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ABSTRACT. In this paper, we prove best proximity point results for weaker Meir-
Keeler-type cyclic contractions and asymptotic pointwise cyclic contractions. We
also provide some examples illustrating our results.

1. INTRODUCTION

Let A and B be nonempty subsets of a metric space (X,d). AmapT: AUB —
AU B is called a cyclic mapping if T(A) C B and T(B) C A. Recently, Kirk
et al. obtained the following interesting generalization of the Banach contraction
principle:

Theorem 1.1 ([12]). Let A and B be two nonempty closed subsets of a complete
metric space X. Suppose that T is a cyclic map such that

d(Tz,Ty) < ad(z,y)

for some o € (0,1) and for all x € A,y € B. Then T has a unique fized point in
ANB.

If in the above theorem A N B = (), then the fixed point equation Tz = x has
no solution. Hence it is contemplated to find an approximate x € A such that the
error d(z,Tz) is minimum.

Definition 1.2. Let A and B be nonempty subsets of a metric space (X,d) and
T:AUB — AUB a cyclic mapping. A point * € AU B is called a best proximity
point of T if d(z*, T'z*) = dist(A, B), where

dist(A, B) = inf{d(x,y) : (z,y) € A x B}.

Best proximity point theory has recently attracted the attention of number of
authors (see for instance [2, 6, 7, 9, 15, 16, 17, 18]). For other related results, we
refer to [3, 4].

In 2006, Eldred and Veeramani proved the following best proximity point theorem
in uniformly convex Banach spaces.

2010 Mathematics Subject Classification. 47TH10, 47THO09.

Key words and phrases. Best proximity point, asymptotic pointwise contraction, weaker Meir-
Keeler type contraction, cyclic map.

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah. N. Shahzad acknowledges with thanks DSR for financial support.



84 M. GABELEH, H. LAKZIAN, AND N. SHAHZAD

Theorem 1.3 ([9]). Let A and B be two nonempty closed convezr subsets of a
uniformly conver Banach space X and T : AUB — AU B a cyclic contraction
mapping, that is, T is cyclic and satisfies

ITe — Tyl| < allz — gl + (1 — a)dist(A, B)
for some a € (0,1) and for allz € A,y € B. For xg € A, define xp41 := Tx, for
eachn > 0. Then there exists a unique v* € A such that xo, — x and ||z* —Tz*| =

dist(A, B).

Di Bari et al. [7] extended Theorem 1.3 to cyclic Meir-Keeler contractions.
Afterward, Suzuki et al. [18] introduced the property UC (see Definition 1.4) and
extended the same result in metric spaces having the property UC.

Definition 1.4 ([18]). Let A and B be nonempty subsets of a metric space (X, d).
Then (A, B) is said to satisfy the property UC provided if {x,} and {z,} are se-
quences in A and {y,} is a sequence in B such that lim,_, . d(x,, y,) = dist(A, B)
and lim,, o0 d(2p, yn) = dist(A, B), then

lim d(xy, z,) = 0.

n—oo

Example 1.5 ([9]). Let A and B be two nonempty subsets of a uniformly convex
Banach space X such that A is convex. Then (A, B) satisfies the property UC.

Other examples of pairs having the property UC can be found in [18].

The following lemma is needed in the sequel.

Lemma 1.6 ([18]). Let A and B be two nonempty subsets of a metric space (X,d).
Assume that (A, B) satisfies the property UC. Let {x,,} and {y,} be sequences in A
and B, respectively, such that either of the following holds:

m—r0o0 n

lim sup d(zpm,yn) = d(A, B) or 1i_>m sup d(xm,yn) = d(A, B).
>m =0 m>n
Then {zy} is a Cauchy sequence.

2. PRELIMINARIES
In [10], Kirk introduced the notion of asymptotic contraction mappings as follows.

Definition 2.1 ([10]). A mapping T': X — X is said to be asymptotic contraction
with ¢, @; : [0,00) — [0,00) if ¢, ¢; are continuous, ¢(s) < s for s > 0 and for all
z,y € X

where ; — ¢ uniformly on the range of d.

Theorem 2.2 ([10]). Let (X,d) be a complete metric space and T : X — X a
continuous asymptotic contraction such that (p;) in (2.1) are continuous. Assume
also that some orbit of T is bounded. Then T has a fixed point z € X, and moreover
the Picard iterates {T™(x)} converges to z for each x € X.

Using of the notion of Meir-Keeler-type function [14], Chen in [5] defined the
notion of the weaker Meir-Keeler-type function as follows.
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Definition 2.3 ([5]). The function ¢ : RT — R™T is called a weaker Meir-Keeler-
type function, if for each n > 0, there exists § > n such that for t € Rt with
n <t < J, there exists ng € N such that ¢ (t) < 7.

Also, the notion of asymptotic pointwise weaker Meir-Keeler-type 1-contractions
was introduced in [5] as follows.

Definition 2.4 ([5]). Let X be a Banach space, and ¢ : Rt — RT a weaker Meir-
Keeler-type function. Then the mapping T': X — X is said to be an asymptotic
pointwise weaker Meir-Keeler-type 1-contraction, if for each ¢ € N and for each
z,y € X, ’ ' '
1Tz =Tyl < ¥*([|=[D]l= = yll.
The following is the main result in [5].

Theorem 2.5 ([5]). Let A be nonempty weakly compact convez subset of a Banach
space X and 1) : RT — RT a weaker Meir-Keeler-type function such that for each
t € RT, {¢!(t)}ien is nonincreasing. Suppose that T : A — A is an asymptotic
pointwise weaker Meir-Keeler-type 1-contraction. Then, T has a unique fized point
z € A, and for each x € A, the sequence of Picard iterates, {T"(x)} converges in
norm to z.

The aim of this paper is to prove best proximity point theorems for weaker
Meir-Keeler-type cyclic contractions and asymptotic pointwise cyclic contractions.
Examples are also given to illustrate our main results.

3. WEAKER MEIR-KEELER-TYPE CYCLIC CONTRACTIONS

Lemma 3.1. Let (A, B) be a nonempty weakly compact convex pair of subsets of
a Banach space X. Let T : AUB — AU B be a cyclic mapping. Suppose that
P RT — RY is a weaker Meir-Keeler-type function such that for each t € R,
{"(t) }ien is monincreasing and for each (x,y) € A x B

(3.1) 7%z — T*y||* < ¢'(||lz])|lz — ylI*, Yy € B,

(3-2) 172 — T*y[[* < ' (lylDllz - yll", Yz € 4,

where ||z — y||* = ||z — y|| — dist(A, B). Then for each (x,y) € A X B there exits
a pair (v,w) € A X B such that
limsup ||T?%2 — w|| = dist(A, B) = limsup ||v — T%y||.
1—00 1—00
Proof. Assume that x is an arbitrary point in A and define f : B — [0,00) by
f(y) =limsup ||T%z —y||*, vy € B.
1—+00

Since B is weakly compact and convex, f attains its minimum at one point w € B.
On the other hand,

f(T%y) = limsup, . ||T%z — T*y||*

lim sup;_, o, || T%F%7 2 — T y||*
lim sup;_, o, ||T%(T*x) — T y|[*
lim sup; o, ¢/ (|ly| 1T« — y|[*
Y ([lyl) f (),

A
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for all y € B. Since w € B is a minimum of f, we conclude that
(3.3) flw) < F(T%w) < ¢ (|[w]|) f(w), VjeN.
It now follows from Theorem 3 of [5] that lim; o 17 (||w||) = 0. Hence, by (3.3),
we conclude that f(w) = 0 and so f(T%w) = 0 for all j € N. Thus,
(3.4) limsup ||[T%z — w|| = dist(A, B) = limsup ||[T%2 — T%w||, Vj e N.
1—>00 1—>00

Since A is weakly compact convex subset of X, an argument similar to the above
yields that for all y € B there exists v € A such that
(3.5) limsup |Jv — T?%y|| = dist(A, B) = limsup ||[T%v — T?*yl||, Vj € N.

1—00 1—00

Here, we give an example illustrating Lemma 3.1.

Example 3.2. Consider X = R with the usual metric. Let A = [1,2], B = [-2, —1].
Define the mapping T': AUB — AU B by

Now, it is easy to see that 1" is cyclic on AU B and dist(A,B) = 2. Moreover,
for all i € N, we have T%x = 55 + 2221%, for z € A and T?y = 5 — 2221771, for

y € B. Also, for each i € N, we define the function ¢ : Rt — RT by v(t) = 3.
Obviously, 9 is a weaker Meir-Keeler-type function with for each ¢ € R, {1/*(¢) }sen
is nonincreasing; also for each x € A, y € B,

7% = T2y = | e ) +2 = | 2
<tz -
36) = wlle—y -2
< ol g
= ¢(llalDllz — yII"

Similarly, we can see that ||T?z — T%y||* < ¥!(||y||)||z — y||* for all (z,y) € A x B.
Therefore, T satisfies all conditions of Lemma 3.1.

The following is a generalization of Theorem 2.5 due to Chen.

Theorem 3.3. Let (A, B) be a nonempty weakly compact convex pair of subsets of
a Banach space X. Let T : AUB — AU B be a cyclic mapping. Suppose that
P 1 RT — RY is a weaker Meir-Keeler-type function such that for each t € R,
{4 (t)}ien is nonincreasing and for each (x,y) € A x B

172 — T*y|| < ¥'(||lz[Dllx — yll, ¥y € B,

172 — T*y[| < ' (llyl)l|z — yll, Vo € A.
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Then AN B is nonempty. Moreover, if

|T%z — Tx|| < | Tz — z||, V2 € AN B with x # Tz,
then T has a unique fized point in ANB. Further, for each v € ANB if x9; = Tz,
then {x2;} converges strongly to the fixed point of T.

Proof. If € A and we define the function f : B — [0,00) with f(y) =
limsup,_, . [|7%x — y||, then Lemma 3.1 implies that there exists w € B such that
limsup || 7%z — w]|| = limsup || 7%z — T?w|| = 0.

17— 00 i—00
Therefore, w € B is a fixed point of the mapping 72|. Again, by using Lemma 3.1
there exists an element v € A such that

|lv — w|| = limsup ||v — T2in =0,
17— 00

which deduce that v = w € AN B. That is AN B is nonempty. We note that
T(ANB) C An B and AN B is weakly compact convex subset of X. Also,
1 T% = T%y|| < &'(||=]])]lz - yll,
for each z,y € AN B. It now follows from Theorem 2.5 that the mapping 72 has
a unique fixed point in A N B. Suppose that * € AN B is a unique fixed point of
T?. If 2* is not a fixed point of T, then we must have
lz* = Ta*|| = |T%2" — Ta*|| < | Ta* — 2™,
which is a contradiction, that is, * is a unique fixed point of T"in AN B. O

The following example shows that Theorem 3.3 is a real generalization of Theorem
2.5.

Example 3.4. Let X = R and A = B = [0,2]. Define the mapping T': AUB —

AU B by
T(x) 0if 0<z<1,
€Tr) =
i 1l<z<2.

Now, it is easy to see that T is cyclic on AU B and T%z = T?%y = 0 for any i € N,
x € A and y € B. Let ¥ be an arbitrary weaker Meir-Keeler-type function. Then
all hypothesis of Theorem 3.3 are satisfied and 0 is a unique fixed point for 7. But,
if we set ¥(t) = i for all t € R, then, it is easy to see that T is not an asymptotic
pointwise weaker Meir-Keeler-type 1-contraction with = = %, y= % and i = 1. So

Theorem 2.5 cannot be applied.

In the next theorem, we prove the existence and uniqueness of a best proximity
point for a class of cyclic mappings.

Theorem 3.5. Let (A, B) be a nonempty, closed and convex pair in a uniformly
convex Banach space X such that A is bounded. Suppose that the cyclic mapping
T:AUB — AU B satisfies the condition (3.1) of Lemma 3.1 and

(3.7)  ||[T?z —Tz|| < ||z —Tx|, forall x€ A with dist(A,B) < ||z — Tx||.

Then T has a unique best proximity point in A.
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Proof. Since A is a bounded closed convex subset of a uniformly convex Banach
space X, the function f : A — [0,00) defined by f(x) = limsup, ., ||z — T?y]*,
where y € B, attains its minimum at one point v € A. By using Lemma 3.1 we have
f(v) = f(T?v), that is, v € A is a fixed point of T?| 4. We claim that v is a unique
best proximity point of T"in A. If |jv —Tv|| > dist(A, B), by (3.7) we conclude that

lv = Twll = [T — Twl| < o~ Tvll,

which is a contradiction. Now, let © € A be another best proximity point of T in
A. By the strict convexity of X and convexity of A and B, we obtain

v+0 Tv+T9 v—Tv O0-T7

dist(A,B) < - =
ist(4,B) < |= 2 5 T3
-T ) — T
Y 5 U] 5 ”H — dist(A, B),
which is a contradiction. Hence, v = ¥ and this completes the proof. O

Definition 3.6 ([2]). Let (A, B) be a nonempty pair of subsets of a normed linear
space X. The cyclic mapping T': AU B — A U B is said to satisfy the proximal
property if
Tn =2 €AUB & |z, —Txy| — dist(A, B) = ||z — Tx| = dist(A, B),
where “—” denotes the weak convergence in X.
We note that, if dist(A, B) = 0, the proximal property reduces to the usual

demiclosedness property of the mapping I — T at 0, where [ is the identity map on
AUB.

Theorem 3.7. Let (A, B) be a nonempty pair in a reflexive Banach space X such
that A is bounded and weakly closed. Suppose that T : AUB — AU B is a cyclic
mapping such that for each (x,y) € A x B

(3.8) 1T — T*y|[* < o (||z[)]le = yl|*, Yy € B,
where o : [0,00) — [0,00) is function satisfying ©'(t) — 0 for t > 0. Then, T has a
best proximity point in A provided one of the following conditions is satisfied.

(i) T is weakly continuous on A.

(ii) T satisfies the proximal property.
Proof. At first, we note that for each v € A

0 < limsup || T%v — T* || < limsup ' (||Jv||)||v — Tv]|| = 0.
1—

1—00 o0
Since A is a bounded and X is reflexive, we may assume that 7%y — v* € A.
(i) Since T is weakly continuous on A, T?*1y — Tv* € B. Hence,

|v* — To*|| < liminf | T%v — T?*1y|| = dist(A, B).
1—00
That is, v* is a best proximity point of T" in A.
(i) Since ||T%wv — T?*1y|| — dist(A, B) and T?v — v* € A and T satisfies the

proximal property, we conclude that ||[v* — Tv*|| = dist(A, B).
H
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Here, we recall the notion of relatively nonexpansive mappings.

Definition 3.8. Let (A, B) be a nonempty pair of subsets of a Banach space X and
T:AUB — AU B be a cyclic mapping. T is said to be a relatively nonexpansive
mapping if ||Tz — Ty|| < |lz — yl| for all (z,y) € A x B.

We note that the class of relatively nonexpansive mappings contains the class of
nonexpansive mapping as a subclass.

The next theorem guarantees the existence of a best proximity point for relatively
nonexpansive mappings.

Theorem 3.9. Let (A, B) be a nonempty pair of subsets of a Banach space X and
T:AUB — AU B be a relatively nonexpansive map. Let xg € A be given. Define
an iterative sequence {xn }nen by Tny1 = Ty for n € NU{0}. Suppose that

(i) {x2n} has a convergent subsequence in A;

(i) lim, oo ||T?"x — T?" M 2|| = dist(A, B).
Then T has a best proximity point in A.
Proof. Suppose that {2y, } is a subsequence of the sequence {z2, } such that z3,, —
z € A. We now have

dist(A, B) < ||z — zon,+1l] < ||z — @on, || + [|z2n, — Ton,+1]| for all k € N,
which implies that limy_, ||z — Z2n,+1|| = dist(A, B). Thus,

dist(A, B) < ||zan,+2 — Tz|| < ||z — xon,+1|| for all k € N,

and hence ||z —T'z|| = dist(A, B), that is z is a best proximity point of the mapping
T in A. 0

4. ASYMPTOTIC POINTWISE CYCLIC CONTRACTIONS

In [11] W. A. Kirk introduced the notion of an asymptotic pointwise contraction
map:

Definition 4.1. Suppose that (X,d) is a metric space. Let T': X — X and for
each n € N let a;, : X — RT such that

d(T"z,T"y) < an(z)d(z,y) Vo,y € X.

If the sequence {ay,} converges pointwise to the function « : X — [0,1), then T is
called an asymptotic pointwise contraction.

It was announced in [11] that any asymptotic pointwise contraction defined on a
bounded closed convex subset of a superreflexive Banach space has a fixed point.
In [13], Kirk and Xu proved the following theorem for asymptotic pointwise con-
tractions.

Theorem 4.2. Let K be a weakly compact convex subset of a Banach space X and
let T : K — K be an asymptotic pointwise contraction. Then T has a unique fixed
point z € K, and for each x € K, the sequence of Picard iterates, {T™x}, converges
m norm to z.

In 2005, Eldred et al. (see [8]) introduced the notion of proximal normal structure
as follows.
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Definition 4.3. A pair (A, B) of subsets of a normed linear space is said to be a
proximal pair if for each (z,y) € A x B there exists (£,1) € A x B such that

|z =gl = [|£ — yl| = dist(A, B).

Definition 4.4. A convex pair (K7, K2) in a Banach space X is said to have prox-
imal normal structure if for any closed, bounded, convex proximal pair (Hy, Hy) C
(K3, K3) for which dist(Hi, Hy) = dist(Ky, Ks) and 0(Hy, Hy) > dist(Hy, Ha),
there exists (x1,x2) € Hy X Hs such that

(5(%1,H2) < (5(H1,H2), 5($2,H1) < (5(H1,H2).

They used this geometric property to study mappings that are relatively nonex-
pansive in the sense that they are defined on the union of two subsets A and B of a
Banach space X and satisfy | Tz —Ty|| < |[x—y| for all z € A, y € B. It was shown
that if A and B are weakly compact and convex, and if the pair (A, B) has proximal
normal structure, then a cyclic relatively nonexpansive mapping T': AUB — AUB
has at least one best proximity point.

In this section we study the existence and convergence of best proximity points
for cyclic relatively nonexpansive mappings, which are asymptotic pointwise cyclic
contraction in the following sense.

Definition 4.5. Let (A, B) be a nonempty pair in a Banach space X. A mapping
T:AUB — AU B is said to be an asymptotic pointwise cyclic contraction if T is
cyclic and there exists a function a: AU B — [0, 1) such that for any integer n > 1
and (z,y) € A x B,

(4.1) Tz = T*"y|| < an(@)llz -yl + (1 — an(x)) dist(A, B) for all y € B,

(4.2) || T%"2 — Ty|| < an(y)|lz — yl| + (1 — an(y)) dist(A, B) for all z € A.
where a,, — « pointwise on AU B.

It is easy to see that the class of mappings which was introduced in previous
definition, generalizes the class of mappings which was introduced by Abkar and
Gabeleh in Definition 3.5 of [1].

Theorem 4.6. Let (A, B) be a nonempty bounded closed convex pair in a uniformly
convexr Banach space X and T : AUB — AU B an asymptotic pointwise cyclic
contraction map. If T is a relatively nonerpansive mapping, then there erits a
unique pair (v, u*) € A x B such that

|v* — Tv*|| = || Tu* — u*|| = dist(A, B).
Further, if xo € A and xny1 = Txy, then {x2,} converges in norm to v* and

{zon+1} converges in norm to u*.

Proof. Let xg € A and define f : B — [0,00) by f(u) = limsup,, . [|T?"zo — ul|.
Since X is uniformly convex, and B is bounded closed and convex, it follows that
f attains its minimum at exactly one point in B namely u*. We note that for all
integers m > 1 and u € B,

f(T*™u) = limsup |7z — T*™u|| = limsup || T2 2"y — T2™u)|
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= limsup | T?™(T?"z¢) — T?™u|
n—oo

< limsup[ag, (u)||T?"zo — ul| + (1 — am(u))dist(A, B)]

= a::():)f(u) + (1 — am(u))dist(A, B).
Since u* is the minimum of f, we must have
(4.3) f(u*) < F(T?u*) < ap(u®) f(u*) + (1 — ap(u*))dist(A, B), for all m > 1.
Now by am, (u*) — a(u*) < 1, we have
fw*) <a(u)f(u*) + (1 —a(u”))dist(A, B).
This shows that f(u*) = dist(A, B). On the other hand,
f(T%u*) = limsup | T?"xo — T?u*|| < limsup || T?" 22 — u*|| = f(u*).

n—oo n—oo
This implies that T%u* = u*, by the uniqueness of minimum of f. Then u* is a
fixed point of T2 in B. We also note that,

lim sup [|T?"zg — T2 = lim ||T% 2o — u*|| = f(u*) = dist(A, B).
m—00

m—0oQ n>m

Since (A, B) has the property UC, it follows from Lemma 1.6 that the sequence
{T?"x} is a Cauchy sequence and then there exists # in A such that o, —
Z. By a similar argument, if yo € B and g : A — [0,00) is given by g(v) =
lim sup,,_,, ||7%"yo—v||, then g takes it’s minimum at exactly one point, v*, which is
a fixed point of T? in A, moreover T?"yy — § € B. Hence we obtain u* = T?"u* — §
and v* = T?%w* — Z. This shows that (v*,u*) = (Z,7), and T?"xy — v*,
T?"yq — u*. Further

[ = || = [T = T*"u"|| < o (v") 0" = u*|| + (1 = an(v*))dist(A, B).

Now if n — oo then we have |[v* — u*|| = dist(A, B). It follows from the uniform
convexity of X that there is a unique pair (v*,u*) € A x B such that ||v* —u*| =
dist(A, B). Since T is a relatively nonexpansive mapping, ||Tv*—Tu*| < ||[v*—u*|| =
dist(A, B), therefore Tv* = u* and Tu* = v*. This implies that ||v* — Tv*|| =
| Tu* — u*|| = dist(A, B). O

Let us illustrate the above theorem with the following example.

Example 4.7. Consider X = R with the usual metric. Let A = [1,2] , B =
[—2, —1]. Define the mapping T: AUB — AU B by

T(z) = —x if z e A,
N v—x if z € B.

Now, it is easy to see that T is cyclic on AU B and dist(A, B) = 2. Moreover, for
all n € N, we have T?"z = X/x, for x € A and T?"y = — %/—y, for y € B. Also,
for each n € N, we define the function «,, : AU B — R as follows:

S
T if x € B.
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Obviously, o, () — a(z), where

3 if w e A,

=\ i ren.

We show that T satisfy the relations (4.1), (4.2). Indeed, if (z,y) € A x B, then

n(@)|z = yll + (1= an(@) dist(4, B) = (o) (@ —y) + (1 - =)

3n+1 C3n+1

nT 3In+1—nx
> _ A YO
_<3n—|—1>($ y)+< 3n+ 1 >(x )
=z—y> ¥+ X~y
=Tz — Ty

Similarly, we can see that (4.2) holds. Therefore, all conditions of Theorem 4.6 are
satisfied and hence there exists a unique point (v*,u*) = (1,—1) € A x B such that

|v* — Tv*|| = || Tu* — u*|| = dist(A, B).

It is interesting to note that T%"(x) = X/x — v* = 1, for all z € A and T?"(y) =
—%/—y - —1=u* forally € B.

Remark 4.8. In [8], Eldred et al. proved that every nonempty, bounded, closed
and convex pair of subsets of a uniformly convex Banach space X has the proximal
normal structure and, by using this geometric property, established the existence of
a best proximity point for cyclic relatively nonexpansive mappings. In Theorem 4.6,
we have proved directly the existence of a best proximity point for cyclic relatively
nonexpansive mappings which are asymptotic pointwise contraction, and further
our assumptions on 7" have enabled us to approximate the best proximity point of
T.
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