T 2jy) = lim supi→∞ ||T 2ix− T 2jy||∗
= lim supi→∞ ||T 2i+2jx− T 2jy||∗
= lim supi→∞ ||T 2j(T 2ix)− T 2jy||∗
≤ lim supi→∞ ψj(||y||)||T 2ix− y||∗
= ψj(||y||)f(y),
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for all y ∈ B. Since w ∈ B is a minimum of f , we conclude that

(3.3) f(w) ≤ f(T 2jw) ≤ ψj(||w||)f(w), ∀j ∈ N.
It now follows from Theorem 3 of [5] that limj→∞ ψj(||w||) = 0. Hence, by (3.3),
we conclude that f(w) = 0 and so f(T 2jw) = 0 for all j ∈ N. Thus,

lim sup
i→∞

||T 2ix− w|| = dist(A,B) = lim sup
i→∞

||T 2ix− T 2jw||, ∀j ∈ N.(3.4)

Since A is weakly compact convex subset of X, an argument similar to the above
yields that for all y ∈ B there exists v ∈ A such that

lim sup
i→∞

||v − T 2iy|| = dist(A,B) = lim sup
i→∞

||T 2jv − T 2iy||, ∀j ∈ N.(3.5)

�
Here, we give an example illustrating Lemma 3.1.

Example 3.2. ConsiderX = R with the usual metric. Let A = [1, 2], B = [−2,−1].
Define the mapping T : A ∪B → A ∪B by

T (x) =

{
−x

2 − 1
2 if x ∈ A,

−x
2 + 1

2 if x ∈ B.

Now, it is easy to see that T is cyclic on A ∪ B and dist(A,B) = 2. Moreover,

for all i ∈ N, we have T 2ix = x
22i

+ 22i−1
22i

, for x ∈ A and T 2iy = y
22i

− 22i−1
22i

, for

y ∈ B. Also, for each i ∈ N, we define the function ψ : R+ → R+ by ψ(t) = t
2 .

Obviously, ψ is a weaker Meir-Keeler-type function with for each t ∈ R, {ψi(t)}i∈N
is nonincreasing; also for each x ∈ A, y ∈ B,

||T 2ix− T 2iy||∗ =
∥∥∥ 1

22i
(x− y) + 2− 1

22i−1

∥∥∥− 2

≤
∥∥∥ 1

22i
(x− y)− 1

22i−1

∥∥∥
=

1

22i
||x− y − 2||

≤ ||x||
2i

||x− y||∗

= ψi(||x||)||x− y||∗.

(3.6)

Similarly, we can see that ||T 2ix−T 2iy||∗ ≤ ψi(||y||)||x− y||∗ for all (x, y) ∈ A×B.
Therefore, T satisfies all conditions of Lemma 3.1.

The following is a generalization of Theorem 2.5 due to Chen.

Theorem 3.3. Let (A,B) be a nonempty weakly compact convex pair of subsets of
a Banach space X. Let T : A ∪ B → A ∪ B be a cyclic mapping. Suppose that
ψ : R+ → R+ is a weaker Meir-Keeler-type function such that for each t ∈ R,
{ψi(t)}i∈N is nonincreasing and for each (x, y) ∈ A×B

||T 2ix− T 2iy|| ≤ ψi(||x||)||x− y||, ∀y ∈ B,

||T 2ix− T 2iy|| ≤ ψi(||y||)||x− y||, ∀x ∈ A.
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Then A ∩B is nonempty. Moreover, if

∥T 2x− Tx∥ < ∥Tx− x∥, ∀x ∈ A ∩B with x ̸= Tx,

then T has a unique fixed point in A∩B. Further, for each x ∈ A∩B if x2i = T 2ix,
then {x2i} converges strongly to the fixed point of T .

Proof. If x ∈ A and we define the function f : B → [0,∞) with f(y) =
lim supi→∞ ∥T 2ix− y∥, then Lemma 3.1 implies that there exists w ∈ B such that

lim sup
i→∞

∥T 2ix− w∥ = lim sup
i→∞

∥T 2ix− T 2w∥ = 0.

Therefore, w ∈ B is a fixed point of the mapping T 2|B. Again, by using Lemma 3.1
there exists an element v ∈ A such that

∥v − w∥ = lim sup
i→∞

∥v − T 2iw∥ = 0,

which deduce that v = w ∈ A ∩ B. That is A ∩ B is nonempty. We note that
T (A ∩B) ⊆ A ∩B and A ∩B is weakly compact convex subset of X. Also,

||T 2ix− T 2iy|| ≤ ψi(||x||)||x− y||,
for each x, y ∈ A ∩ B. It now follows from Theorem 2.5 that the mapping T 2 has
a unique fixed point in A ∩ B. Suppose that x∗ ∈ A ∩ B is a unique fixed point of
T 2. If x∗ is not a fixed point of T , then we must have

∥x∗ − Tx∗∥ = ∥T 2x∗ − Tx∗∥ < ∥Tx∗ − x∗∥,
which is a contradiction, that is, x∗ is a unique fixed point of T in A ∩B. �

The following example shows that Theorem 3.3 is a real generalization of Theorem
2.5.

Example 3.4. Let X = R and A = B = [0, 2]. Define the mapping T : A ∪ B →
A ∪B by

T (x) =

{
0 if 0 ≤ x ≤ 1,
x
2 if 1 < x ≤ 2.

Now, it is easy to see that T is cyclic on A ∪B and T 2ix = T 2iy = 0 for any i ∈ N,
x ∈ A and y ∈ B. Let ψ be an arbitrary weaker Meir-Keeler-type function. Then
all hypothesis of Theorem 3.3 are satisfied and 0 is a unique fixed point for T . But,
if we set ψ(t) = t

4 for all t ∈ R, then, it is easy to see that T is not an asymptotic

pointwise weaker Meir-Keeler-type ψ-contraction with x = 3
2 , y = 1

2 and i = 1. So
Theorem 2.5 cannot be applied.

In the next theorem, we prove the existence and uniqueness of a best proximity
point for a class of cyclic mappings.

Theorem 3.5. Let (A,B) be a nonempty, closed and convex pair in a uniformly
convex Banach space X such that A is bounded. Suppose that the cyclic mapping
T : A ∪B → A ∪B satisfies the condition (3.1) of Lemma 3.1 and

∥T 2x− Tx∥ < ∥x− Tx∥, for all x ∈ A with dist(A,B) < ||x− Tx||.(3.7)

Then T has a unique best proximity point in A.
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Proof. Since A is a bounded closed convex subset of a uniformly convex Banach
space X, the function f : A → [0,∞) defined by f(x) = lim supi→∞ ∥x − T 2iy∥∗,
where y ∈ B, attains its minimum at one point v ∈ A. By using Lemma 3.1 we have
f(v) = f(T 2v), that is, v ∈ A is a fixed point of T 2|A. We claim that v is a unique
best proximity point of T in A. If ∥v−Tv∥ > dist(A,B), by (3.7) we conclude that

∥v − Tv∥ = ∥T 2v − Tv∥ < ∥v − Tv∥,
which is a contradiction. Now, let v́ ∈ A be another best proximity point of T in
A. By the strict convexity of X and convexity of A and B, we obtain

dist(A,B) ≤
∥∥∥v + v́

2
− Tv + T v́

2

∥∥∥ =
∥∥∥v − Tv

2
+
v́ − T v́

2

∥∥∥
<

∥∥∥v − Tv

2

∥∥∥+
∥∥∥ v́ − T v́

2

∥∥∥ = dist(A,B),

which is a contradiction. Hence, v = v́ and this completes the proof. �
Definition 3.6 ([2]). Let (A,B) be a nonempty pair of subsets of a normed linear
space X. The cyclic mapping T : A ∪ B → A ∪ B is said to satisfy the proximal
property if

xn ⇀ x ∈ A ∪B & ∥xn − Txn∥ → dist(A,B) ⇒ ∥x− Tx∥ = dist(A,B),

where “⇀” denotes the weak convergence in X.

We note that, if dist(A,B) = 0, the proximal property reduces to the usual
demiclosedness property of the mapping I − T at 0, where I is the identity map on
A ∪B.

Theorem 3.7. Let (A,B) be a nonempty pair in a reflexive Banach space X such
that A is bounded and weakly closed. Suppose that T : A ∪ B → A ∪ B is a cyclic
mapping such that for each (x, y) ∈ A×B

||T 2ix− T 2iy||∗ ≤ φi(||x||)||x− y||∗, ∀y ∈ B,(3.8)

where φ : [0,∞) → [0,∞) is function satisfying φi(t) → 0 for t ≥ 0. Then, T has a
best proximity point in A provided one of the following conditions is satisfied.

(i) T is weakly continuous on A.
(ii) T satisfies the proximal property.

Proof. At first, we note that for each v ∈ A

0 ≤ lim sup
i→∞

∥T 2iv − T 2i+1v∥ ≤ lim sup
i→∞

φi(∥v∥)∥v − Tv∥ = 0.

Since A is a bounded and X is reflexive, we may assume that T 2iv ⇀ v∗ ∈ A.

(i) Since T is weakly continuous on A, T 2i+1v ⇀ Tv∗ ∈ B. Hence,

∥v∗ − Tv∗∥ ≤ lim inf
i→∞

∥T 2iv − T 2i+1v∥ = dist(A,B).

That is, v∗ is a best proximity point of T in A.

(ii) Since ∥T 2iv − T 2i+1v∥ → dist(A,B) and T 2iv ⇀ v∗ ∈ A and T satisfies the
proximal property, we conclude that ||v∗ − Tv∗∥ = dist(A,B).

�



BEST PROXIMITY POINTS 89

Here, we recall the notion of relatively nonexpansive mappings.

Definition 3.8. Let (A,B) be a nonempty pair of subsets of a Banach space X and
T : A ∪ B → A ∪ B be a cyclic mapping. T is said to be a relatively nonexpansive
mapping if ∥Tx− Ty∥ ≤ ∥x− y∥ for all (x, y) ∈ A×B.

We note that the class of relatively nonexpansive mappings contains the class of
nonexpansive mapping as a subclass.

The next theorem guarantees the existence of a best proximity point for relatively
nonexpansive mappings.

Theorem 3.9. Let (A,B) be a nonempty pair of subsets of a Banach space X and
T : A ∪B → A ∪B be a relatively nonexpansive map. Let x0 ∈ A be given. Define
an iterative sequence {xn}n∈N by xn+1 = Txn for n ∈ N ∪ {0}. Suppose that

(i) {x2n} has a convergent subsequence in A;
(ii) limn→∞ ||T 2nx− T 2n+1x|| = dist(A,B).

Then T has a best proximity point in A.

Proof. Suppose that {x2nk
} is a subsequence of the sequence {x2n} such that x2nk

→
z ∈ A. We now have

dist(A,B) ≤ ||z − x2nk+1|| ≤ ||z − x2nk
||+ ||x2nk

− x2nk+1|| for all k ∈ N,
which implies that limk→∞ ||z − x2nk+1|| = dist(A,B). Thus,

dist(A,B) ≤ ||x2nk+2 − Tz|| ≤ ||z − x2nk+1|| for all k ∈ N,
and hence ||z−Tz|| = dist(A,B), that is z is a best proximity point of the mapping
T in A. �

4. Asymptotic pointwise cyclic contractions

In [11] W. A. Kirk introduced the notion of an asymptotic pointwise contraction
map:

Definition 4.1. Suppose that (X, d) is a metric space. Let T : X → X and for
each n ∈ N let αn : X → R+ such that

d(Tnx, Tny) ≤ αn(x)d(x, y) ∀x, y ∈ X.

If the sequence {αn} converges pointwise to the function α : X → [0, 1), then T is
called an asymptotic pointwise contraction.

It was announced in [11] that any asymptotic pointwise contraction defined on a
bounded closed convex subset of a superreflexive Banach space has a fixed point.
In [13], Kirk and Xu proved the following theorem for asymptotic pointwise con-
tractions.

Theorem 4.2. Let K be a weakly compact convex subset of a Banach space X and
let T : K → K be an asymptotic pointwise contraction. Then T has a unique fixed
point z ∈ K, and for each x ∈ K, the sequence of Picard iterates, {Tnx}, converges
in norm to z.

In 2005, Eldred et al. (see [8]) introduced the notion of proximal normal structure
as follows.
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Definition 4.3. A pair (A,B) of subsets of a normed linear space is said to be a
proximal pair if for each (x, y) ∈ A×B there exists (x́, ý) ∈ A×B such that

∥x− ý∥ = ∥x́− y∥ = dist(A,B).

Definition 4.4. A convex pair (K1,K2) in a Banach space X is said to have prox-
imal normal structure if for any closed, bounded, convex proximal pair (H1,H2) ⊆
(K1,K2) for which dist(H1, H2) = dist(K1,K2) and δ(H1,H2) > dist(H1,H2),
there exists (x1, x2) ∈ H1 ×H2 such that

δ(x1,H2) < δ(H1,H2), δ(x2,H1) < δ(H1,H2).

They used this geometric property to study mappings that are relatively nonex-
pansive in the sense that they are defined on the union of two subsets A and B of a
Banach space X and satisfy ∥Tx−Ty∥ ≤ ∥x−y∥ for all x ∈ A, y ∈ B. It was shown
that if A and B are weakly compact and convex, and if the pair (A,B) has proximal
normal structure, then a cyclic relatively nonexpansive mapping T : A∪B → A∪B
has at least one best proximity point.

In this section we study the existence and convergence of best proximity points
for cyclic relatively nonexpansive mappings, which are asymptotic pointwise cyclic
contraction in the following sense.

Definition 4.5. Let (A,B) be a nonempty pair in a Banach space X. A mapping
T : A ∪B → A ∪B is said to be an asymptotic pointwise cyclic contraction if T is
cyclic and there exists a function α : A∪B → [0, 1) such that for any integer n ≥ 1
and (x, y) ∈ A×B,

∥T 2nx− T 2ny∥ ≤ αn(x)∥x− y∥+ (1− αn(x)) dist(A,B) for all y ∈ B,(4.1)

∥T 2nx− T 2ny∥ ≤ αn(y)∥x− y∥+ (1− αn(y)) dist(A,B) for all x ∈ A.(4.2)

where αn → α pointwise on A ∪B.

It is easy to see that the class of mappings which was introduced in previous
definition, generalizes the class of mappings which was introduced by Abkar and
Gabeleh in Definition 3.5 of [1].

Theorem 4.6. Let (A,B) be a nonempty bounded closed convex pair in a uniformly
convex Banach space X and T : A ∪ B → A ∪ B an asymptotic pointwise cyclic
contraction map. If T is a relatively nonexpansive mapping, then there exits a
unique pair (v∗, u∗) ∈ A×B such that

∥v∗ − Tv∗∥ = ∥Tu∗ − u∗∥ = dist(A,B).

Further, if x0 ∈ A and xn+1 = Txn, then {x2n} converges in norm to v∗ and
{x2n+1} converges in norm to u∗.

Proof. Let x0 ∈ A and define f : B → [0,∞) by f(u) = lim supn→∞ ∥T 2nx0 − u∥.
Since X is uniformly convex, and B is bounded closed and convex, it follows that
f attains its minimum at exactly one point in B namely u∗. We note that for all
integers m ≥ 1 and u ∈ B,

f(T 2mu) = lim sup
n→∞

∥T 2nx0 − T 2mu∥ = lim sup
n→∞

∥T 2n+2mx0 − T 2mu∥



BEST PROXIMITY POINTS 91

= lim sup
n→∞

∥T 2m(T 2nx0)− T 2mu∥

≤ lim sup
n→∞

[αm(u)∥T 2nx0 − u∥+ (1− αm(u))dist(A,B)]

= αm(u)f(u) + (1− αm(u))dist(A,B).

Since u∗ is the minimum of f , we must have

f(u∗) ≤ f(T 2mu∗) ≤ αm(u∗)f(u∗) + (1− αm(u∗))dist(A,B), for all m ≥ 1.(4.3)

Now by αm(u∗) → α(u∗) < 1, we have

f(u∗) ≤ α(u∗)f(u∗) + (1− α(u∗))dist(A,B).

This shows that f(u∗) = dist(A,B). On the other hand,

f(T 2u∗) = lim sup
n→∞

∥T 2nx0 − T 2u∗∥ ≤ lim sup
n→∞

∥T 2n−2x0 − u∗∥ = f(u∗).

This implies that T 2u∗ = u∗, by the uniqueness of minimum of f . Then u∗ is a
fixed point of T 2 in B. We also note that,

lim
m→∞

sup
n≥m

∥T 2mx0 − T 2nu∗∥ = lim
m→∞

∥T 2mx0 − u∗∥ = f(u∗) = dist(A,B).

Since (A,B) has the property UC, it follows from Lemma 1.6 that the sequence
{T 2nx0} is a Cauchy sequence and then there exists x̃ in A such that x2n →
x̃. By a similar argument, if y0 ∈ B and g : A → [0,∞) is given by g(v) =
lim supn→∞ ∥T 2ny0−v∥, then g takes it’s minimum at exactly one point, v∗, which is
a fixed point of T 2 in A, moreover T 2ny0 → ỹ ∈ B. Hence we obtain u∗ = T 2nu∗ → ỹ
and v∗ = T 2nv∗ → x̃. This shows that (v∗, u∗) = (x̃, ỹ), and T 2nx0 → v∗,
T 2ny0 → u∗. Further

∥v∗ − u∗∥ = ∥T 2nv∗ − T 2nu∗∥ ≤ αn(v
∗)∥v∗ − u∗∥+ (1− αn(v

∗))dist(A,B).

Now if n → ∞ then we have ∥v∗ − u∗∥ = dist(A,B). It follows from the uniform
convexity of X that there is a unique pair (v∗, u∗) ∈ A× B such that ∥v∗ − u∗∥ =
dist(A,B). Since T is a relatively nonexpansive mapping, ∥Tv∗−Tu∗∥ ≤ ∥v∗−u∗∥ =
dist(A,B), therefore Tv∗ = u∗ and Tu∗ = v∗. This implies that ∥v∗ − Tv∗∥ =
∥Tu∗ − u∗∥ = dist(A,B). �

Let us illustrate the above theorem with the following example.

Example 4.7. Consider X = R with the usual metric. Let A = [1, 2] , B =
[−2,−1]. Define the mapping T : A ∪B → A ∪B by

T (x) =

{
−
√
x if x ∈ A,√

−x if x ∈ B.

Now, it is easy to see that T is cyclic on A ∪ B and dist(A,B) = 2. Moreover, for
all n ∈ N, we have T 2nx = 2n

√
x, for x ∈ A and T 2ny = − 2n

√
−y, for y ∈ B. Also,

for each n ∈ N, we define the function αn : A ∪B → R as follows:

αn(x) =

{
nx

3n+1 if x ∈ A,
−nx
3n+1 if x ∈ B.
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Obviously, αn(x) → α(x), where

α(x) =

{
x
3 if x ∈ A,
−x
3 if x ∈ B.

We show that T satisfy the relations (4.1), (4.2). Indeed, if (x, y) ∈ A×B, then

αn(x)∥x− y∥+ (1− αn(x)) dist(A,B) =
( nx

3n+ 1

)
(x− y) +

(
1− nx

3n+ 1

)
≥

( nx

3n+ 1

)
(x− y) +

(3n+ 1− nx

3n+ 1

)
(x− y)

= x− y ≥ 2n
√
x+ 2n

√
−y

= ∥T 2nx− T 2ny∥.

Similarly, we can see that (4.2) holds. Therefore, all conditions of Theorem 4.6 are
satisfied and hence there exists a unique point (v∗, u∗) = (1,−1) ∈ A×B such that

∥v∗ − Tv∗∥ = ∥Tu∗ − u∗∥ = dist(A,B).

It is interesting to note that T 2n(x) = 2n
√
x → v∗ = 1, for all x ∈ A and T 2n(y) =

− 2n
√
−y → −1 = u∗, for all y ∈ B.

Remark 4.8. In [8], Eldred et al. proved that every nonempty, bounded, closed
and convex pair of subsets of a uniformly convex Banach space X has the proximal
normal structure and, by using this geometric property, established the existence of
a best proximity point for cyclic relatively nonexpansive mappings. In Theorem 4.6,
we have proved directly the existence of a best proximity point for cyclic relatively
nonexpansive mappings which are asymptotic pointwise contraction, and further
our assumptions on T have enabled us to approximate the best proximity point of
T .
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