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ON SPLIT SYSTEM OF VARIATIONAL PROBLEMS

ZENN-TSUN YU AND LAI-JIU LIN

ABSTRACT. In this paper, we study the convergence theorems of the follow-
ing problems: the general system of split monotonic variational inclusion prob-
lems; the general system of split equilibrium problems; the split multiply equilib-
rium problems; the general system of split variational inequality problems; split
bilevel equilibrium problem; the mathematical programming with fixed point,
zero points and split systems of variational constraints and the quadratic pro-
gramming with fixed point, zero points and split systems of variational inequal-
ities constraints. We establish iteration processes and prove strong convergence
theorems of these problems. Our result on split bilevel equilibrium problem im-
proves recent result of Moudafi [9].

1. INTRODUCTION

The split feasibility problem (SFP) in finite dimensional Hilbert spaces was first
introduced by Censor and Elfving [5] for modeling inverse problems which arise from
phase retrievals and in medical image reconstruction. Since then, the split feasi-
bility problem (SFP) has received much attention due to its applications in signal
processing, image reconstruction, with particular progress in intensity-modulated
radiation therapy, approximation theory, control theory, biomedical engineering,
communications, and geophysics. For examples, one can refer to [2, 4, 5, 8, 11, 15].

Variational inequality theory has been studied quite extensively and has emerged
as an essential tool in the study of a wide class of obstacle, free moving, equilibrium
problem and optimization theory. Recently, Cai and Bu [3] considered the following
systems of variational inequalities in the smooth Banach space X, which involves
finding

Find z € C, y € C such that
(1.1) (rTez+y—2,J(z—7)) =20,
ATy +z—9.J(z—2) >0

for all x € C, where r and \ are two positive constants, C' is a nonempty closed con-
vex subset of X, T1, Ty : C' — X are two nonlinear mappings, J is the normalized
duality mappings. For the recent trends and developments as problem (1.1) and its
special cases, one can see [13, 10] and references therein.

Let C and @ be nonempty closed convex subsets of real Hilbert spaces H; and Ha,
respectively. For each ¢ = 1,2, let ¢; > 0, let T; be a g;—inverse-strongly monotone
mapping of C' into Hy, let § > 0,6 > 0, let B be a §—inverse-strongly monotone
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mapping of Q) into Hy, let B' bea 5/—inverse—strongly monotone mapping of @) into
H,. For each i = 1, 2, let ®; be a maximal monotone mapping on H; such that the
domain of ®; is included in C. Let G, G’ be maximal monotone mapping on Hs such
that the domain of G, G’ are included in Q. Throughout this paper, we use these
notations and assumptions unless specify otherwise.

We know that the equilibrium problem is to find z € C such that

(EP) h(z,y) > 0 for each y € C,

where h : C x C' — R is a bifunction. This problem includes fixed point problems,
optimization problems, variational inequality problems, Nash equilibrium problems,
minimax inequalities, and saddle point problems as special cases (see [1]). The
solution set of equilibrium problem (EP) is denoted by EP(C, h).

To the best of our knowledge, there is no result on the systems of split variational
inequalities problem.

For i = 1,2, let f; : C x C — R be a bifunction satisfying the conditions (A1)-
(A4) and let g; : Q@ x @ — R be a bifunction satisfying the conditions (A1l)-(A4).
Throughout this paper, we use these notions and assumptions unless specified oth-
erwise.

Recently Moudafi [9] gave an iteration to find solution to the bilevel equilibrium
problem: Find z € C such that z € EP(EP(C, f1), f2).

This problem contains many problems, while Moudafi [9] only proved a weak
convergence theorem to the solution of his problem.

Motivated by the the above problems, in this paper, iterations are used to find
solutions to the following problems.

(i) general system of split variational inclusion problem (GSSMVIP):

Find # € Hy such that z € Fiz(Jy' (I — A\Y1)J22(1 —rY2)),
and
@ = Az € Hy such that @ € Fiz(J¢(I — oB)JS (I — pB)).

(ii) general system of split equilibrium problem(GSSEP): Find z € Hy, § € H;
such that
F2(,2) + 17 — 2,7 = §) = (§ — 2, T27) >0,
{ fi@z) + 3@ -2, —2) — (T —x,T15) >0
for all x € C, and uw = AT € Hy, U € H5 such that

P
g1(t,u) + (@ —u, v — @) — (& —u, Bv) >0

g

{ g2(0,u) + (0 —w, @ =) — (v —u, B'a) > 0,

for all u € Q.

(iii) split multiple equilibrium problem(SMEP): Find z € H;, u = Az € Hs such
that z € EP(C, f1)(EP(C, f2), and u € EP(Q,g1) () EP(Q, g2).

(iv) split bilevel equilibrium problem: Find z € C,u = AZ such that = €
EP(EP(C, f1), f2) and u € EP(EP(Q, f1), f2).
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(v) general system of split variational inequality problem (GSSVIP): Find z €
Hy, y € Hy such that

(rfeZ 4+ y—x,x —7y) >0,
(A\Tigy+z2—9,2—2) >0

for all z € C, and u = AZ € Ho, ¥ € Hs such that
(pB'u+ 7 — 1,u — 7) >0,
(cBv+u—v,u—u) >0

for all u € Q.

In this paper, we apply the convergence theorem of the multiply sets split fea-
sibility problem to study the strong convergence theorems of the above problems.
We apply our results to mathematical programming and quadratic programming.
Our result improve recent result of Moudafi [9].

2. PRELIMINARIES

Throughout this paper, let N be the set of positive integers and let R be the set
of real numbers, H; be a (real) Hilbert space with inner product (-,-) and norm
|| - ||, and C be a nonempty closed convex subset of H;. We denote the strong
convergence of {x,} tox € H by x, = x .

Let T : C' — H; be a mapping, and let Fiz(T) := {z € C : Tz = x} denote the
set of fixed points of T'. A mapping T : C' — H; is called

(i) firmly nonexpansive if || Tz — Ty||* < ||z —y||* = ||(I = T)x — (I — T)y||* for
every x,y € C.

(ii) quasi-nonexpansive if Fiz(T) # () and ||[Tz—p| < ||z —p|| forallz € C, p €
Fix(T).

(iii) strongly monotone if there exists 4 > 0 such that (x—y, Tz —Ty) > 7||lz—y|?
for all z,y € C.

(iv) Lipschitzian continuous if there exists L > 0 such that [|Tz—Ty| < L|jz—yl|
for all z,y € C.

(v) a-inverse-strongly monotone if (z — y, Vo — Vy) > o||Tz — Ty|? for all
z,y € C'and a > 0.

(vi) demiclosed if {x,} is any sequence in C' such that nh_{)go ||z — Txy|| = 0 and

T, — w € C, then Tw = w.

Let B be a mapping of H; into 21, The effective domain of B is denoted by
D(B), that is, D(B) = {z € H : Bz # 0}. A multi-valued mapping B is said to
be a monotone operator on H; if (x —y,u —v) > 0 for all z,y € D(B),u € Bz,
and v € By. A monotone operator B on Hj is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H;. For
a maximal monotone operator B on H; and r > 0, we may define a single-valued
operator J, = (I +rB)~! : Hy — D(B), which is called the resolvent of B for r,
and let B710 = {z € H : 0 € Bx}.

A mapping T : C — C is said to be averaged if T = (1 — a)l + «S, where
a € (0,1) and S : C — C is a nonexpansive mapping. In this case, we also say
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1

that T' is a-averaged. A firmly nonexpansive mapping is -

lemmas are needed in this paper.

averaged. The follows

Lemma 2.1 ([6]). Let C be a nonempty closed convex subset of a real Hilbert space
Hy, and let T : C — C be a mapping. Then the following satisfied:

(i) T is nonexpansive if and only if the complement (I —T) is 1/2-ism.

(ii) If S is v-ism, then for v > 0, vS is v/vy-ism.
(iii) S is averaged if and only if the complement I —S is v-ism for some v > 1/2.
(iv) If S and T are both averaged, then the product (composite) ST is averaged.
(v)

v) If the mappings {T;}?_, are averaged and have a common fized point, then
Nie, Fiz(T;) = Fix(Th -- - T),).

For solving the equilibrium problem, let us assume that the bifunction g : CxC —
R satisfies the following conditions:

(A1) g(z,z) =0 for each = € C;
(A2) g is monotone, i.e., g(x,y) + g(y,z) <0 for any x,y € C;
(A3) for each z,y,z € C, limsupg(tz + (1 — t)z,y) < g(z,y);
t10
(A4) for each z € C, the scalar function y — g(z,y) is convex and lower semi-
continuous.

Theorem 2.2 ([1]). Let C be a nonempty closed convex subset of a real Hilbert
space Hy. Let g : C x C' — R be a bifunction which satisfies conditions (A1)-(A4).
Then for each v > 0 and each x € H, there exists z € C' such that

1
g(z,y)%—;(y—z,z—w) ZO
for ally € C.

Theorem 2.3 ([7]). Let C be a nonempty closed convex subset of a real Hilbert
space Hy and let g : C' x C' — R be a function satisfying conditions (A1)-(A4). For
r >0, define T¢ : Hy — C by

1
Trgx:{zEC:g(z,y)—i—;(y—z,z—x)>0, VyEC}

for all x € Hy. Then the following hold:
(i) T? is single-valued;
(i) T? is firmly nonexpansive, that is, ||Tx — Ty||? < (x — y, Tz — Ty) for
all z,y € Hy;
(iii) {r € Hy: T!z=x}={x€C: g(z,y) >0, Vy e C};
(iv) {z € C: g(z,y) >0, Yy € C} is a closed and convex subset of C.
We call such T the resolvent of g for r > 0.

Lemma 2.4 ([12]). Let C be a nonempty closed convex subset of a Hilbert space H;
and let g : C x C — R be a bifunction satisfying the conditions (A1)-(A4). Define
Ay as follows:

{Z € Hg(x7y) > <y—:17,z>,Vy € C},Vl’ eC
Agr =

21) 0, Vo ¢ C.
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Then, EP(g) = A;lo and Ay is a mazximal monotone operator with the domain
of Ay C C. Furthermore, for any x € Hy and r > 0, the resolvent TY of g coincides
with the resolvent of Ay, i.e., Tdx = (I +rA,) ta.

3. CONVERGENCE THEOREMS OF HIERARCHICAL PROBLEMS

For each i = 1,2, 3, let H; be a real Hilbert space, G; be a maximal monotone
mapping on Hj such that the domain of G; is included in C. Let in = (I+)G;) !
for each A > 0. Let {60,,} C H; be a sequence. Let V be a y— strongly monotone and
L— Lipschitzian continuous operator with 4 > 0 and L > 0. Let T': C — H;j be
a quasi-nonexpansive mapping with demiclosed. Let C and ) be nonempty closed
convex subsets of real Hilbert spaces H; and Hs, respectively. Let F'1 : Hy — Ho
and Fy : H3 — Hs be firmly nonexpansive mappings. Let A; : Hy — Hs and
A : Hi — Hj3 be bounded linear operators. Let A} be the adjoint of A; and A% be
the adjoint of Ao. Let I : Hi — Hj be a identity mapping, and let I; : H;1 1 — Hjy1
be a identity mapping for ¢ = 1,2. Throughout this paper, we use these notations
and assumptions unless specify otherwise. In the following, we say that conditions
(D) hold if

(i) 0 < liminf,, e @ < limsup,,_, o, < 1;
(ii) nh_)rgo Bn =0, and > 7 B, = oo;
(iii) 0<a§/\n§b<m,and0<a§rn§b<

(iv) limy o0 6, = 0 for some 6 € H.

2 .
[Az2]>+2°

Now, we recall the following multiple sets split feasibility problem
(MSSFP — firmily):

Find z € Hy such that A1z € Fiz(Fy) and Ayz € Fix(F).

Let € is a solution of (MSSFP — firmily).
With the same proof as Theorem 3.3 in [14], we have the following theorem which
is slightly different from Theorem 3.3 in [14] is an important tool in this paper.

Theorem 3.1 ([14]). Suppose that A =: Fiz(T) ﬂQﬂsz(JAG;l) N Fiz(JE2) # 0.
A sequence {x,} C H is defined as follows: x1 € C chosen arbitrarily and
Yn = gl(f — MA (L1 — Fi) A1) JE2 (I — rp A5(Ir — Fo)As)an,
(3.1) Sn = Tyn,
Tptl = QpZp + (1 - O‘n)(ﬁnen + (I - an)sn)
for each n € N, {\,} C (0,00), {a,} C (0,1), {Bn} C (0,1), and {r,} C (0,00).

Assume that conditions (D) hold.

Then lim x,, = Z, where T = Pa(Z — VZ +0). This point T is also the unique
n—oo

solution to the following hierarchical problem: Find & € A such that
(Vz—0,q—x) >0 for all g € A.

Remark 3.2. Theorem 3.3 [14] assumes that F is a firmly nonexpansive on Hj
and Ay : Hi — Hs ia a bounded linear operator, but Theorem 3.1 assumes that Fb
is a firmly nonexpansive on Hs and Ay : H; — Hjs is a bounded linear operator.
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Now, we recall the following split fixed point problem
(SFP — nonexpansive):
Find z € H; such that z € Fiz(¥) and A1z € Fiz(¥;).
where ¥y is a nonexpansive mapping of H into Hs and V¥ is a nonexpansive mapping
of Hy into H;. Let Q) be a solution set of (SFP — nonexpansive).

Theorem 3.3. Let ¥; be a nonexpansive mapping of Hy into Hs, let ¥ be a
nonexpansive mapping of H; into Hy. Suppose that

Ay =: Fig(T) ([ Fiz(J$) (| Fiz(J52) # 0.
A sequence {x,} C H is defined as follows: 1 € C chosen arbitrarily, and
Un = JYHI = A A (I — W1) Ay JG2 (T — ro(I = 0))ay,
(3.2) Sn = Tyn,
Tpt1 = ATy + (1 — ap)(Bnbn + (1 — BV )sn),
for each n € N, {\,} C (0,00), {an} C (0,1), {Br} C (0,1), and {r,} C (0,00).

Assume that conditions (D) hold.

Then lim z, = Z, where T = Pa,(Z — VZ + ). This point Z is also the unique
n—oo
solution to the following hierarchical problem: Find Z € A such that

(Vz—0,q—xz) >0, forall g € Ay.

Proof. Put Hy = Hy, Ao =1, F} = % and Fy = # in Theorem 3.1. Since
U;, U are nonexpansive mappings, it easy see that [} = # : Hy —» Hy is a
firmly nonexpansive mapping and F> = # : Hi — Hj is a firmly nonexpansive
mapping. This implies that I} — F} = 11_2& and [ — Fy = % Then algorithm
(3.1) in Theorem 3.1 follows immediately from algorithm (3.2) in Theorem 3.3.

Since F} = hzi and Fp = H'T‘I', it easy see that Fix(F) = Fix(¥;) and
Fiz(Fy) = Fiz(V). This implies that Q = €. Since

Ay =: Fia(T) ([ Fiz(J$) () Fia(J52) # 0
and Q =y, it follows that
A =: Fia(T) (| Fiz(J$) (| Fiz(J52) # 0.
It follow from Theorem 3.1 that nh_}n;o Zy = T, where T = Pa(Z—VZ+0). This point
Z is also a unique solution of the following hierarchical variational inequality:
(Vz—0,q—1z) >0, for all ¢ € A.
Since Q = Qq, we have A = A and the proof is completed. O
4. APPLICATIONS TO GENERAL SYSTEM OF SPLIT MONOTONIC VARIATIONAL
INCLUSION PROBLEMS

In this following theorem, an iteration is used to find solution to the problem
(GSSMVIP). Let GSSMVI(®y,®2,G,G) be the solution set of the problem
(GSSMVIP).
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Theorem 4.1. Suppose that
Iy =: Fia(T) [ |GSSMVI(®1,®2, G, G ) (| Fiz(J{H) () Fiz(J52) # 0.
A sequence {x,} C H is defined as follows: x1 € C chosen arbitrarily and
Yn = JYHI = A A (I — W1) Ay JG2 (T — ro(I = 0))ay,
Sp = TYn,
Tnt1 = nZn + (1 = o) (Bnbn + (1 = BnV)sn),
where Uy = JE(Iy — oB)JS (I — pB'), W = J{' (I — AY1)J22(I — 1Y) for each

nhe N, {A\n} C (0,00), {an} C (0,1), {Bn} C (0,1), and {rn} C (0,00). Assume
that

(i) conditions (D) hold;

(i) 0 <A <2, 0<7 <20, 0<0 <26 and0 < p<26.
Then 7}1_)120 xn = &, where T = P, (z — Vz + 0). This point T is also the unique
solution to the following hierarchical problem: Find T € 111 such that

(Vi—0,9g—x) >0 for all ¢ € 11;.

Proof. Since Y; is g;,—ism, 0 < A < 2e1, 0 < r < 2¢9 for each ¢ = 1,2, it follows
from lemma 2.1(ii),(iii), we know that

(4.1) (I — AY1) and (I — rYy) are averaged.

On the other hand, since Jfl and J,fb 2 are firmly nonexpansive mappings,
1
(4.2) Jfl and J*? are 3 averaged.

By Lemma 2.1(iv), we see that
(4.3) TV — A1) J22(I — rY2) is averaged.
This implies that,
(44) U= Jfl(l — AY1)J®2(I — rY5) is a nonexpansive mapping of Hj into Hj.
Following the same argument as (4.1), (4.2), (4.3) and (4.4), we know that
U = JS (I, - UB)JPGI(Il — pB') is a nonexpansive mapping of Hs into Ho.

Since ¥ = JY'(I — AY1)J22(1 — rY2) and Wy = JS (I, — 0B)JS (I — pB'), it
is easy to see that Fiz(¥) = Fm(J:\I)l(I — AY1)J22(I — rY3)) and Fix(¥;) =
Fix(JS (I — oB)JS (I — pB')). This implies that GSSMVI(®1,®2,G,G') = Q.
Since Iy =: Fiz(T)GSSMVI(®1,05,G, G )\ Fiz(JJ') N Fix(JG2) # 0, it
follows that
Ay = Fiz(T) ([ Fiz(J{) () Fiz(J52) # 0.
It follow from Theorem 3.3 that lim z, = Z, where T = Pa,(Z — VZ + 0). This

n—oo
point T is also the unique solution to the following hierarchical problem: Find z € Ay

such that (VZ —60,q — &) > 0 for all ¢ € A;. Since GSSMVI(®y, Do, G, G ) = Qy,
we have II; = A7 and the proof is completed. O



102 Z.T.YU AND L. J. LIN

In the following theorem, an iteration is used to find solution to the problem
(GSSEP). Let GSSEP(f1, fo, Y1, Y2, g1, g2, B, B') be the solution set to the prob-
lem (GSSEP).

Theorem 4.2. For each i = 1,2, let Ay,, Ay, be defined as (L4.1) in Lemma 2.4.
Suppose that Ty =: Fix(T)ﬂGSSEP(fl,fg,Tl,Tg,gl,gg,B,B/)ﬂFix(Jgj)ﬂ
Fix(JG?) # 0. A sequence {z,} C H is defined as follows: x1 € C chosen arbitrarily

and
Yn = ST — M Af (I — 1) A)JE2 (1 — (1 — )2y,

Sp = Tyn,

Tpy1 = Qnp + (1 — o) (Bubn + (1 = BaV)sn),

where Uy = J39 (I, — 0 B)J, (I, — pB'), U = J. (1= XY1)Ji " (I—1Cy) for each

n €N, {\,} C (0,00), {an} C (0,1), {Bn} C (0,1), and {r,} C (0,00). Assume
that

(i) conditions (D) hold;

(i) 0<A<2, 0<7 <260, 0<0 <28, and0 < p<25.
Then lim z, = Z, where T = P1,(T — VZ + 0). This point T is also the unique

n—oo
solution to the following hierarchical problem: Find T € Ily such that

(Vz—0,q—x) >0 for all g € Il5.

Proof. For each i = 1,2, by Lemma 2.4, we know that FP(f;) = A;il(), EP(g;) =

A;10, Ay, and Ay, are maximal monotone operators with the domain of Ay, C C
and the domain of A, C Q.

Put G = Ay, G = A, &1 = Ay, and &3 = Ay, in Theorem 4.2. Since Iy # 0),
there exist 1 € Hy, y1 € H; such that

fo(in,2) + g — 2,21 — 1) — (h — z, ToZ1) >0,
f@nL o)+ 3@ — 2, — 7)) — (81— 2, Y1) >0
for all x € C, and u; = Az € Hsy, v1 € Hy such that

{ g2(v1,u) + %(171 —u,uy — v1) — (01 — u, B/ﬂl) > (),
g1(t1,u) + %(Ul —u, U1 —uy) — (U] —u, Bo1) >0
for all u € ). Hence, there exist 1 € Hy, y1 € Hy such that

A A
Tl = J)\ 1 (I — )\Tl)gjl,gjl =J T2 (I — TTQ)i'l,

and w1 = Azq € Hy, v1 € Hs such that
1 = Jo (I — 0 B)oy, 01 = Jo o2 (I — pB')is.
That is, there exist Z; € Hy such that
Ty € Fia(J{ (I — N01)JE (1 — 1)),
and u; = AT € Hy such that

a1 € Fiz(Ji (I, — oB)J, (I — pB')).
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This implies that
GSSEP(f1, f2,Y1,Y2,91,92, B, B") = GSSMVI(®1, 9, G, G )
and
Iy =: Fia(T) [ |GSSMVI(®1, 2, G, G ) (| Fiz(JSH) (| Fiz(J52) # 0.
It follow from Theorem 4.1 that hm Zn = T, where T = P, (z — VZ + 0). This

point Z is also the unique solution to the following hierarchical variational inequality:
(Vi —0,qg—x) >0 for all g € II;.

Since GSSEP(f1, f2, Y1, Y2, 91,92, B, B') = GSSMVI(®,®9,G,G'), it follows
that II; = IIs and the proof is completed. O

In the following theorem, an iteration is used to find solution to the problem
(SMEP). Let SMEP(f1, f2,91,92) be the solution set of the problem (SMEP).

Theorem 4.3. For each i = 1,2, let Ay,, Ay, be defined as (L4.1) in Lemma 2.4.
Suppose that

I3 =: Fiz(T)(\SMEP(f1, f2, 91, 92) (| Fiz(J) [ Fia(J52) # 0.
a sequence {x,} C H is defined as follows:x; € C' chosen arbitrarily,and
yn = S = MAj (I — 1) A)JE2 (T — (1 — )2y,
sn = Tyn,
Tptl = QpTy + (1 - an)(ﬁnen + (1 - ﬂnv)sn)a
where Uy = J3 JA” U= Jffl J:‘fQ for eachn € N, {\,} C (0,00), {ap,} C (0,1),

{Bn} € (0,1), and {rn} C (0,00). Assume that conditions (D) hold.
Then hm Ty = T, where T = P, (z — VI +6). This point T is also the unique

solution to the following hierarchical problem: Find T € Ilg such that
(VZ—0,9g—x) >0 for all ¢ € 3.
Proof. By assumption , II3 # (. This implies hat
Iy =: Fiz(T) (| GSSEP(f1, f2,0,0, g1, 92,0,0) (| Fiax(J1) (| Fiz(JG2) # 0.
It follow from Theorem 4.2 that lim x, = Z, where z = Pp,(Z — Vz + 6). This

n—oo
point Z is also the unique solution to the following hierarchical variational inequality:

(Vi —0,q—z) >0 for all g € Ils.
On the other hand, by assumption, there exists w € II3 and w €
SMEP(fl, fo, 91, gz) This implies that

(4.5) w € Fix(J fl ﬂFz f2 ) # 0 and Ayw € Fix(J, dl ﬂsz oo ) # 0.

Since J;\L‘fl and J, A2 are +—averaged, by (4.5) and Lemma 2.1(v), we have that
Fig(J{ I = Fia(J, )\ Fiz(J;?) and Fiz(J3"J)?) = Fiz(J;")N

Fix(Jng). That is, SMEP(f1, f2,91,92) = SSEP(f1, f2,91,92) and therefore,
II3 = Ils. The proof is completed. O



104 Z.T.YU AND L. J. LIN

By Theorem 4.3, we study a strong convergence convergence to the solution of
split bilevel equilibrium problem.

Theorem 4.4. Under the assumptions of Theorem 4.3, then there exists T € C,
u = AZ such that z € EP(EP(C, f1), f2) and u € EP(EP(Q,¢1),92)-

Proof. By Theorem 4.3, there exists & € C, u = AT € Hy such that z € EP(C, f1)[)
EP(C, f3), and u € EP(Q,¢q1) [ EP(Q, g2). Therefore,

z € EP(C, f1) C C and fo(Z,y) >0 for all y € C.
This shows that
T € EP(C, fi1) C C and fa(z,y) > 0 for all y € EP(C, f1).

Hence, z € EP(EP(C, f1), f2). Similarly, we can show that u« € EP(EP(Q, g1), 92)
and the proof is completed. O

Remark 4.5. Mondafi [9] gave an iteration to find the solution to the bilevel
equilibrium problem, he proved a weak convergence theorem of this problem, while
Theorem 4.4 is a strong convergence theorem for split bilevel equilibrium problem.

In the following theorem, an iteration is used to find solution to the problem
(GSSVIP).

Let GSSVI(Y1, Yo, B, B') be the solution set of the problem (GSSVIP).
Theorem 4.6. Suppose that
5 =: Fia(T)(|GSSVI(Y1,Ys, B, B)) (| Fiz(JSH) (| Fiz(J52) # 0.
A sequence {x,} C H is defined as follows:xy € C chosen arbitrarily, and
Un = JSHI = M AT (I — 01) A1) JG2 (1 = rn (I = ©))ay,

n = Tym
Tptl = QpTy + (1 - an)(ﬁnen + (1 - ﬂnv)sn)a
where W1 = Pgo(I1 — 0B)Po(I1 — pB’), ¥ = Pc(I — AY1)Pc(I — rYs) for each

?he N, {\.} € (0,00), {an} C (0,1), {Bn} E (0,1), and {r,} C (0,00). Assume
at

(i) conditions (D) hold;
(i) 0 <A <2, 0<r <20, 0<0<26, and 0 < p < 26;
Then hm Ty = &, where T = P, (z — Vz + 0). This point T is also the unique

solutwn to the following hierarchical problem: Find T € Il5 such that
(Vz—0,q—z) >0 for all g € 1I5.

Proof. Fori=1,2let f; : CxC — R be a bifunction defined by f;(x,y) = 0,Vx,y €
C, then f; satisfies the conditions (A1)-(A4). Let g; : @ x @ — R be a bifunction
defined by g;(z,y) = 0,Vx,y € @, then g; satisfies the conditions (A1l)-(A4). It
easy see that Jfgi = Pg and Jffi = Py for ¢ = 1,2. Then Theorem 4.6 follows
immediately from Theorem 4.2. O
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By Theorem 4.1, we obtain that mathematical programming with fixed point,
zero points and the general system of split monotonic variational inclusion problem
(GSSMVIP) constraints.

Theorem 4.7. In Theorem 4.1, let h : C — R be a convexr Gateauz differential
function with Gateaux derivative V. Let

Iy = Fia(T) [ |GSSMVI(®1, 92, G, G ) (| Fiz(JSH) () Fiz(J52) # 0.
Then li_>m Ty = T, where & = P, (z —V'Z). This point T is also the unique solution

to the mathematical programming with fized point, zero points and multiple sets split
feasibility constraints:

in h(q).
Inin (9)

Proof. Apply Theorem 4.1 and argue as in the proof of Theorem 4.1 in [14], we can
prove Theorem 4.7. O

Corollary 4.8. In Theorem 4.1, replace Tp1+1 = nZp~+(1—a)(Bnbn+(I—5,V)sy)
in algorithm (4.1) by pt1 = anty + (1 — o) (Bnbn + (1 — By)sn). Let

Il =: Fie(T) (| GSSMVI(®1,®2,G, G ) (| Fix(J) (| Fiz(J52) # 0.

Then lim x,, = &, where T = P, (0). This point T is also the unique solution to
n—oo

the mathematical programming with fized point, zero points and multiple sets split
feasibility constraints: minger, ||q||-

Proof. Let h(z) = %||z[|%, and let V be the Gateaux derivative of h. It is easy to see
V(z) = x for each € H. Then Corollary 4.8 follows immediately from Theorem
4.7. g

We can apply Theorem 4.7 to study the mathematical programming of quadratic
function with fixed point, zero points and the general system of split monotonic
variational inclusion problem (GSSMVIP) constraints.

Theorem 4.9. In Theorem 4.1, let Vi : C — C be a strongly positive self adjoint
bounded linear operator and a € H . Let

I = Fia(T) [ |GSSMVI(®1,®2, G, G ) (| Fiz(J{) () Fiz(JS2) # 0.
Let {x,} C H be defined by
x1 € C chosen arbitrarily,
Yn = JYHI = A A (I — W1) Ay IS (T — ro (I — 0))ay,
Sn = TYn,
Tn1 = Ay + (1 — ) (Bubn + (sn — Bu(Vi(sn) — a))),
where ¥y = JG (I — O‘B)JpG/(Il —pB), ¥ = Jfl(I — AY1)J22(I — rY3) for each

nhe N, {\.} € (0,00), {an} C (0,1), {Bn} C (0,1), and {r,} C (0,00). Assume
that

(i) conditions (D) hold;
(i) 0<A<2, 0<7 <29, 0<0<20, and 0 < p < 26';

(4.6)
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Then li_)m Tn = &, This point T is also the unique solution to the mathematical
n oo

programming of quadratic function with fized point, zero points and multiple sets
split feasibility constraints:

1
in = (V; _ .
gélﬁl2< 14,9) — {(a,q)

Proof. Apply Theorem 4.7 and argue as in the proof of Theorem 4.2 in [14], we can
prove Theorem 4.9. U

(1]
2l
8l

(13]
(14]

(15]
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