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by [16], [17] and [11], Takahashi and Yao [37] solved such a problem for positively
homogeneous nonexpansive mappings in a uniformly convex Banach space. Fur-
thermore, Takahashi, Wong and Yao [35] extended such a result for commutative
families of positively homogeneous nonexpansive mappings in a uniformly convex
Banach space. In 1938, Yosida [39] also proved the following mean ergodic theorem
for linear bounded operators: Let E be a real Banach space and let T be a linear
operator of E into itself such that there exists a constant C with ∥Tn∥ ≤ C for
n ∈ N, and T is weakly completely continuous, i.e., T maps the closed unit ball of
E into a weakly compact subset of E. Then, for each x ∈ E, the Cesàro means

Snx =
1

n

n∑
k=1

T kx

converge strongly as n → ∞ to a fixed point of T ; see also Kido and Takahashi [19].
Such a mean convergence theorem was also discussed in Takahashi, Wong and Yao
[36] for commutative families of positively homogeneous nonexpansive mappings in
a uniformly convex Banach space; see also Takahashi, Wong and Yao [34].

In this paper, motivated by these theorems, we study nonlinear analytic meth-
ods for linear contractive operators in Banach spaces and obtain some new strong
convergence theorems for commutative families of linear contractive operators in
Banach spaces. For example, we extend Bauschk, Deutsch, Hundal and Park’s the-
orem [4] for linear contractive operators in Hilbert spaces to commutative families
of linear contractive operators in Banach spaces. In our results, the limit points are
characterized by sunny generalized nonexpansive retractions.

2. Preliminaries

Throughout this paper, we assume that a Banach space E with the dual space E∗

is real. We denote by N and R the sets of all positive integers and all real numbers,
respectively. We also denote by ⟨x, x∗⟩ the dual pair of x ∈ E and x∗ ∈ E∗. A
Banach space E is said to be strictly convex if ∥x + y∥ < 2 for x, y ∈ E with
∥x∥ ≤ 1, ∥y∥ ≤ 1 and x ̸= y. A Banach space E is said to be smooth provided

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ E with ∥x∥ = ∥y∥ = 1. Let E be a Banach space. With each
x ∈ E, we associate the set

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.

The multivalued operator J : E → E∗ is called the normalized duality mapping of
E. From the Hahn-Banach theorem, Jx ̸= ∅ for each x ∈ E. We know that E is
smooth if and only if J is single-valued. If E is strictly convex, then J is one-to-one,
i.e., x ̸= y ⇒ J(x) ∩ J(y) = ∅. If E is reflexive, then J is a mapping of E onto E∗.
So, if E is reflexive, strictly convex and smooth, then J is single-valued, one-to-one
and onto. In this case, the normalized duality mapping J∗ from E∗ into E is the
inverse of J , that is, J∗ = J−1; see [30] for more details. Let E be a smooth Banach
space and let J be the normalized duality mapping of E. We define the function
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ϕ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for all x, y ∈ E.
It is easy to see that (∥x∥−∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+∥y∥)2 for all x, y ∈ E. Thus,

in particular, ϕ(x, y) ≥ 0 for all x, y ∈ E. We also know the following:

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩(2.1)

for all x, y, z ∈ E. Further, we have

2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w)(2.2)

for all x, y, z, w ∈ E. If E is additionally assumed to be strictly convex, then

ϕ(x, y) = 0 ⇔ x = y.(2.3)

For a smooth, strictly convex and reflexive Banach space E, we also define the
function ϕ∗ : E

∗ × E∗ → R by

ϕ∗(x
∗, y∗) = ∥x∗∥2 − 2⟨x∗, J−1y∗⟩+ ∥y∗∥2

for all x∗, y∗ ∈ E∗. It is easy to see that

ϕ(x, y) = ϕ∗(Jy, Jx)(2.4)

for all x, y ∈ E. Let E be a Banach space and let K be a closed convex cone of E.
Then, T : K → K is called a positively homogeneous mapping if T (αx) = αTx for
all α ≥ 0 and x ∈ K. Let M be a closed linear subspace of E. Then, S : M → M
is called a homogeneous mapping if T (βx) = βTx for all β ∈ R and x ∈ M . Let
E be a smooth Banach space and let C be a nonempty subset of E. A mapping
T : C → C is called generalized nonexpansive [13] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y), ∀x ∈ C, y ∈ F (T ).

The following theorem was proved by Takahashi, Yao and Honda [38].

Theorem 2.1 (Takahashi, Yao and Honda [38]). Let E be a smooth Banach space
and let K be a closed convex cone of E. Then, a positively homogeneous mapping
T : K → K is generalized nonexpansive if and only if for any x ∈ K and u ∈ F (T ),

∥Tx∥ ≤ ∥x∥ and ⟨x− Tx, Ju⟩ ≤ 0.

Furthermore, let M be a closed linear subspace of E. Then, a homogeneous mapping
S : M → M is generalized nonexpansive if and only if for any x ∈ M and v ∈ F (T ),

∥Sx∥ ≤ ∥x∥ and ⟨x− Sx, Jv⟩ = 0.

We also know the follwing theorem from Takahashi and Yao [37]; see also Honda,
Takahashi and Yao [11].

Theorem 2.2 (Takahashi and Yao [37]). Let E be a smooth Banach space and
let K be a closed convex cone in E. If T : K → K is a positively homogeneous
nonexpansive mapping, then T is generalized nonexpansive. In particular, if T :
E → E is a linear contractive mapping, then T is generalized nonexpansive.

From Theorems 2.2 and 2.1, we have the following corollary.
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Corollary 2.3. Let E be a smooth Banach space and let K be a closed convex cone
of E. If a mapping T : K → K is positively homogeneous nonexpansive, then for
any x ∈ K and u ∈ F (T ),

∥Tx∥ ≤ ∥x∥ and ⟨x− Tx, Ju⟩ ≤ 0.

Furthermore, let M be a closed linear subspace of E. If a mapping S : M → M is
homogeneous nonexpansive, then for any x ∈ M and v ∈ F (T ),

∥Sx∥ ≤ ∥x∥ and ⟨x− Sx, Jv⟩ = 0.

From Theorem 2.1, Takahashi, Yao and Honda [38] introduced the following
concept.

Definition 2.4. Let E be a smooth Banch space, let x ∈ E and let F be a nonempty
subset of E. The Sizihwan region between x and F is the set

R(x;F ) = {z ∈ E : ⟨x− z, Ju⟩ = 0 for all u ∈ F and ∥z∥ ≤ ∥x∥}.

The following result is in Takahashi, Yao and Honda [38].

Lemma 2.5. Let E be a strictly convex and smooth Banch space, let x ∈ E and
let F be a nonempty subset of E. Then R(x;F ) is nonempty, closed, convex and
bounded, and F ∩R(x;F ) consists of at most one point.

Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ϕ(z, x) = min
y∈C

ϕ(y, x)}

is always a singleton. Let us define the mapping ΠC of E onto C by z = ΠCx for
every x ∈ E, i.e.,

ϕ(ΠCx, x) = min
y∈C

ϕ(y, x)

for every x ∈ E. Such ΠC is called the generalized projection of E onto C; see
Alber [1]. The following lemma is due to Alber [1] and Kamimura and Takahashi
[18].

Lemma 2.6 ([1, 18]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let (x, z) ∈ E × C. Then, the following
hold:

(a) z = ΠCx if and only if ⟨y − z, Jx− Jz⟩ ≤ 0 for all y ∈ C;
(b) ϕ(z,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(z, x).

Let D be a nonempty closed subset of a smooth Banach space E, let T be a
mapping from D into itself and let F (T ) be the set of fixed points of T . Then, T is
said to be generalized nonexpansive [13] if F (T ) is nonempty and ϕ(Tx, u) ≤ ϕ(x, u)
for all x ∈ D and u ∈ F (T ). Let C be a nonempty subset of E and let R be a
mapping from E onto C. Then R is said to be a retraction, or a projection if Rx = x
for all x ∈ C. It is known that if a mapping P of E into E satisfies P 2 = P , then
P is a projection of E onto {Px : x ∈ E}. A mapping T : E → E with F (T ) ̸= ∅
is a retraction if and only if F (T ) = R(T ), where R(T ) is the range of T . The
mapping R is also said to be sunny if R(Rx+ t(x−Rx)) = Rx whenever x ∈ E and
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t ≥ 0. A nonempty subset C of a smooth Banach space E is said to be a generalized
nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there
exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive
retraction) R from E onto C. The following lemmas were proved by Ibaraki and
Takahashi [13].

Lemma 2.7 ([13]). Let C be a nonempty closed subset of a smooth, strictly convex
and reflexisve Banach space E and let R be a retraction from E onto C. Then, the
following are equivalent:

(a) R is sunny and generalized nonexpansive;
(b) ⟨x−Rx, Jy − JRx⟩ ≤ 0 for all (x, y) ∈ E × C.

Lemma 2.8 ([13]). Let C be a nonempty closed sunny and generalized nonexpansive
retract of a smooth and strictly convex Banach space E. Then, the sunny generalized
nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.9 ([13]). Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C and let (x, z) ∈ E × C. Then, the following hold:

(a) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(b) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

The following theorems were proved by Kohsaka and Takahashi [21].

Theorem 2.10 ([21]). Let E be a smooth, strictly convex and reflexive Banach
space, let C∗ be a nonempty closed convex subset of E∗ and let ΠC∗ be the generalized
projection of E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is a sunny
generalized nonexpansive retraction of E onto J−1C∗.

Theorem 2.11 ([21]). Let E be a smooth, strictly convex and reflexive Banach
space and let D be a nonempty subset of E. Then, the following are equivalent:

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Let E be a smooth, strictly convex and reflexive Banach space, let J be the
normalized duality mapping from E onto E∗ and let C be a closed subset of E
such that JC is closed and convex. Then, we can define a unique sunny generalized
nonexpansive retraction RC of E onto C as follows:

RC = J−1ΠJCJ,

where ΠJC is the generalized projection from E∗ onto JC.
Let C be a nonempty closed convex subset of a smooth, strictly convex and

reflexive Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ∥z − x∥ = min
y∈C

∥y − x∥}
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is always nonempty and a singleton. Let us define the mapping PC of E onto C by
z = PCx for every x ∈ E, i.e.,

∥PCx− x∥ = min
y∈C

∥y − x∥

for every x ∈ E. Such PC is called the metric projection of E onto C; see [30]. The
following lemma is in [30].

Lemma 2.12 ([30]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let (x, z) ∈ E ×C. Then, z = PCx if and
only if ⟨y − z, J(x− z)⟩ ≤ 0 for all y ∈ C.

An operator A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax ̸= ∅} and range
R(A) = ∪{Ax : x ∈ D(A)} is said to be monotone if ⟨x − y, x∗ − y∗⟩ ≥ 0 for any
(x, x∗), (y, y∗) ∈ A. An operator A is said to be strictly monotone if ⟨x−y, x∗−y∗⟩ >
0 for any (x, x∗), (y, y∗) ∈ A (x ̸= y). Let J be the normalized duality mapping
from E into E∗. Then, J is monotone. If E is strictly convex, then J is one-to-one
and strictly monotone; for instance, see [30].

3. Semitopological semigroups and invariant means

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s 7→ a · s and s 7→ s · a from S
to S are continuous. In the case when S is commutative, we denote st by s + t.
A commutative semigroup S with identity is a directed system when the binary
relation is defined by s ≼ t if and only if {t} ∪ (S + t) ⊂ {s} ∪ (S + s). Let B(S)
be the Banach space of all bounded real valued functions on S with supremum
norm and let C(S) be the subspace of B(S) of all bounded real valued continuous
functions on S. Let µ be an element of C(S)∗ (the dual space of C(S)). We denote
by µ(f) the value of µ at f ∈ C(S). Sometimes, we denote by µt(f(t)) or µtf(t)
the value µ(f). For each s ∈ S and f ∈ C(S), we define two functions lsf and rsf
as follows:

(lsf)(t) = f(st) and (rs f )(t) = f (ts)

for all t ∈ S. An element µ of C(S)∗ is called a mean on C(S) if µ(e) = ∥µ∥ = 1,
where e(s) = 1 for all s ∈ S. We know that µ ∈ C(S)∗ is a mean on C(S) if and
only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s), ∀f ∈ C(S).

A mean µ on C(S) is called left invariant if µ(lsf) = µ(f) for all f ∈ C(S) and
s ∈ S. Similarly, a mean µ on C(S) is called right invariant if µ(rsf) = µ(f) for all
f ∈ C(S) and s ∈ S. A left and right invariant invariant mean on C(S) is called an
invariant mean on C(S). The following theorem is in [30, Theorem 1.4.5].

Theorem 3.1 ([30]). Let S be a commutative semitopological semigroup. Then
there exists an invariant mean on C(S), i.e., there exists an element µ ∈ C(S)∗

such that µ(e) = ∥µ∥ = 1 and µ(rsf) = µ(f) for all f ∈ C(S) and s ∈ S.
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Theorem 3.2 ([30]). Let S be a semitopological semigroup. Let µ be a right invari-
ant mean on C(S). Then

sup
s

inf
t
f(ts) ≤ µ(f) ≤ inf

s
sup
t

f(ts), ∀f ∈ C(S).

Similarly, let µ be a left invariant mean on C(S). Then

sup
s

inf
t
f(st) ≤ µ(f) ≤ inf

s
sup
t

f(st), ∀f ∈ C(S).

Let S be a semitopological semigroup. For any f ∈ C(S) and c ∈ R, we write

f(s) → c, as s → ∞R

if for each ε > 0 there exists an ω ∈ S such that

|f(tw)− c| < ε, ∀t ∈ S.

We denote f(s) → c, as s → ∞R by

lim
s→∞R

f(s) = c.

When S is commutative, we also denote s → ∞R by s → ∞.

Theorem 3.3 ([30]). Let f ∈ C(S) and c ∈ R. If

f(s) → c, as s → ∞R,

then µ(f) = c for all right invariant mean µ on C(S).

Theorem 3.4 ([30]). If f ∈ C(S) fulfills

f(ts) ≤ f(s), ∀t, s ∈ S,

then

f(t) → inf
w∈S

f(w), as t → ∞R.

Theorem 3.5 ([30]). Let S be a commutative semitopological semigroup and let
f ∈ C(S). Then the following are equivalent:

(i) f(s) → c, as s → ∞;
(ii) supw inft f(t+ w) = infw supt f(t+ w) = c.

Let E be a Banach space and let C be a nonempty, closed and convex subset of
E. Let S be a semitopological semigroup and let S = {Ts : s ∈ S} be a family
of nonexpansive mappings of C into itself. Then S = {Ts : s ∈ S} is called a
continuous representation of S as nonexpansive mappings on C if Tst = TsTt for
all s, t ∈ S and s 7→ Tsx is continuous for each x ∈ C. The following definition
[28] is crucial in the nonlinear ergodic theory of abstract semigroups. Let S be
a topological space and Let C(S) be the Banach space of all bounded real valued
continuous functions on S with supremum norm. Let E be a reflexive Banach space.
Let u : S → E be a continuous function such that {u(s) : s ∈ S} is bounded and
let µ be a mean on C(S). Then there exists a unique element z0 of E such that

µs⟨u(s), x∗⟩ = ⟨z0, x∗⟩, ∀x∗ ∈ E∗.
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We call such z0 the mean vector of u for µ and denote by τ(µ)u, i.e., τ(µ)u = z0. In
particular, if S = {Ts : s ∈ S} is a continuous representation of S as nonexpansive
mappings on C and u(s) = Tsx for all s ∈ S, then there exists z0 ∈ C such that

µs⟨Tsx, x
∗⟩ = ⟨z0, x∗⟩, ∀x∗ ∈ E∗.

We denote such z0 by Tµx.

4. Strong convergence theorems

Let Y be a nonempty subset of a Banach space E and let Y ∗ be a nonempty
subset of the dual space E∗. Then, we can define the annihilator Y ∗

⊥ of Y ∗ and the

annihilator Y ⊥ of Y as follows:

Y ∗
⊥ = {x ∈ E : f(x) = 0 for all f ∈ Y ∗}

and

Y ⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ Y }.
We know the following result from Megginson [25].

Lemma 4.1 ([25]). Let A be a nonempty subset of E. Then

(A⊥)⊥ = spanA,

where spanA is the smallest closed linear subspace of E containing A.

Let T : E → E be a bounded linear operator. Then, the adjoint mapping
T ∗ : E∗ → E∗ is defined as follows:

⟨x, T ∗x∗⟩ = ⟨Tx, x∗⟩
for any x ∈ E and x∗ ∈ E∗. We know that T ∗ is also a bounded linear operator
and ∥T∥ = ∥T ∗∥. If S and T are bounded linear operators form E into itself and
α ∈ R, then (S + T )∗ = S∗+T ∗ and (αS)∗ = α (S)∗. Let I be the identity operator
on E. Then, I∗ is the identity operator on E∗. Let T ∗∗ : E∗∗ → E∗∗ be the adjoint
of T ∗. Then we have T ∗∗(π(E)) ⊂ π(E) and π−1T ∗∗π = T , where π is the natural
embedding from E into its second dual space E∗∗; see [25].

Lemma 4.2. Let S be a commutative semitopological semigroup with identity. Let
E be a strictly convex, smooth and reflexive Banach space, let S = {Ts : s ∈ S} be
a continuous representation of S as linear contractive operators of E into itself and
let F (S) be the set of common fixed points of Ts, s ∈ S. Then JF (S) is a closed
linear subspace of E∗ and JF (S) = ∩s∈SF (T ∗

s ) = {z−Tsz : z ∈ E, s ∈ S}⊥, where
J : E → E∗ is the duality mapping and T ∗

s is the adjoint operator of Ts.

Proof. From Corollary 2.3, we have

⟨x− Tsx, Ju⟩ = 0

for all x ∈ E, s ∈ S and u ∈ F (S). We also have that

⟨x− Tsx, Ju⟩ = 0 ⇔ ⟨x, Ju⟩ = ⟨Tsx, Ju⟩
⇔ ⟨x, Ju⟩ = ⟨x, T ∗

s Ju⟩
⇔ ⟨x, (I∗ − T ∗

s )Ju⟩ = 0,
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where I∗ is the identity operator in E∗. Since this equation holds for all x ∈ E, we
have (I∗ − T ∗

s )Ju = 0 and hence T ∗
s Ju = Ju. Then JF (S) ⊂ F (T ∗

s ) for all s ∈ S.
This implies that JF (S) ⊂ ∩s∈SF (T ∗

s ). Since ∥T ∗
s ∥ = ∥Ts∥ ≤ 1, we can get the

same fact about T ∗
s . So, we obtain that

J∗ ∩s∈S F (T ∗
s ) ⊂ ∩s∈SF (T ∗∗

s ),

where J∗ : E∗ → E∗∗ is the duality mapping of E∗. Under assumptions on E, we
know that J∗ = J−1 and T ∗∗

s = Ts. Then, we have

∩s∈SF (T ∗
s ) ⊂ J ∩s∈S F (T ∗∗

s ) = J ∩s∈S F (Ts) = JF (S).
So, we obtain that ∩s∈SF (T ∗

s ) = JF (S) and hence JF (S) is a closed linear subspace
of E∗. Finally, we show that ∩s∈SF (T ∗

s ) = {z − Tsz : z ∈ E, s ∈ S}⊥. Let
Ss = I − Ts for all s ∈ S, where I : E → E is the identity operator on E. If
x∗ ∈ {z ∈ E∗ : S∗

sz = 0 : s ∈ S}, then we have

⟨Ssy, x
∗⟩ = ⟨y, S∗

sx
∗⟩ = 0

for all y ∈ E and s ∈ S. This implies x∗ ∈ {z − Tsz : z ∈ E, s ∈ S}⊥. We know
that S∗

s = I∗ − T ∗
s and {z ∈ E∗ : S∗

sz = 0 : s ∈ S} = ∩s∈SF (T ∗
s ). So, we have

∩s∈SF (T ∗
s ) ⊂ {z − Tsz : z ∈ E, s ∈ S}⊥. On the other hand, if x∗ ∈ {z − Tsz : z ∈

E, s ∈ S}⊥, then we have ⟨Ssy, x
∗⟩ = 0 for all y ∈ E and s ∈ S. Since

⟨y, S∗
sx

∗⟩ = ⟨Ssy, x
∗⟩ = 0

for all y ∈ E and s ∈ S, we have S∗
sx

∗ = 0 and hence x∗ ∈ F (T ∗
s ) for all s ∈ S.

This implies {z − Tz : z ∈ E, s ∈ S}⊥ ⊂ ∩s∈SF (T ∗
s ). Then, we have

∩s∈SF (T ∗
s ) = {z − Tsz : z ∈ E, s ∈ S}⊥.

This completes the proof. �
Theorem 4.3. Let S be a commutative semitopological semigroup with identity.
Let E be a strictly convex, smooth and reflexive Banach space, let S = {Ts : s ∈ S}
be a continuous representation of S as linear contractive operators of E into itself
and let {Sα : α ∈ I} be a net of contractive linear operators of E into itself such
that F (S) ⊂ F (Sα) for all α ∈ I. Suppose Ts ◦Sα = Sα ◦Ts for all α ∈ I and s ∈ S.
Then, the following are equivalent:

(1) {Sαx} converges to an element of F (S) for all x ∈ E;
(2) {Sαx} converges to 0 for all x ∈ (JF (S))⊥;
(3) {Sαx− Ts ◦ Sαx} converges to 0 for all x ∈ E and s ∈ S.

Furthermore, if (1) holds, then {Sαx} converges to RF (S)x ∈ F (S), where RF (S) =

J−1ΠJF (S)J and ΠJF (S) is the generalized projection of E∗ onto JF (S).

Proof. Suppose (1). Then, for any x ∈ E, Sαx ∈ R(x;F (Sα)) ⊂ R(x;F (S)) for
all α ∈ I. We know from Lemma 2.5 that R(x;F (S)) ∩ F (S) consists of at most
one point. Since R(x;F (S)) is closed and {Sαx} converges strongly to an element
z of F (S), we have R(x;F (S)) ∩ F (S) = {z}. Let Rx be the unique element
z of R(x;F (S)) ∩ F (S). Then, a mapping R : E → F (S) defined by z = Rx
is a retraction of E onto F (S). Furthermore, we know from Corollary 2.3 that
⟨x− Sαx, Ju⟩ = 0 for all u ∈ F (Sα) and α ∈ I. So, we have

⟨x−Rx, Ju⟩ = 0, ∀u ∈ F (S)(4.1)
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From Rx ∈ F (S), we also have ⟨x−Rx, JRx⟩ = 0 and thus

⟨x−Rx, JRx− Ju⟩ = 0(4.2)

for all u ∈ F (S). So, from Lemmas 2.7 and 2.8, R is the unique sunny generalized
nonexpansive retraction of E onto F (S). Therefore, from Theorem 2.10, we have

R = RF (S) = J−1ΠJF (S)J,

where ΠJF (S) is the generalized projection of E∗ onto JF (S). If x ∈ (JF (S))⊥,
then we have ⟨x, Ju⟩ = 0 for all u ∈ F (S). From (4.1), we also have ⟨x−Rx, Ju⟩ = 0
for all u ∈ F (S). So, we get ⟨Rx, Ju⟩ = 0 for all u ∈ F (S). This implies Rx ∈
(JF (S))⊥. From Rx ∈ F (S)∩ (JF (S))⊥ and F (S)∩ (JF (S))⊥ = {0}, we have that
Sαx → RF (S)x = 0. Then, we obtain (2).

Suppose (2). From Lemma 4.2, JF (S) is a closed linear subspace of E∗. Then,
we have from [2, 3, 10, 9] that for any x ∈ E,

x = RF (S)x+ P(JF (S))⊥x,

where P(JF (S))⊥ is the metric projection of E onto (JF (S))⊥. So, we have from (2)
that

Sαx = Sα(RF (S)x+ P(JF (S))⊥x)

= SαRF (S)x+ SαP(JF (S))⊥x

= RF (S)x+ SαP(JF (S))⊥x

→ RF (S)x ∈ F (S).
Then, we obtain (1). Furthermore, we know from Corollary 2.3 that x − Tsx ∈
(JF (S))⊥ for all x ∈ E and s ∈ S. So, we have from (2) that Sα(x − Tsx) → 0.
Thus we have from Ts ◦ Sα = Sα ◦ Ts that for any x ∈ E and s ∈ S,

Sαx− Ts ◦ Sαx = Sαx− Sα ◦ Tsx

= Sα(x− Tsx) → 0.

Then, we obtain (3).
Suppose (3). We have from (3) and Ts ◦ Sα = Sα ◦ Ts that for any x ∈ E and

s ∈ S,

Sα(x− Tsx) = Sαx− Sα(Tsx)

= Sαx− Sα ◦ Ts(x)

= Sαx− Ts ◦ Sα(x)

→ 0.

So, we have that {Sαy} converges to 0 for all y ∈ {x− Tsx : x ∈ E, s ∈ S}. From
Lemmas 4.2 and 4.1, we have

(JF (S))⊥ = ({z − Tsz : z ∈ E, s ∈ S}⊥)⊥ = span{x− Tsx : x ∈ E, s ∈ S}.
Take x ∈ (JF (S))⊥. Then, for any ϵ > 0, we have that there exist {ai}ni=1 ⊂ R and
{yi}ni=1 ⊂ {x− Tsx : x ∈ E, s ∈ S} such that ∥x−

∑n
i=1 aiyi∥ < ϵ. Thus we have

∥Sαx∥ =
∥∥∥Sα

n∑
i=1

aiyi +
(
Sαx− Sα

n∑
i=1

aiyi

)∥∥∥
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≤
∥∥∥Sα

n∑
i=1

aiyi

∥∥∥+
∥∥∥Sαx− Sα

n∑
i=1

aiyi

∥∥∥
≤

∥∥∥Sα

n∑
i=1

aiyi

∥∥∥+
∥∥∥x−

n∑
i=1

aiyi

∥∥∥
≤

n∑
i=1

|ai|∥Sαyi∥+ ϵ

and hence

lim sup
α

∥Sαx∥ ≤ lim sup
α

( n∑
i=1

|ai|∥Sαyi∥+ ϵ
)
= ϵ.

Since ϵ > 0 is arbitrary, we have that for any x ∈ (JF (S))⊥, Sαx converges to 0.
Then, we obtain (2).

Furthermore, if (1) holds, then we have from the proof of (1) that for any x ∈ E,
{Sαx} converges strongly to RF (S)x ∈ F (S). �

Using Theorem 4.3, we have the following useful result.

Theorem 4.4. Let S be a commutative semitopological semigroup with identity.
Let E be a strictly convex, smooth and reflexive Banach space, let S = {Ts : s ∈ S}
be a continuous representation of S as linear contractive operators of E into itself
and let {Tn : n ∈ N} be a sequence of linear contractive operators of E into itself
such that F (S) ⊂ F (Tn) for all n ∈ N. Let Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 for all n ∈ N
and suppose that Ts ◦Sn = Sn ◦Ts for all n ∈ N and s ∈ S. Then, the following are
equivalent:

(1) {Snx} converges to an element of F (S) for all x ∈ E;
(2) {Snx} converges to 0 for all x ∈ (JF (S))⊥;
(3) Snx− Ts ◦ Snx → 0 for all x ∈ E and s ∈ S.

Furthermore, if (1) holds, then {Snx} converges to RF (S)x ∈ F (S), where RF (S) =

J−1ΠJF (S)J and ΠJF (S) is the generalized projection of E∗ onto JF (S).

Proof. For any n ∈ N, Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 is a linear contractive operator on
E and F (S) ⊂ F (Sn). Furthermore, from the assumption, Ts ◦ Sn = Sn ◦ Ts for all
n ∈ N and s ∈ S. So, we have the desired result from Theorem 4.3 �

5. Applications

In this section, using Theorems 4.3 and 4.4, we obtain some strong convergence
theorems for commutative families of linear contractive mappings in Banach spaces.

In 2003, Bauschk, Deutsch, Hundal and Park showed the following theorem [4].

Theorem 5.1. Let T be a contractive linear operator on a Hilbert space H; i.e.
∥T∥ ≤ 1, and let M be a closed linear subspace of H. Consider the following
statements;

(1) limn→∞ ∥Tnx− PMx∥ = 0 for all x ∈ H;
(2) M = F (T ) and Tnx converges to 0 for all x ∈ M⊥;
(3) M = F (T ) and Tnx− Tn+1x → 0 for all x ∈ E.
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Then, all statements are equivalent.

Using Theorem 4.3, we can obtain an extension of the above theorem to commu-
tative families of linear contractive mappings in Banach spaces.

Theorem 5.2. Let E be a strictly convex, smooth and reflexive Banach space and
let M be a closed linear subspace of E such that there exists a sunny generalized
nonexpansive retraction R of E onto M . Let S be a commutative semitopological
semigroup with identity and let S = {Ts : s ∈ S} be a continuous representation of
S as linear contractive operators of E into itself. Then the following are equivalent:

(1) {Tsx} converges to the element Rx of M for all x ∈ E;
(2) M = F (S) and {Tsx} converges to 0 for all x ∈ (JM)⊥;
(3) M = F (S) and Tsx− Ts+tx → 0 for all x ∈ E and t ∈ S.

Furthermore, if (1) holds, then R = RF (S) = J−1ΠJF (S)J, where ΠJF (S) is the
generalized projection of E∗ onto JF (S).

Proof. If (1) holds, then it is obvious that F (S) ⊂ M . In fact, let z ∈ F (S) and
z /∈ M . Since Tsz = z, s ∈ S and {Tsz} converges to the element Rz, we have
Mz = z and hence z ∈ M . This is a contradiction. Conversely, take z ∈ M . Then
we have Rz = z. Since {Tsz} converges to the element Rz = z, we have that for
any t ∈ S, {Ts+tz} converges to the element Ttz because Tt is continuous. On the
other hand, {Ts+tz} converges to the element z. So, we have Ttz = z. This implies
M ⊂ F (S). Then we get M = F (S). Define Ss = Ts for all s ∈ S. Then, we have
F (S) ⊂ F (Ss) and Tt ◦ Ss = Ss ◦ Tt for all s, t ∈ S. So, we have the desired result
from Theorem 4.3. �
Remark 5.3. IfM is a closed linear subspace of a Hilbert spaceH, then there exists
the metric projection P of H onto M . In a Hilbert space, the metric projection P
of H onto M is coincident with the sunny generalized nonexpansive retraction RM

of H onto M .

Applying Theorem 4.4, we obtain a strong convergence theorem of Mann’s type
for commutative semigroups of linear contractive operators in a Banach space. Be-
fore obtaining this result, we need the following lemma.

Lemma 5.4 (Eshita and Takahashi [8]). Let {αn} be a sequence of [0, 1] such that∑∞
n=1(1− αn) = ∞. Let {bn} and {εn} be sequences of [0,∞) such that

bn+1 ≤ αnbn + (1− αn)εn, ∀n ∈ N
and limn→∞ εn = 0. Then limn→∞ bn = 0.

Theorem 5.5. Let S be a commutative semitopological semigroup with identity. Let
E be a strictly convex, smooth and reflexive Banach space and let S = {Ts : s ∈ S}
be a continuous representation of S as linear contractive operators of E into itself.
Let {µn} be a sequence of means on C(S) which is strongly asymptotically invariant,
i.e., for each s ∈ S, ∥l∗sµn − µn∥ → 0, where l∗s is the adjoint operator of ls. Let
{αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and

∑∞
n=1(1− αn) = ∞.

Then, a sequence {xn} generated by x1 = x ∈ E and

xn+1 = αnxn + (1− αn)Tµnxn, n ∈ N
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converges strongly to the element Rx of F (S), where R = RF (S) = J−1ΠJF (S)J and
ΠJF (S) is the generalized projection of E∗ onto JF (S).

Proof. Let Tn = αnI+(1−αn)Tµn for all n ∈ N, where I is the identity operator on
E and let Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 for all n ∈ N. Then, we have that xn+1 = Snx.
For any n ∈ N, we have ∥Tn∥ ≤ 1 and F (S) ⊂ F (Tn). Indeed, we have

∥Tn∥ = ∥αnI + (1− αn)Tµn∥ ≤ αn∥I∥+ (1− αn)∥Tµn∥ ≤ 1.

We show F (S) ⊂ F (Tn). If x ∈ F (S), then Tnx = αnIx + (1 − αn)Tµnx = x and
hence F (S) ⊂ F (Tn). We also have that Ts ◦Tµn = Tµn ◦Ts for all n ∈ N and s ∈ S.
In fact, we have that for any x ∈ E, s ∈ S, y∗ ∈ E∗ and n ∈ N,

⟨TsTµnx, y
∗⟩ = ⟨Tµnx, T

∗
s y

∗⟩
= (µn)t⟨Ttx, T

∗
s y

∗⟩
= (µn)t⟨TsTtx, y

∗⟩
= (µn)t⟨TtTsx, y

∗⟩
= ⟨TµnTsx, y

∗⟩.

Then Ts ◦ Tµn = Tµn ◦ Ts.
Next, we show that Ts ◦ Sn = Sn ◦ Ts for all s ∈ S. When n = 1, we have that

for any s ∈ S, x ∈ E and y∗ ∈ E∗,

⟨Ts ◦ S1x, y
∗⟩ = ⟨Ts ◦ T1x, y

∗⟩
= ⟨Ts (α1I + (1− α1)Tµ1x, y

∗⟩)
= ⟨(α1I + (1− α1)Tµ1x, T

∗
s y

∗⟩)
= α1⟨x, T ∗

s y
∗⟩+ (1− α1)(µ1)t⟨Ttx, T

∗
s y

∗⟩
= α1⟨Tsx, y

∗⟩+ (1− α1)(µ1)t⟨TsTtx, y
∗⟩

= α1⟨Tsx, y
∗⟩+ (1− α1)(µ1)t⟨TtTsx, y

∗⟩
= ⟨α1Tsx+ (1− α1)Tµ1Tsx, y

∗⟩
= ⟨T1 ◦ Tsx, y

∗⟩
= ⟨S1 ◦ Tsx, y

∗⟩.

Then Ts ◦S1 = S1 ◦Ts. Suppose that for some k ∈ N, Ts ◦Sk = Sk ◦Ts for all s ∈ S.
Then, we have that for any s ∈ S,

Ts ◦ Sk+1 = Ts ◦ Tk+1 ◦ Sk

= Ts (αkSk + (1− αk)Tµk
◦ Sk)

= αkTs ◦ Sk + (1− αk)TsTµk
◦ Sk

= αkTs ◦ Sk + (1− αk)Tµk
Ts ◦ Sk

= αkI ◦ SkTs + (1− αk)Tµk
◦ SkTs

= Tk+1 ◦ SkTs

= Sk+1 ◦ Ts.
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Then, by induction, we have that Ts ◦ Sn = Sn ◦ Ts for all n ∈ N and s ∈ S. To
complete the proof, it is sufficient by Theorem 4.4 to show that for any s ∈ S,

∥xn − Tsxn∥ → 0, as n → ∞.

From 0 ∈ F (S), we have that

∥xn+1∥ = ∥αnxn + (1− αn)Tµnxn∥
≤ αn∥xn∥+ (1− αn)∥Tµnxn∥
≤ αn∥xn∥+ (1− αn)∥xn∥
≤ ∥xn∥

and hence ∥xn∥ ≤ ∥x∥. Using this, we have that for any s ∈ S and y∗ ∈ E∗,

|⟨Tµnxn − Ts ◦ Tµnxn, y
∗⟩| = |(µn)t⟨Ttxn, y

∗⟩ − (µn)t⟨Ttxn, T
∗
s y

∗⟩|
= |(µn)t⟨Ttxn, y

∗⟩ − (µn)t⟨Ts+txn, y
∗⟩|

= |(µn − l∗sµn)t⟨Ttxn, y
∗⟩|

≤ ∥µn − l∗sµn∥ sup
t∈S

|⟨Ttxn, y
∗⟩|

≤ ∥µn − l∗sµn∥∥xn∥∥y∗∥
≤ ∥µn − l∗sµn∥∥x∥∥y∗∥

and hence

(5.1) ∥Tµnxn − Ts ◦ Tµnxn∥ → 0.

We also have that for any s ∈ S,

∥xn+1 − Tsxn+1∥ = ∥αn(xn − Tsxn) + (1− αn)(Tµnxn − TsTµnxn)

≤ αn∥xn − Tsxn∥+ (1− αn)∥Tµnxn − TsTµnxn∥.

We obtain from (5.1) and Lemma 5.4 that

lim
n→∞

∥Tsxn − xn∥ = 0, ∀s ∈ S.

By Theorem 4.4, {xn} converges strongly to the element Rx of F (S), where R =
RF (S) = J−1ΠJF (S)J and ΠJF (S) is the generalized projection of E∗ onto JF (S).
This completes the proof. �

From Theorem 4.3, we can show a mean strong convergence theorem for com-
mutative semigroups of contractive linear operators in a Banach space; see Yosida
[39].

Theorem 5.6. Let S be a commutative semitopological semigroup with identity.
Let E be a strictly convex, smooth and reflexive Banach space, let S = {Ts : s ∈ S}
be a continuous representation of S as linear contractive operators of E into itself.
Let {µα} be a net of strongly asymptotically invariant means on C(S), i.e., for each
s ∈ S, ∥l∗sµα − µα∥ → 0, where l∗s is the adjoint operator of ls. Then, for each
x ∈ E, {Tµαx} converges strongly to the element Rx of F (S), where R = RF (S) =

J−1ΠJF (S)J and ΠJF (S) is the generalized projection of E∗ onto JF (S).
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Proof. For any α, the operator Tµα is a contractive linear operator. Furthermore,
we have F (S) ⊂ F (Tµα) and Ts ◦ Tµα = Tµα ◦ Ts for any α and s ∈ S. In fact, if
u ∈ F (S), then we have that for any y∗ ∈ E∗,

⟨Tµαu, y
∗⟩ = (µα)t⟨Ttu, y

∗⟩ = (µα)t⟨u, y∗⟩ = ⟨u, y∗⟩

and hence Tµαu = u. This implies F (S) ⊂ F (Tµα). We also have that for any
x ∈ E, s ∈ S, y∗ ∈ E∗ and α,

⟨TsTµαx, y
∗⟩ = ⟨Tµαx, T

∗
s y

∗⟩
= (µα)t⟨Ttx, T

∗
s y

∗⟩
= (µα)t⟨TsTtx, y

∗⟩
= (µα)t⟨TtTsx, y

∗⟩
= ⟨TµαTsx, y

∗⟩.

Then Ts ◦ Tµα = Tµα ◦ Ts. To complete the proof, it is sufficient to show that
Tµαx− TsTµαx → 0 for all x ∈ E and s ∈ S. In fact, we have

|⟨Tµαx− Ts ◦ Tµαx, y
∗⟩| = |(µα)t⟨Ttx, y

∗⟩ − (µα)t⟨Ttx, Tsy
∗⟩|

= |(µα)t⟨Ttx, y
∗⟩ − (µα)t⟨Ts+tx, y

∗⟩|
≤ ∥µα − l∗sµα∥ sup

t∈S
|⟨Ttx, y

∗⟩|

≤ ∥µα − l∗sµα∥∥x∥∥y∗∥

and hence

∥Tµαx− Ts ◦ Tµαx∥ ≤ ∥µα − l∗sµα∥∥x∥.
So, we obtain that Tµαx − Ts ◦ Tµαx → 0 for each x ∈ E and s ∈ S. Using
Theorem 4.3, {Tµαx} converges strongly to the element Rx of F (S), where R =
RJF (S) = J−1ΠJF (S)J and ΠJF (S) is the generalized projection of E∗ onto JF (S).
This completes the proof. �

Remark 5.7. In Theorem 5.6, note that the point z = limα Tµαx is characterlized
by the sunny generalized nonexpansive retraction R = RF (S) = J−1ΠJF (S)J of E
onto F (S). Such a result is still new even if the operators Ts, s ∈ S are linear.
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