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2. preliminaries

Throughout the paper, let E be a real topological vector space, V a linear sub-
space of E, D a non-empty subset of V , Y an ordered topological vector space, C
an ordering cone in Y with intC ̸= ∅, θE (resp., θY ) the zero vector of E (resp.,
Y ), V(x) the open neighborhood system of a point x and F a set-valued map from
E into 2Y \ {∅}.

Moreover, if S, T, U are three non-empty subsets of E, we put

IS,T,U := {x ∈ S | T ⊆ ∪λ>0λ(x− U)}.

Futhermore, we denote the algebraic sum and difference of any subsets A and B
in Y by A + B := {a + b | a ∈ A, b ∈ B} and A − B := {a − b | a ∈ A, b ∈ B},
respectively. Also, given A ⊂ Y , we write tA := {ta | a ∈ A} for t ∈ R and
A+ x := A+ {x} for x ∈ Y .

At first, we introduce some set-relations by Kuroiwa, Tanaka and Ha.

Definition 2.1 (set-relation, [4]). For any nonempty sets A, B ⊂ Y , we write

A ≤(1)
C B by A ⊂

∩
b∈B(b− C), equivalently B ⊂

∩
a∈A(a+ C);

A ≤(2)
C B by A ∩

(∩
b∈B(b− C)

)
̸= ∅;

A ≤(3)
C B by B ⊂ (A+ C);

A ≤(4)
C B by

(∩
a∈A(a+ C)

)
∩B ̸= ∅;

A ≤(5)
C B by A ⊂ (B − C);

A ≤(6)
C B by A ∩ (B − C) ̸= ∅, equivalently (A+ C) ∩B ̸= ∅.

Proposition 2.2 ([6]). For any nonempty sets A,B ⊂ Y , the following statements
hold.

(i) For each j = 1, . . . , 6,

A ≤(j)
C B implies (A+ y) ≤(j)

C (B + y) for y ∈ Y , and

A ≤(j)
C B implies αA ≤(j)

C αB for α > 0;

(ii) For each j = 1, . . . , 5, ≤(j)
C is transitive;

(iii) For each j = 3, 5, 6, ≤(j)
C is reflexive;

(iv) For each j = 1, . . . , 6, A ≤(j)
C B and y1 ≤C y2 for y1, y2 ∈ Y imply A +

y1 ≤(j)
C B + y2.

We recall some definitions of C–notions which are referred in [8]. A subset A in
Y is said to be C–convex (resp., C–closed) if A + C is convex (resp., closed); C–
proper if A+ C ̸= Y . Moreover, A is said to be C–bounded if for each U ∈ V(θY )
there exists t ≥ 0 such that A ⊂ tU + C. Furthermore, we say that F is each
C–notion mentioned above if the set F (x) for each x ∈ E has the property of the
corresponding C–notion.

Definition 2.3 (type (j) C–convexity). For each j = 1, . . . , 6, a set-valued map F
is called a type (j) C–convex function if for each x, y ∈ E and λ ∈ (0, 1),

F (λx+ (1− λ)y) ≤(j)
C λF (x) + (1− λ)F (y).
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Definition 2.4 (type (j) C–concavity). For each j = 1, . . . , 6, a set-valued map F
is called a type (j) C–concave function if for each x, y ∈ E and λ ∈ (0, 1),

λF (x) + (1− λ)F (y) ≤(j)
C F (λx+ (1− λ)y).

Definition 2.5 (C–continuity, [8]).

(i) F is called a C–lower continuous function if for each x̄ ∈ E and open set
W with F (x̄)∩W ̸= ∅, there exists U ∈ V(x̄) such that F (y)∩ (W +C) ̸= ∅
for all y ∈ U .

(ii) F is called a C–upper continuous function if for each x̄ ∈ E and open set
W with F (x̄) ⊂W , there exists U ∈ V(x̄) such that F (y) ⊂W + C for all
y ∈ U .

Next, we introduce the definition of two types of nonlinear scalarizing functions
for sets proposed by [6].

Definition 2.6 (unified scalarization for sets, [6]). Let A and V ′ be nonempty
subsets in Y and direction k ∈ intC. For each j = 1, . . . , 6, we define scalarizing

functions I
(j)
k,V ′ and S

(j)
k,V ′ : 2Y \ {∅} → R ∪ {±∞} by

I
(j)
k,V ′(A) := inf

{
t ∈ R

∣∣∣A ≤(j)
C (tk + V ′)

}
and

S
(j)
k,V ′(A) := sup

{
t ∈ R

∣∣∣ (tk + V ′) ≤(j)
C A

}
,

respectively. They are called unified scalarizing functions for sets.

Proposition 2.7 ([6]). Let A, B and V ′ be nonempty subsets in Y and k ∈ intC.
Then, the following statements hold:

(i) For each j = 1, . . . , 6 and α ∈ R,

I
(j)
k,V ′(A+ αk) = I

(j)
k,V ′(A) + α,

S
(j)
k,V ′(A+ αk) = S

(j)
k,V ′(A) + α;

(ii) For each j = 1, . . . , 5,

A ≤(j)
C B implies I

(j)
k,V ′(A) ≤ I

(j)
k,V ′(B) and S

(j)
k,V ′(A) ≤ S

(j)
k,V ′(B).

Proposition 2.8 ([7]). Let A and V ′ be nonempty subsets in Y and k ∈ intC.
Then, the following statements hold:

(i) If A is C–bounded and V ′ is (−C)–bounded then S
(1)
k,V ′(A) ∈ R;

(ii) For each j = 2, 3, if A is C–bounded then S
(j)
k,V ′(A) > −∞. If V ′ is C–

proper then S
(j)
k,V ′(A) < +∞;

(iii) For each j = 4, 5, if A is (−C)–proper then S
(j)
k,V ′(A) < +∞. If V ′ is

(−C)–bounded then S
(j)
k,V ′(A) > −∞;

(iv) If A is (−C)–proper and V ′ is C–bounded then S
(6)
k,V ′(A) ∈ R.

Proposition 2.9 ([5]). For nonempty subsets A, B and V ′ in Y , λ ∈ (0, 1) and
k ∈ intC, the following statements hold:

(i) I
(3)
k,V ′(λA+ (1− λ)B) ≤ λI

(3)
k,V ′(A) + (1− λ)I

(3)
k,V ′(B);
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(ii) If V ′ is (−C)–convex then

I
(5)
k,V ′(λA+ (1− λ)B) ≤ λI

(5)
k,V ′(A) + (1− λ)I

(5)
k,V ′(B);

(iii) If V ′ is C–convex then

λS
(3)
k,V ′(A) + (1− λ)S

(3)
k,V ′(B) ≤ S

(3)
k,V ′(λA+ (1− λ)B);

(iv) λS
(5)
k,V ′(A) + (1− λ)S

(5)
k,V ′(B) ≤ S

(5)
k,V ′(λA+ (1− λ)B),

with the agreement that −∞+∞ = +∞.

Remark 2.10. The statements (i) and (iv) in Proposition 2.9 hold without any
cone convexity for V ′.

Proof. We prove statement (iv) only. Let t1 = S
(5)
k,V ′(A), t2 = S

(5)
k,V ′(B). In the three

cases of (a) t1 = t2 = −∞, (b) t1 = −∞ and t2 ∈ R, (c) t1 = R and t2 ∈ −∞, (iv)
is clearly true. Hence, we assume that t1, t2 ∈ R. For any ϵ > 0, we have

(t1 − ϵ)k + V ′ ⊂ A− C and
(t2 − ϵ)k + V ′ ⊂ B − C.

Then, we get {λt1+(1−λ)t2−ϵ}k+λV ′+(1−λ)V ′ ⊂ λA+(1−λ)B−{λC+(1−λ)C}.
By V ′ ⊂ λV ′ + (1− λ)V ′ and λC + (1− λ)C = C,

{λt1 + (1− λ)t2 − ϵ}k + V ′ ⊂ λA+ (1− λ)B − C.

Since ϵ is an arbitrary positive real number, we get

λt1 + (1− λ)t2 ≤ S
(5)
k,V ′(λA+ (1− λ)B).

Next, we assume that t1 = +∞, that is, tk+V ′ ⊂ A−C for any t ∈ R. We prove

S
(5)
k,V ′(λA+ (1− λ)B) = +∞, that is,

tk + V ′ ⊂ λA+ (1− λ)B − C for any t ∈ R.
We have uk + V ′ ∈ λA− C for any u ∈ R. Indeed, we take any v ∈ V ′. Since k ∈
intC, there exists rv > 0 such that k− rvv ∈ C, and hence −1−λ

rv
k+(1−λ)v ∈ −C.

For this result and tk+λv ∈ λA−C for any t ∈ R, we get sk+ v ∈ λA−C for any
s ∈ R. Moreover, for any b ∈ B, there exist rb > 0 such that −1−λ

rb
k−(1−λ)b ∈ −C.

Hence, we get tk+ V ′ ∈ λA+ (1− λ)b−C ⊂ λA+ (1− λ)B −C for any t ∈ R. �
For each x ∈ E and j = 1, . . . , 6, we consider the following composite functions:

(I
(j)
k,V ′ ◦ F )(x) := I

(j)
k,V ′(F (x));

(S
(j)
k,V ′ ◦ F )(x) := S

(j)
k,V ′(F (x)).

Then, we can get the following properties between a set-valued map F and the

composite function S
(j)
k,V ′ ◦ F .

Proposition 2.11 ([5]). If F is type (5) C–concave, then for each fixed (k, V ′) ∈
(intC)× (2Y \ {∅}), S(5)

k,V ′ ◦ F is concave on E.

Proposition 2.12 ([11]). For each fixed (k, V ′) ∈ (intC)× (2Y \{∅}), the following
statements hold:

(i) For each j = 1, 2, 3,
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(a) if F is (−C)–lower continuous on E then I
(j)
k,V ′ ◦ F is upper semicon-

tinuous in E,

(b) if F is C–upper continuous on E then I
(j)
k,V ′◦F is lower semicontinuous

in E;
(ii) For each j = 4, 5, 6,

(a) if F is C–lower continuous on E then S
(j)
k,V ′◦F is lower semicontinuous

in E,

(b) if F is (−C)–upper continuous on E then S
(j)
k,V ′ ◦ F is upper semicon-

tinuous in E.

3. Ricceri’s theorems on the Fan-Takahashi minimax inequality

At first, we recall the following two theorems.

Theorem 3.1 (The Fan-Takahashi minimax inequality, [12]). Let E be a real Haus-
dorff topological vector space, X a non-empty compact convex subset of E and f a
real function on X ×X satisfying the following conditions:

(1) for every x ∈ X, the function f(x, ·) is concave in X;
(2) for every y ∈ X, the function f(·, y) is lower semicontinuous in X;
(3) for every x ∈ X such that one has f(x, x) ≤ 0.

Then, there exists x̂ ∈ X such that f(x̂, y) ≤ 0 for all y ∈ X.

Theorem 3.2 (Ricceri’s theorem for the Fan-Takahashi minimax inequality, [10]).
Let E be a real topological vector space, X a non-empty compact convex subset of
E, θE ∈ X and f a real function on X × E satisfying the following conditions:

(1) for every x ∈ X, the function f(x, ·) is concave in E and f(x, θE) = 0;
(2) for every y ∈ E, the function f(·, y) is lower semicontinuous in X;
(3) for every x ∈ X such that X \ ∪λ>0λ(x−X) ̸= ∅, one has f(x, x) > 0.

Then, there exists x̂ ∈ X such that f(x̂, y) ≤ 0 for all y ∈ X.

Ricceri proposed Theorem 3.2 which is a reasonable substitute of Theorem 3.1.
Clearly, both the third conditions in the theorems cannot occur at the same time.
However the two theorems have the same result, and so they are mutually exclusive.
Also, a set-valued version of the Fan-Takahashi minimax inequality theorem is pro-
posed by the scalarization method in [7]. On the other hand, a set-valued version
of Ricceri’s theorem hasn’t been proposed by the same approach yet. To achieve it,
we introduce Theorem 3.7, whose corollary is Theorem 3.2. The detailed proof is
shown in [10] but we shall give an outline of the proof so that the reader can follow
the proof of Theorem 4.1, which is the main result of the paper.

In this section, let FD be the family of all finite-dimensional linear subspaces of V
meeting D, UD the collection of all families F of finite-dimensional linear subspaces
of V meeting D such that F is directed by (set-theoretic) inclusion and D ⊂ ∪S∈FS.
Moreover we define some symbols for certain classes of several functions as follows:
MV is the set of all real-valued functions on V ; CV is the set of all ψ ∈ MV such
that ψ(θE) ≤ 0, the set ψ−1(]0,+∞[) is convex and finitely open and

∪λ∈]0,1[λψ
−1(]0,+∞[) ⊂ ψ−1(]0,+∞[);
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ĈV is the set of all concave real-valued functions ψ on V such that ψ(θE) = 0

(clearly, ĈV ⊂ CV ); if Γ ⊂ MV , (γ)τD is the closure of γ with respect to the
topology τD; AD is the family of all sets Γ ⊂MV for which there exists ψ ∈ Γ such
that supx∈Dψ(x) ≤ 0; GD is the family of all sets Γ ⊂ MV for which there exists
S ∈ FD such that supx∈D∩Sψ(x) > 0 for all ψ ∈ Γ;

KD,MV
:= {Γ ⊂MV | Γ− ψ ∈ AD ∪ GD, ∀ψ ∈MV }.

Definition 3.3 (D-regular, [10]). Let K be a non-empty subset of E and A an
operator from K into MV . A is called D-regular in K if one of the two following
conditions is satisfied:

(i) A(K) ∈ AD where A(K) := ∪x∈K{A(x)};
(ii) there exists S0 ∈ FD such that, for every S ∈ FD, with S0 ⊂ S, one has

supy∈D∩S(A(x))(y) > 0 for all x ∈ K ∩ S.
For an operator A from X into MV , we often consider it as two-variable real-

valued function on X × V . We write A(x, y) by (A(x))(y) for each x ∈ X and
y ∈ V .

Theorem 3.4 ([10]). Let F ∈ UD, with V = ∪S∈FS, and A an operator from
X ⊂ E into CV . Moreover, for each S ∈ F , let KS and XS be two non-empty
subsets of X ∩ S, with KS ⊂ XS, satisfying the following conditions:

(1) KS is compact in S and XS is convex and closed in S;
(2) for every y ∈ XS −XS, the set {x ∈ XS | A(x, y) ≤ 0} is closed in S;
(3) for every x ∈ XS \ IKS ,D∩S,XS

, one has supy∈KS
A(x, x− y) > 0.

Under such hypotheses, the following conclusions hold:

(i) θMV
∈ (A(∪S∈FKS))τD ;

(ii) for every set K ⊂ X, with ∪S∈FKS ⊂ K, such that the operator A is
D-regular in K, one has A(K) ∈ AD;

(iii) if Γ ∈ AD ∪ GD and A(∪S∈FKS) ⊂ Γ, then Γ ∈ AD.

Lemma 3.5 ([10]). If A(K) ∈ AD ∪ GD, then A is D-regular in K.

Lemma 3.6 ([10]). Let K be a compact topological space such that, for every y ∈ D,
the function A(·, y) is lower semicontinuous. Then, A(K) ∈ KD,MV

.

Theorem 3.7 ([10]). Let E be a real topological vector space, X a non-empty finitely
closed and convex subset of E, K a finitely compact subset of X with θE ∈ K, τ̃
a topology on K with respect to which K is compact, f a real-valued function on
X × V . We assume that f satisfies the following conditions:

(1) for every x ∈ X, the function f(x, ·) is concave in V ;
(2) the function f(·, y) is finitely lower semicontinuous in X for every y ∈

(X −X) ∩ V , is τ̃ -lower semicontinuous in K for every y ∈ D, is finitely
continuous in X and τ̃ -continuous in K for y = θE.

Then, for any convex real-valued function ψ on V with ψ(θE) = 0 and

f(x, x) > f(x, θE) + ψ(x) for all x ∈ (X ∩ V ) \ IK,D,X ,

there exists x̂ ∈ K such that

f(x̂, y) ≤ f(x̂, θE) + ψ(y) for all y ∈ D.
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Proof. For each S ∈ FD, put XS = X ∩ S and KS = K ∩ S. Of course, XS \
IKS ,D∩S,XS

⊂ X \ IK,D,X . Now, we define A : X × V → R by putting

A(x, y) := f(x, y)− f(x, θE)− ψ(y)

for all x ∈ X, y ∈ V . At first, we fix the first variable of A for any x ∈ X as

A(x, ·) = f(x, ·)− f(x, θE)− ψ(·).

Then, the function A(x, ·) is concave in V and A(x, θE) = 0. Thus, A(X, ·) ⊂ ĈV ,
and hence, A(X, ·) ⊂ CV .

Next, we fix the second variable of A for any y ∈ (X − X) ∩ V . Thanks to
condition (2), the function A(·, y) is finitely lower semicontinuous in X. This is
condition (2) of Theorem 3.4 because a level set of lower semicontinous function is
closed.

Since θE ∈ K, supy∈Ks
A(x, x − y) ≥ A(x, x) > 0 for all x ∈ (X ∩ V ) \ IK,D,X .

This is condition (3) of Theorem 3.4. Therefore, all hypotheses of Theorem 3.4 are
satisfied.

On the other hand, by τ̃ -lower semicontinuity of A(·, y) for every y ∈ D and
Lemmas 3.5 and 3.6, the operator A is D-regular in K. Therefore, by conclusion
(ii) of Theorem 3.4, there exists x̂ ∈ K such that supy∈DA(x̂, y) ≤ 0. �

4. Ricceri’s theorem for set-valued maps

In this secton, we propose Ricceri’s theorems for set-valued maps. After that,
we replace the set X \ IX,X,X with X \ riX. These sets are same set with the
assumptions of Theorem 3.2. In this section, we assume that intC ̸= ∅.

Theorem 4.1. Let E be a real topological vector space, Y an ordered topological
vector space with ordering cone C, X a non-empty finitely closed and convex subset
of E, K a finitely compact subset of X with θE ∈ K, τ̃ a topology on K with respect
to which K is compact, F a set-valued map from X × V to 2Y \ {∅}. We assume
that F satisfies the following conditions:

(1) F is (−C)–proper;
(2) for every x ∈ X, the map F (x, ·) is type (5) C–concave in V and F (x, θE)

is singleton;
(3) the map F (·, y) is finitely C–lower continuous in X for every y ∈ (X−X)∩

V , is τ̃ -C–lower continuous in K for every y ∈ D, is finitely (−C)–lower
continuous in X and τ̃ -(−C)–lower continuous in K for y = θE.

Then, for any C–convex vector-valued map ψ from V to Y with ψ(θE) = θY and

F (x, θE) + ψ(x) ≤(5)

intC F (x, x) for all x ∈ (X ∩ V ) \ IK,D,X ,

there exists x̂ ∈ K such that

F (x̂, θE) + ψ(y) ̸≤(5)

intC F (x̂, y) for all y ∈ D.

Proof. Let V ′ := {θY }, k ∈ intC be fixed. We consider the set-valued map B from
X × V to 2Y \ {∅} defined by

B(x, y) := F (x, y)− F (x, θE)− ψ(y).
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Now, we consider that the composite function S
(5)
k,V ′ ◦B corresponds to the function

“A” in the proof of Theorem 3.7. Then, there exists x̂ ∈ K such that (S
(5)
k,V ′ ◦

B)(x̂, y) ≤ 0 for all y ∈ D if S
(5)
k,V ′ ◦B satisfies the following conditions:

(a) S
(5)
k,V ′ ◦B(x, ·) is concave for any x ∈ X;

(b) (S
(5)
k,V ′ ◦B)(x, θE) = 0;

(c) S
(5)
k,V ′ ◦B(·, y) is finitely lower semicontinuous in X for any y ∈ (X−X)∩V ;

(d) S
(5)
k,V ′ ◦B(·, y) is τ̃ -lower semicontinuous in K for any y ∈ D;

(e) (S
(5)
k,V ′ ◦B)(x, x) > 0 for all x ∈ (X ∩ V ) \ IK,D,X .

We show each proof of the five statements above.
(a) By assumption (2) and the C–concavity of vector-valued function −ψ, it

follows from (iv) of Proposition 2.2 that B(x, ·) is type (5) C–concave in V . From

Proposition 2.11, it follows that S
(5)
k,V ′ ◦B(x, ·) is concave.

(b) Since F (x, θE) is singleton and ψ(θE) = θY , we get B(x, θE) = {θY } = V ′.

Clearly, S
(5)
k,V ′(V ′) = 0 is always true.

(c) Let y ∈ (X−X)∩V be fixed. For each finite dimensional subspace S in E, we
take x ∈ X∩S and an open subsetW of Y with (F (x, y)−F (x, θE))∩W ̸= ∅. Hence,
there exist w1 ∈ F (x, y) and w2 ∈ (−F (x, θE)) such that w1 + w2 ∈ W , and there
exists UθY such that UθY is an open neighborhood of θY and 2UθY + w1 + w2 ⊂W
(see the first lemma in section 9 of [2]). We put W1 := UθY + w1 and W2 :=
UθY + w2. Both W1 and W2 are open, and they satisfy w1 ∈ (F (x, y) ∩ W1) ̸=
∅ and w2 ∈ (−F (x, θE) ∩ W2) ̸= ∅, respectively. By the C–lower continuity of

F (·, y) and F (·, θE), there exist open neighborhoods U
(1)
x and U

(2)
x of x such that

F (z1, y) ∩ (W1 + C) ̸= ∅ and (−F (z2, θE)) ∩ (W2 + C) ̸= ∅ for any z1 ∈ U
(1)
x and

z2 ∈ U
(2)
x . We put Ux := U

(1)
x ∩ U (2)

x , then Ux is an open neighborhood of x and

(F (z, y)− F (z, θE)) ∩ (W1 +W2 + C) ̸= ∅ for all z ∈ Ux.

We know (W1+W2) ⊆W , so we obtain F (·, y)−F (·, θE) is finitely C–lower continuous.
Thus, B(·, y) is (finitely) C–lower continuous. By (ii)-(a) of Proposition 2.12,

S
(5)
k,V ′ ◦B(·, y) is (finitely) lower semicontinuous.

(d) It can be proved in a similar way to the proof of (c).
(e) For each x ∈ (X ∩ V ) \ IK,D,X , by assumption and (i) of Proposition 2.2, we

have

{θY } = V ′ ≤(5)

intC B(x, x).

Thus, V ′ = {θY } ⊂ B(x, x)− intC. Since B(x, x)− intC is open, there exists t > 0

such that (tk + V ′) ⊂ B(x, x)− intC, which implies that 0 < t ≤ (S
(5)
k,V ′ ◦B)(x, x).

Therefore, in the same way as the proof of Theorem 3.7, we can see that there

exists x̂ ∈ K such that (S
(5)
k,V ′ ◦B)(x̂, y) ≤ 0 for all y ∈ D. By the definition of S

(5)
k,V ′ ,

for each y ∈ D and s > 0,

{θY } ̸⊆ B(x̂, y)− sk − C.
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By ∪s>0(−sk − C) = −intC, we obtain

{θY } ̸≤(5)

intC B(x̂, y).

Now, since F (x, θE) is singleton, by (i) of proposition 2.2, we obtain

F (x̂, θE) + ψ(y) ̸≤(5)

intC F (x̂, y).

�
Corollary 4.2. Let E be a real topological vector space, Y an ordered topological
vector space with ordering cone C, X a non-empty compact convex subset of E,
θE ∈ X and F a set-valued map from X × E to 2Y \ {∅} satisfying the following
conditions:

(1) F is (−C)–proper;
(2) for every x ∈ X, F (x, ·) is type (5) C–concave in E and F (x, θE) = {θY };
(3) for every y ∈ E, F (·, y) is C–lower continuous in X;
(4) for every x ∈ X such that X \ ∪λ>0λ(x−X) ̸= ∅, one has

{θY } ≤(5)

intC F (x, x).

Then, there exists x̂ ∈ X such that {θY } ̸≤(5)

intC F (x̂, y) for all y ∈ X.

Proof. In Theorem 4.1, take V = E, X = K = D, τ̂ being the relativization to
K of the given Hausdorff vector topology on E, ψ(·) = θY and then observe that
X \ IX,X,X coincides with {x ∈ X | X \ ∪λ>0λ(x−X) ̸= ∅}. �

In the rest of the paper, we shall discuss the set X ′ := {x ∈ X | X \ ∪λ>0λ(x−
X) ̸= ∅}, which is used in Theorem 3.2 and Corollary 4.2. We define the affine hull
of X by affX as

affX := {ax+ by | a, b ∈ R, x, y ∈ X, a+ b = 1}
and the relative interior of X by riX as

riX := {x ∈ X | U ∩ affX ⊂ X for some U ∈ V(x)}.
Proposition 4.3 ([9]). Let E be a topological vector space and X a nonempty
convex subset of E. Then x ∈ riX and y ∈ X imply λx + (1 − λ)y ∈ riX for all
0 < λ ≤ 1.

Proposition 4.4. Let E be a topological vector space and X a convex subset of E.
If θE ∈ riX then

X ′ = X \ riX.
Proof. First, we prove X ′ ⊂ X \ riX. For every x ∈ X ′, we know x ∈ X and
X \ ∪λ>0λ(x−X) ̸= ∅. The conclusion can be seen by the method of reduction to
absurdity. We suppose that x ∈ riX. By the definition of relative interior, there
exists U ∈ V(x) such that U ∩ affX ⊂ X, that is, (x−U) ∩ affX ⊂ (x−X). Since
θE ∈ int (x− U), we get ∪λ>0λ(x − U) = E. Moreover, since θE ∈ riX, affX is a
subspace and hence ∪λ>0λ(affX) = affX. Then,

X ⊂ affX ⊂ (∪λ>0λ(x− U)) ∩ affX ⊂ ∪λ>0λ(x−X).

Hence, we have X \ ∪λ>0λ(x −X) = ∅. This is a contradiction to the assumption
x ∈ X ′. Therefore, x ∈ X \ riX, that is to say X ′ ⊂ X \ riX.
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Next, we show X ′ ⊃ X \ riX. Let x ∈ X \ riX. If there exists λ ∈]0, 1[ such that
x+ λx ∈ X then

x =
λ

1 + λ
θE +

1

1 + λ
(x+ λx) ∈ riX.

This is a contradiction to the assumption x ∈ X \ riX. Hence, x + λx ̸∈ X for
each λ ∈]0, 1[, that is, −x ̸∈ λ(x−X) for each λ > 0. Since θE ∈ riX, there exists
µ ∈]0, 1[ such that µ(−x) ∈ X. Then, we obtain

µ(−x) ̸∈ µλ(x−X) for each λ > 0,
⇒ µ(−x) ̸∈ λ(x−X) for each λ > 0,
⇒ µ(−x) ̸∈ ∪λ>0λ(x−X),
⇒ µ(−x) ∈ X \ ∪λ>0λ(x−X).

Thus, X \ ∪λ>0λ(x−X) ̸= ∅. Therefore, we get x ∈ X ′. �

Proposition 4.5. Let E be a topological vector space, X a convex subset of E and
θE ∈ X. If there exists a real-valued function f on X × E such that:

(1) for each x ∈ X, f(x, θE) = 0;
(2) for each x ∈ X ′, f(x, x) > 0.

Then θE ∈ riX.

Proof. This conclusion can be seen by the method reduction to absurdity. We
suppose that θE ∈ X \ riX. By the convexity of X, there exists d ∈ X such that
λd ̸∈ −X for any λ ∈]0, 1[, that is, d ̸∈ ∪λ>0λ(θE−X). Then d ∈ X\∪λ>0λ(θE−X).
So we haveX\∪λ>0λ(θE−X) ̸= ∅, that is, θE ∈ X ′. Since condition (2), f(θE , θE) >
0. This is a contradiction to condition (1), which implies that θE ∈ riX. �

Proposition 4.6. Let E be a topological vector space, Y an ordered topological
vector space with ordering cone C, X a convex subset of E and θE ∈ X. If there
exists a set-valued map F from X × E to 2Y \ {∅} such that:

(1) for each x ∈ X, F (x, θE) ∩ (C \ {θY }) = ∅ and θY ∈ F (x, θE)

(2) for each x ∈ X ′, {θY } ≤(5)

intC F (x, x).

Then θE ∈ riX.

Proof. Take k ∈ intC. First, for each x ∈ X, we consider the value of

(S
(5)
k,{θY } ◦ F )(x, θE). It is not positive because F (x, θE) ∩ (C \ {θY }) = ∅. Since

0·k = θY ∈ F (x, θE), (S
(5)
k,{θY }◦F )(x, θE) = 0. Next, for each x ∈ X ′, we consider the

value of (S
(5)
k,{θY } ◦ F )(x, x). By condition (2), open set F (x, x)− intC contains θY .

Hence, there exists an open neighborhood U of θY such that U ⊂ F (x, x) − intC.
Also, there exists α > 0 such that αk ∈ U . Then, αk ∈ F (x, x) − C. Thus,

(S
(5)
k,{θY } ◦ F )(x, x) ≥ α > 0. By Proposition 4.5, we get θE ∈ riX. �

Remark 4.7. By Propositions 4.4 and 4.6, condition (4) of Corollary 4.2 can be
replaced by

(4)’ for every x ∈ X \ riX, one has {θY } ≤(5)

intC F (x, x).
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