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ABSTRACT. In the paper, we propose Ricceri’s theorem on Fan-Takahashi mini-
max inequality for set-valued maps by using the scalarization method proposed
by Kuwano, Tanaka and Yamada, and we give a characterization of a certain set
which plays an important role in Ricceri’s theorem.

1. INTRODUCTION

In functional analysis, nonlinear analysis, convex analysis as well as optimization,
many inequality theorems related to minimality or maximality have been studied.
The Fan-Takahashi minimax inequality theorem (see [1] in 1972 and [12] in 1976)
is one of important results in the areas above with many applications to other
mathematical areas. Then, in [10], Ricceri proposed a reasonable substitute of as-
sumptions for the Fan-Takahashi minimax inequality for real-valued functions, that
is, he showed the same conclusion on the inequality under the different assumption
which contains a certain mutually exclusive condition to the assumption in [12].

On the other hand, Kuwano, Tanaka and Yamada in [7] proposed the Fan-
Takahashi minimax inequality for set-valued maps. They use certain scalarization
methods for set-valued maps, proposed in [6], based on set-relations in [4].

The aim of this paper is to generalize Ricceri’s theorem for the Fan-Takahashi
minimax inequality into its results for set-valued maps by a similar method to the
approach above. By the modification with a certain scalarized target map, we
contrive the proof of the main theorem.

The organization of this paper is as follows. In Section 2, we recall set-relations
and scalarization methods for sets. In Section 3, we introduce Ricceri’s theorem
(Theorem 3.2) on the Fan-Takahashi minimax inequality for real-valued functions.
Also, we show an outline of the proof of a key theorem (Theorem 3.7) proved by
Ricceri in order to help the reader follow easily the proof of the main theorem (The-
orem 4.1). In Section 4, we propose generalizations of the two Ricceri’s theorems
above for set-valued maps. Finally, we notice that a certain set which plays an
important role in condition (3) of Theorem 3.2 coincides with the relative boundary
of a given set.
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2. PRELIMINARIES

Throughout the paper, let E be a real topological vector space, V a linear sub-
space of E;, D a non-empty subset of V, Y an ordered topological vector space, C
an ordering cone in Y with int C' # (), g (resp., fy) the zero vector of E (resp.,
Y), V(z) the open neighborhood system of a point x and F' a set-valued map from
E into 2\ {0}.

Moreover, if S,T,U are three non-empty subsets of E, we put

Ismu :={z€S|T CUxsoAz—U)}
Futhermore, we denote the algebraic sum and difference of any subsets A and B
inYbyA+B:={a+b|lac Abe B}and A—B:={a—-b|a€ Abe B},
respectively. Also, given A C Y, we write tA := {ta | a € A} for t € R and

Atz :=A+{z} forzeY.
At first, we introduce some set-relations by Kuroiwa, Tanaka and Ha.

Definition 2.1 (set-relation, [4]). For any nonempty sets A, B C Y, we write
A §g) B by AC(yep(b—C), equivalently B C (,c4(a + C);
A<g! Bby AN (Npep(b — O)) #6;

Proposition 2.2 ([6]). For any nonempty sets A, B C'Y, the following statements
hold.
(i) For each j =1,...,6,
A g(cj) B implies (A + ) Sg) (B+y) foryeY, and
A §g) B implies aA §g) aB for a > 0;
(ii) For each j=1,...,5, Sg) 18 transitive;
(iii) For each j = 3,5,6, g(cj) is reflexive;
(iv) For each j = 1,...,6, A §g) B and y1 <¢ yo for y1,y2 € Y imply A +
Y1 Sg) B+ ys.

We recall some definitions of C—notions which are referred in [8]. A subset A in
Y is said to be C—convex (resp., C—closed) if A+ C' is convex (resp., closed); C—
proper if A+ C # Y. Moreover, A is said to be C—bounded if for each U € V(fy)
there exists t > 0 such that A C tU 4+ C. Furthermore, we say that F' is each
C—notion mentioned above if the set F(x) for each € E has the property of the
corresponding C—notion.

Definition 2.3 (type (j) C—convexity). For each j =1,...,6, a set-valued map F’
is called a type (j) C—convex function if for each x,y € E and A € (0,1),

Fz+ (11— \y) <& AF(z) + (1 - N F(y).
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Definition 2.4 (type (j) C—concavity). For each j =1,...,6, a set-valued map F’
is called a type (j) C—concave function if for each x,y € F and X € (0, 1),

AF(z) + (1= NF(y) <& FOa + (1= \)y).

Definition 2.5 (C—continuity, [8]).

(i) F is called a C-lower continuous function if for each z € E and open set
W with F(Z)NW # (), there exists U € V(&) such that F(y)N(W+C) # 0
forall y € U.

(ii) F' is called a C—upper continuous function if for each £ € E and open set
W with F(z) C W, there exists U € V(z) such that F'(y) C W + C for all
yeU.

Next, we introduce the definition of two types of nonlinear scalarizing functions
for sets proposed by [6].

Definition 2.6 (unified scalarization for sets, [6]). Let A and V' be nonempty
subsets in Y and direction k£ € int C. For each j = 1,...,6, we define scalarizing

functions I,g‘),, and Sg‘),, :2Y \ {0} = RU {£o0} by
I,g‘)/,(A) =inf{teR | A §g) (tk+ V") and
S (A) =sup{teR [(th+ V) <@ Al
respectively. They are called unified scalarizing functions for sets.

Proposition 2.7 ([6]). Let A, B and V' be nonempty subsets in'Y and k € int C.
Then, the following statements hold:

(i) For each j =1,...,6 and o € R,

19, (A+ak) = I9),(A) +a,
SUL(A+ak) = SYL(A)+a;

(ii) For each j=1,...,5,
A g(cj) B implies I,i{‘)/,(A) < I,g\)// (B) and SIE:{\)/'(A) < S](j‘)/,(B)

Proposition 2.8 ([7]). Let A and V' be nonempty subsets in' Y and k € intC.
Then, the following statements hold:

(i) If A is C-bounded and V' is (—C)~bounded thén S,S‘)//(A) eR;
ii) For each j = 2,3, if A is C—bounded then S(j), A) > —oco. If V' is C-
k,V
proper then S,S:j‘)/,(A) < 4o00;
(iii) For each j = 4,5, if A is (—C)-proper then S,(C{‘)/,(A) < +4oo. If V' s
(—C)~bounded then S,gjg/,(A) > —00;

(iv) If A is (—=C)—proper and V' is C~bounded then S,(f) /(A) e R.
Proposition 2.9 ([5]). For nonempty subsets A, B and V' in' Y, A € (0,1) and
k € int C, the following statements hold:

(i) I (AA+ (1= X)B) < M (A) + (1= NI (B):
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(i) If V' is (—C)-convex then
I (AA + (1= N)B) < AL (A) + (1= NIP)(B);
(iii) If V' is C'—convex then
AS(A) + (1= NS (B) < S (AA+ (1 - N)B);
(iv) AS(A) + (1= NS (B) < S (AA + (1= N)B),
with the agreement that —oo 4+ 0o = 4-00.

Remark 2.10. The statements (i) and (iv) in Proposition 2.9 hold without any
cone convexity for V.

Proof. We prove statement (iv) only. Let ¢; = 5’]&5‘)/,(14), to = S,(f‘)/,(B). In the three
cases of (a) t; =ty = —o0, (b) t1 = —oco and t3 € R, (¢) {1 = R and t2 € —o0, (iv)
is clearly true. Hence, we assume that t1,{3 € R. For any ¢ > 0, we have

(ti—e)k+V' CA—-C and
(ta—e)k+V' Cc B-C.

Then, we get {\t1+(1=N)ta—etk+ AV +(1-X\)V' C MA+(1-X)B—{A\C+(1-\)C}.
By V' C AV + (1 = \)V and AC + (1 — \)C = C,

M+ (1 =Nta—e}k+V' C XA+ (1—N)B-C.
Since € is an arbitrary positive real number, we get
A+ (1= Mta <SP (AA+ (1= X)B).
Next, we assume that t; = 400, that is, tk+V’ € A—C for any t € R. We prove
SI/(AA+ (1= A\)B) = +0o, that is,
tk+V' C A+ (1-))B—C for any t € R.

We have uk + V' € AA — C for any u € R. Indeed, we take any v € V'. Since k €
int C, there exists r, > 0 such that k —r,v € C, and hence —%k—k (1-XNve-C.
For this result and tk + Av € AA — C for any t € R, we get sk+v € AA — C for any
s € R. Moreover, for any b € B, there exist r, > 0 such that —%l{:— (1-Nbe —C.

Hence, we get thk+ V' € MA+(1-ANb—C CAA+(1—-N)B—-Cforanyt € R. O
For each x € EF and j =1,...,6, we consider the following composite functions:
(I 0 F)(@) = I (F ()
(SEys o F)(w) 1= S0 (F(x).

Then, we can get the following properties between a set-valued map F and the
composite function S](Cj‘)/, oF.

Proposition 2.11 ([5]). If F is type (5) C—concave, then for each fixed (k,V') €
(int C) x (2¥°\ {0}), S,(f‘)/, o F' is concave on E.
Proposition 2.12 ([11]). For each fired (k,V') € (int C) x (2¥'\ {0}), the following
statements hold:

(i) For each j =1,2,3,
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a) if F is (—C)-lower continuous on E then IY) , o F' is upper semicon-
k,V
tinuous in F, '
b) if F' is C—upper continuous on E then 1) ,oF is lower semicontinuous
kV
n E;
(ii) For each j =4,5,6,
(a) if F' is C~lower continuous on E then S,(j
n F, ‘
b) if F is (—C)—upper continuous on E then s\ , 0 F' is upper semicon-
k,V
tinuous i E.

)

V,oF is lower semicontinuous

3. RICCERI’S THEOREMS ON THE FAN-TAKAHASHI MINIMAX INEQUALITY
At first, we recall the following two theorems.

Theorem 3.1 (The Fan-Takahashi minimax inequality, [12]). Let E be a real Haus-
dorff topological vector space, X a non-empty compact convexr subset of E and f a
real function on X x X satisfying the following conditions:

(1) for every x € X, the function f(x,-) is concave in X;
(2) for every y € X, the function f(-,y) is lower semicontinuous in X;
(3) for every x € X such that one has f(x,x) < 0.

Then, there exists & € X such that f(Z,y) <0 for ally € X.

Theorem 3.2 (Ricceri’s theorem for the Fan-Takahashi minimax inequality, [10]).
Let E be a real topological vector space, X a non-empty compact convexr subset of
E, 0 € X and f a real function on X x E satisfying the following conditions:

(1) for every x € X, the function f(x,-) is concave in E and f(x,0r) = 0;

(2) for every y € E, the function f(-,y) is lower semicontinuous in X ;

(3) for every x € X such that X \ UrsoA(x — X) # 0, one has f(xz,x) > 0.

Then, there exists & € X such that f(Z,y) <0 for ally € X.

Ricceri proposed Theorem 3.2 which is a reasonable substitute of Theorem 3.1.
Clearly, both the third conditions in the theorems cannot occur at the same time.
However the two theorems have the same result, and so they are mutually exclusive.
Also, a set-valued version of the Fan-Takahashi minimax inequality theorem is pro-
posed by the scalarization method in [7]. On the other hand, a set-valued version
of Ricceri’s theorem hasn’t been proposed by the same approach yet. To achieve it,
we introduce Theorem 3.7, whose corollary is Theorem 3.2. The detailed proof is
shown in [10] but we shall give an outline of the proof so that the reader can follow
the proof of Theorem 4.1, which is the main result of the paper.

In this section, let Fp be the family of all finite-dimensional linear subspaces of V'
meeting D, Up the collection of all families F of finite-dimensional linear subspaces
of V meeting D such that F is directed by (set-theoretic) inclusion and D C UgerS.
Moreover we define some symbols for certain classes of several functions as follows:
My is the set of all real-valued functions on V; Cy is the set of all ¢ € My, such
that ¥ (0g) <0, the set 1 ~1(]0, +o0[) is convex and finitely open and

Unejo,i A1 (]0, +00[) € 97 (]0, +o0]);



14 Y. SAITO, T. TANAKA, AND S. YAMADA

Cy is the set of all concave real-valued functions 1) on V such that Y(g) =0
(clearly, Cy C Cy); if ' € My, F)TD is the closure of « with respect to the
topology Tp; Ap is the family of all sets I' C My for which there exists ¢ € T" such
that sup,cp¥(x) < 0; Gp is the family of all sets I' C My for which there exists
S € Fp such that sup,cpng?(x) > 0 for all ¢ € I';

Kp.my = {TCcMy|T—¢veApUGp, Yoy € My }.

Definition 3.3 (D-regular, [10]). Let K be a non-empty subset of £ and A an
operator from K into My. A is called D-regular in K if one of the two following
conditions is satisfied:
(i) A(K) € Ap where A(K) := Uzex{A(2)};
(ii) there exists Sy € Fp such that, for every S € Fp, with Sy C S, one has
sup,epns(A(z))(y) >0 forallz € KNS,

For an operator A from X into My, we often consider it as two-variable real-
valued function on X x V. We write A(x,y) by (A(z))(y) for each z € X and
yeV.

Theorem 3.4 ([10]). Let F € Up, with V = UgerS, and A an operator from
X C FE into Cy. Moreover, for each S € F, let Kg and Xg be two non-empty
subsets of X NS, with Kg C Xg, satisfying the following conditions:

(1) Kg is compact in S and Xg is conver and closed in S;

(2) for everyy € Xg — Xg, the set {x € Xg | A(x,y) <0} is closed in S;

(3) for every x € Xg \ Ixg pns,xg, one has supyc i, A,z —y) > 0.
Under such hypotheses, the following conclusions hold:

(i) Onry € (A(UserKs)),,;

(ii) for every set K C X, with UserKg C K, such that the operator A is

D-regular in K, one has A(K) € Ap;
(iii) f I' € ApUGp and A(UserKg) C T, thenI' € Ap.

Lemma 3.5 ([10]). If A(K) € ApUGp, then A is D-reqular in K.

Lemma 3.6 ([10]). Let K be a compact topological space such that, for everyy € D,
the function A(-,y) is lower semicontinuous. Then, A(K) € Kp ur, -

Theorem 3.7 ([10]). Let E be a real topological vector space, X a non-empty finitely
closed and conver subset of E, K a finitely compact subset of X with 0 € K, T
a topology on K with respect to which K is compact, f a real-valued function on
X x V. We assume that f satisfies the following conditions:
(1) for every x € X, the function f(x,-) is concave in V;
(2) the function f(-,y) is finitely lower semicontinuous in X for every y €
(X — X)NV, is T-lower semicontinuous in K for every y € D, is finitely
continuous in X and T-continuous in K for y = 0g.
Then, for any convex real-valued function ¢ on V with ¢ (0g) =0 and

flx,z) > f(x,0p) + ¢(x) forall ze(XNV)\Ikpx,
there exists T € K such that

f(@,y) < f(2,08) + ¥(y) for all ye€ D.
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Proof. For each S € Fp, put Xg = X NS and Kg = KNS. Of course, Xg \
Iy prs,xs C X \ Ik, p x. Now, we define A: X x V — R by putting

for all z € X, y € V. At first, we fix the first variable of A for any z € X as

Az, ) = fla,-) = f(,0p) = ¢().

Then, the function A(z,-) is concave in V and A(z,0g) = 0. Thus, A(X,-) C Cv,
and hence, A(X,-) C Cy.

Next, we fix the second variable of A for any y € (X — X) N V. Thanks to
condition (2), the function A(-,y) is finitely lower semicontinuous in X. This is
condition (2) of Theorem 3.4 because a level set of lower semicontinous function is
closed.

Since 0 € K, supyek, A(z,z —y) > A(z,x) > 0forall z € (XNV)\ Ik p x-
This is condition (3) of Theorem 3.4. Therefore, all hypotheses of Theorem 3.4 are
satisfied.

On the other hand, by 7-lower semicontinuity of A(:,y) for every y € D and
Lemmas 3.5 and 3.6, the operator A is D-regular in K. Therefore, by conclusion
(ii) of Theorem 3.4, there exists & € K such that sup,cpA(Z,y) < 0. O

4. RICCERI’S THEOREM FOR SET-VALUED MAPS

In this secton, we propose Ricceri’s theorems for set-valued maps. After that,
we replace the set X \ Ix x x with X \ riX. These sets are same set with the
assumptions of Theorem 3.2. In this section, we assume that int C' # ().

Theorem 4.1. Let E be a real topological vector space, Y an ordered topological
vector space with ordering cone C, X a non-empty finitely closed and convexr subset
of E, K a finitely compact subset of X with 0 € K, T a topology on K with respect
to which K is compact, F a set-valued map from X x V to 2¥ \ {0}. We assume
that F' satisfies the following conditions:
(1) F is (—C)-proper;
(2) for every x € X, the map F(z,-) is type (5) C—concave in V and F(z,0g)
is singleton;
(3) the map F(-,y) is finitely C~lower continuous in X for everyy € (X —X)N
V, is 7-C-lower continuous in K for every y € D, is finitely (—C)—lower
continuous in X and 7-(—C')~lower continuous in K fory = 0.

Then, for any C'—convex vector-valued map 1 from V to Y with ¢ (0g) = 0y and

F(x,05) + ¢(x) Si(fl)tC' F(z,x) forall ze (XNV)\Ikpx,

there exists © € K such that
R 5 R
F(,0p) +¥(y) 0% o Fla,y)  forall yeD.

Proof. Let V' := {0y}, k € int C be fixed. We consider the set-valued map B from
X x V to 2V \ {0} defined by

B(z,y) == F(z,y) — F(x,08) — ¢(y).
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(5)

Now, we consider that the composite function S; kv © B corresponds to the function
“A” in the proof of Theorem 3.7. Then, there exists £ € K such that (S](c ‘)/, o
B)(z,y) <0forallye Dif S ,i ‘),, o B satisfies the following conditions:

(a) S(SV, o B(x,-) is concave for any = € X;
(b) ( V, o B)(z,0g) = 0;

(c) 5(5‘)/, o B(+,y) is finitely lower semicontinuous in X for any y € (X —X)NV;
(d

(e) (S](g")/, oB)(z,z) >0forallze (XNV)\Ikpx.

We show each proof of the five statements above.
(a) By assumption (2) and the C—concavity of vector-valued function —1, it
follows from (iv) of Proposition 2.2 that B(z,-) is type (5) C—concave in V. From

) S,g v 0 B(-,y) is T-lower semicontinuous in K for any y € D;

Proposition 2.11, it follows that S](f‘)/, o B(x,-) is concave.

(b) Since F(xz,0p) is singleton and ¢ (0g) = Oy, we get B(z,0g) = {0y} = V.
Clearly, S,(C?‘)/-,(V’ ) = 0 is always true.

(c) Let y € (X —X)NV be fixed. For each finite dimensional subspace S in E, we
take 2 € XNS and an open subset W of Y with (F(z,y)—F(z,0r))NW # (. Hence,
there exist w1 € F(z,y) and wy € (—F(x,0g)) such that w; + we € W, and there
exists Up, such that Up, is an open neighborhood of 6y and 2Us, + w1 +wy C W
(see the first lemma in section 9 of [2]). We put Wi = Uy, + wy and W :=
Up, + wo. Both W; and Wy are open, and they satisfy wi € (F(z,y) N Wy) #
0 and wy € (—F(z,0g) N Wa) # 0, respectively. By the C-lower continuity of
F(-,y) and F(-,0g), there exist open neighborhoods Uggl) and U;,SQ) of x such that
F(z1,y) N (W1 + C) # 0 and (—F(22,0g)) N (W2 + C) # 0 for any 21 € US) and
z9 € Uf). We put U, := US) N Uf), then U, is an open neighborhood of x and

(F(z,y) — F(z,0p))N(W1 +Wo+C)#£0  forall z € U,.

We know (W1+Ws) C W, so we obtain F'(-,y)—F (-, 0p) is finitely C—lower continuous.
Thus, B(-,y) is (finitely) C-lower continuous. By (ii)-(a) of Proposition 2.12,
S,(f‘)/, o B(-,y) is (finitely) lower semicontinuous.

(d) It can be proved in a similar way to the proof of (c).

(e) For each z € (X NV)\ Ix p x, by assumption and (i) of Proposition 2.2, we
have

{ov}=V' <P - B, ).

Thus, V' = {0y} C B(z,z) —int C. Since B(z,z)—int C is open, there exists ¢ > 0
such that (tk + V') C B(z,z) — int C, which implies that 0 < ¢t < (S’,(c ‘)/, o B)(z,x).

Therefore, in the same way as the proof of Theorem 3.7, we can see that there
exists € K such that (SS&, oB)(&,y) < 0forall y € D. By the definition of S,(f‘)/,,
for each y € D and s > 0,

{6y} € Bli,y)—sk—C.
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By Usso(—sk — C) = —int C, we obtain
(5) A

Now, since F(z,0p) is singleton, by (i) of proposition 2.2, we obtain

F(i,05) + $(y) £ F@y).
[l

Corollary 4.2. Let E be a real topological vector space, Y an ordered topological
vector space with ordering cone C, X a mnon-empty compact conver subset of F,
0 € X and F a set-valued map from X x E to 2V \ {0} satisfying the following
conditions:

(1) F is (—C)—proper;

(2) for every x € X, F(x,-) is type (5) C—concave in E and F(x,0g) = {0y };

(3) for everyy € E, F(-,y) is C-lower continuous in X ;

(4) for every x € X such that X \ UxsoA(x — X) # 0, one has

5
{ov} <P o Fla, ).
Then, there exists & € X such that {0y} ﬁifl)t o F(z,y) forally € X.

Proof. In Theorem 4.1, take V = E, X = K = D, 7 being the relativization to
K of the given Hausdorff vector topology on FE, 1(-) = 6y and then observe that
X\ Ix,x x coincides with {z € X | X \ UrsoA(z — X) # 0}, O

In the rest of the paper, we shall discuss the set X' := {x € X | X \ Uxso\(z —
X) # (0}, which is used in Theorem 3.2 and Corollary 4.2. We define the affine hull
of X by aff X as

af X :={ar+by|a,beR,z,ye X,a+b=1}
and the relative interior of X by ri X as
riX:={zreX|Unaff X C X for some U € V(z)}.

Proposition 4.3 ([9]). Let E be a topological vector space and X a nonempty
convex subset of E. Then x € riX and y € X imply \x + (1 — Ny € ri X for all
0< A< 1.

Proposition 4.4. Let E be a topological vector space and X a convexr subset of E.
If 0p € ri X then

X' =X \riX.
Proof. First, we prove X’ C X \riX. For every z € X', we know x € X and
X \ UasoA(z — X) # 0. The conclusion can be seen by the method of reduction to
absurdity. We suppose that x € ri X. By the definition of relative interior, there
exists U € V(x) such that UNnaff X C X, that is, (z —U) Naff X C (x — X). Since
0p € int (x — U), we get UxsoA(x —U) = E. Moreover, since 0 € ri X, aff X is a
subspace and hence UysoA(aff X)) = aff X. Then,

X Ccaff X € (UysoA(z —U))Naff X C UpsoA(z — X).

Hence, we have X \ UysoA(z — X) = (). This is a contradiction to the assumption
x € X'. Therefore, x € X \ ri X, that is to say X' € X \ri X.
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Next, we show X’ D X \ri X. Let 2 € X \ri X. If there exists A €]0, 1[ such that
x4+ Ar € X then
A

=Tl Tl

This is a contradiction to the assumption x € X \ riX. Hence, z + Az ¢ X for
each A\ €]0, 1], that is, —z € A(z — X)) for each A > 0. Since 0 € ri X, there exists
p €]0,1[ such that u(—x) € X. Then, we obtain

x4+ Ar) eriX.

p(—x) & piz—X) for each A > 0,
= u(—z) ¢ ANz-—-X) for each A > 0,
= u(—z) ¢ Uxsorz—X),
= p(—z) € X \Uxsor(z —X).
Thus, X \ UxsoA(z — X)) # 0. Therefore, we get = € X'. O

Proposition 4.5. Let E be a topological vector space, X a convex subset of E and
O € X. If there exists a real-valued function f on X X E such that:

(1) for each xz € X, f(z,0p) =0;
(2) for each z € X', f(z,z) > 0.
Then 0 €ri X.

Proof. This conclusion can be seen by the method reduction to absurdity. We
suppose that 0 € X \ ri X. By the convexity of X, there exists d € X such that
Ad ¢ —X for any A €]0, 1], that is, d € UxsoA(@g—X). Thend € X\UxsoA(0g—X).
So we have X \UxsoA(0g—X) # 0, that is, 0 € X'. Since condition (2), f(0g,0r) >
0. This is a contradiction to condition (1), which implies that 0r € ri X. O

Proposition 4.6. Let E be a topological vector space, Y an ordered topological
vector space with ordering cone C', X a convex subset of E and 0 € X. If there
exists a set-valued map F from X x E to 2¥ \ {0} such that:

(1) for each z € X, F(x,0g)N(C\{0y}) =0 and 0y € F(x,0g)
(2) for each x € X', {0y} <En)tC’ F(z,x).
Then 0 € ri X.

Proof. Take k € intC. First, for each z € X, we consider the value of

(S,(C?G y © F)(z,0g). It is not positive because F(x,0g) N (C \ {fy}) = 0. Since
0-k =0y € F(x,0), (S](C‘?gy}oF)(:r, 0r) = 0. Next, for each z € X', we consider the

value of (5’](C 29 }© F)(x,z). By condition (2), open set F'(x,z) — int C' contains fy .
Hence, there exists an open neighborhood U of 6y such that U C F(x,z) —int C.
Also, there exists « > 0 such that ok € U. Then, ak € F(x,z) — C. Thus,

(S]i“?e } © F)(z,z) > a > 0. By Proposition 4.5, we get 0 € ri X. O

Remark 4.7. By Propositions 4.4 and 4.6, condition (4) of Corollary 4.2 can be
replaced by

(4) for every z € X \ ri X, one has {6y} < F(z,x).

1nt C
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