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Recall that the Nakano sequence space l{pj}, where 1 ≤ pj < ∞, is the space of
all real sequences x = (x(j)) such that

ϱ(λx) :=
∞∑
j=1

|λx(j)|pj < ∞

for some λ > 0 equipped with the norm defined by

∥x∥ = inf
{
λ > 0 : ϱ

(x
λ

)
≤ 1

}
.

In fact, Nakano defined the norm, for each x = (x(j)) such that
∞∑
j=1

1
pj

∣∣x(j)
λ

∣∣pj < ∞

for some λ > 0, by

∥x∥′ = inf

λ > 0 :

∞∑
j=1

1

pj

∣∣∣∣x(j)λ

∣∣∣∣pj ≤ 1

 .

However, both spaces are isometrically equal (see [4]).

2. Results

Let ei stand for the standard basis for R∞. That is, ej = (δjk)k for all j.

Lemma 2.1. The following statements are equivalent:

(1) The sequence {pj} is unbounded;
(2) There exists a norm-one element x such that

ϱ(λx) = ∞

for all λ > 1.

Proof. (1)⇒(2) Without loss of generality, we may assume that pj > j2 for all j ∈ N.
Let x := (x(j)) where x(j) =

(
1
2

)1/j
for all j ∈ N. It is easy to see that (2) holds.

(2)⇒(1) We assume that {pj} is bounded and pj ≤ p for some p > 0. Then, for

each norm-one element x ∈ ℓ{pj}, we have

ϱ(λx) ≤ λpϱ(x) ≤ λp < ∞

for all λ > 1. �

We recall the closed subspace

h{pj} := {x ∈ ℓ{pj} : ϱ(λx) < ∞ for all λ > 0}.

Note that h{pj} = l{pj} if and only if the sequence {pj} is bounded. Thus, in [3],

only geometric properties of h{pj} are characterized. A careful reading allows us to
prove only the following four geometric properties, namely, k-rotundity, reflexivity,
property (H) and uniform λ-property. For each of the first three properties, we
prove that the boundedness of the sequence {pj} is its necessary condition. While
the last property, the characterization in [3] still holds even if we drop away the
boundedness of {pj}.
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2.1. k-Rotundity. A Banach space X is said to be k-rotund, where k ≥ 1, if for
any norm-one elements x1, . . . , xk+1 ∈ X with ∥x1 + · · · + xk+1∥ = k + 1 implies
x1, . . . , xk+1 are linearly dependent.

Theorem 2.2. If ℓ{pj} is k-rotund, then {pj} is bounded.

Proof. Suppose the assertion does not hold. Thus, by Lemma 2.1, there exists a
norm-one element x := (x(j)) such that ϱ(λx) = ∞ for all λ > 1. Without loss
of generality, we may assume that x(j) ̸= 0 for all j = 1, . . . , k + 1. For each
n = 1, . . . , k + 1, we put

xn := x(n)en +
∞∑

j=k+2

x(j)ej .

Then {x1, . . . , xk+1} is a linearly independent subset of norm-one elements of ℓ{pj}.
Furthermore,

1 =

∥∥∥∥∥∥
∞∑

j=k+2

x(j)ej

∥∥∥∥∥∥ ≤
∥∥∥x1 + · · ·+ xk+1

k + 1

∥∥∥ ≤ 1.

This is a contradiction. �
2.2. Reflexivity. A Banach space X is said to be reflexive if the canonical map
from X into its second dual X∗∗ is surjective. Equivalently, every bounded sequence
in X has a weakly convergent subsequence.

Lemma 2.3. Let x be an element in Lemma 2.1. Then

inf{∥x− y∥ : y ∈ h{pj}} = 1.

Proof. The inequality inf{∥x − y∥ : y ∈ h{pj}} ≤ 1 is obvious. To see the reverse
inequality, we first note that the subspace F of all real sequences with finitely many
nonzero is dense in h{pj}. Now let y :=

∑n
j=1 y(j)ej ∈ F where n ∈ N. It follows

then that

∥x− y∥ ≥

∥∥∥∥∥∥
∞∑

j=n+1

x(j)ej

∥∥∥∥∥∥ = 1.

This completes the proof. �
Theorem 2.4. If ℓ{pj} is reflexive, then {pj} is bounded.

Proof. Suppose not, by Lemma 2.1, there exists a norm-one element x = (x(j))
such that ϱ(λx) = ∞ for all λ > 1. For each n ∈ N, we put

xn :=
∞∑
j=n

x(j)ej .

It is obvious that {xn} is a sequence of norm-one elements in ℓ{pj}. If the sequence
{xn} has a weakly convergent subsequence, then the whole sequence is a weakly null
sequence. By the Hahn-Banach Theorem, there exists a norm-one bounded linear
functional f such that

f(x) = inf{∥x− y∥ : y ∈ h{pj}} = 1,
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and f(y) = 0 for all y ∈ h{pj}.

On the other hand, we have xn − x ∈ h{pj} and hence

f(xn) = f(x) + f(xn − x) = 1

for all n ∈ N which is a contradiction. �

2.3. Property (H). A Banach space X is said to have property (H) if weak con-
vergence and norm convergence of any sequence of norm-one elements coincide.

Theorem 2.5. If ℓ{pj} has property (H), then {pj} is bounded.

Proof. See [2, Theorem 2]. �

2.4. Uniform λ-property. A norm-one element e of a Banach space is said to be
an extreme point if it cannot be a midpoint of any two distinct norm-one elements.
For a norm-one element x, we define

λ(x) := sup{λ ∈ [0, 1] : x = λe+ (1− λ)y, e is an extreme point, ∥y∥ ≤ 1}.

A Banach space X is said to have uniform λ-property if

λ(X) := inf{λ(x) : ∥x∥ = 1} > 0.

It is easy to see that if x is an extreme point, then λ(x) = 1 but the converse
does not hold. However, it is not difficult to prove that if λ(x) = 1, then x is a limit
point of the set of extreme points.

Theorem 2.6.

λ(ℓ{pj}) = inf{λ(x) : ϱ(x) = 1}.

Proof. It suffices to prove that

λ(l{pi}) ≥ inf{λ(x) : ϱ(x) = 1} =: λ0.

Let x = (x(j)) ∈ ℓ{pi} be a norm-one element such that ϱ(x) < 1. Then, for any
α ∈ (0, 1),

ϱ
( x

1− α

)
= ∞.

For every n ∈ N, there exists kn ∈ N such that

kn∑
j=1

∣∣∣ x(j)
1− 1

n

∣∣∣pj > 1.

We can choose αn ∈ (0, 1
n) so that

kn∑
j=1

∣∣∣ x(j)

1− αn

∣∣∣pj + ∞∑
j=kn+1

|x(j)|pj = 1.

Define

y :=

kn∑
j=1

x(j)

1− αn
ej +

∞∑
j=kn+1

x(j)ej
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and

z =

∞∑
j=kn+1

x(j)ej .

Then ϱ(y) = 1 and ∥z∥ ≤ 1. Moreover,

x = (1− αn)y + αnz.

Hence, by Proposition 2.12 of [1],

λ(x) ≥ (1− αn)λ(y) ≥ (1− αn)λ0.

Letting n → ∞ yields λ(x) ≥ λ0 and then λ(ℓ{pj}) ≥ λ0. This completes the
proof. �

The following is also proved in [5] without assuming the boundedness of the
sequence {pj}.

Proposition 2.7. A norm-one element x = (x(j)) ∈ ℓ{pj} is an extreme point if
and only if

(1) ϱ(x) = 1 and
(2) the cardinality of {j ∈ N : x(j) ̸= 0 and pj = 1} ≤ 1.

Supplement to the original proof of [3, Theorem 5], we have the following result.

Theorem 2.8. The space ℓ{pj} has uniform λ-property if and only if w :=
#{j ∈ N : pj = 1} < ∞. Furthermore,

λ(ℓ{pj}) =

{
1/w if w ≥ 1,

1 if w = 0.

Proof. We need only prove the last assertion when w = 0 and 1. In these cases, by
Proposition 2.7, {x ∈ ℓ{pi} : ∥x∥ = 1 and ϱ(x) = 1} is just the set of all extreme
points. Therefore, by the observation before Theorem 2.6, λ(x) = 1 for all norm-one

elements x ∈ ℓ{pi} with ϱ(x) = 1. �

References

[1] S. Chen, Geometry of Orlicz spaces, Dissetationes Math. (Rozprawy Math.) 356 (1996).
[2] Y. Cui, H. Hudzik, and R. P luciennik, Banach-Saks property in some Banach sequence spaces,

Ann. Polon. Math. 65 (1997), 193–202.
[3] S. Dhompongsa, Convexity properties of Nakano spaces, Science Asia 26 (2000), 21–31.
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