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ABSTRACT. We discuss the characterizations of all geometric properties of Nakano
spaces 1trs} appeared in [3] without assuming the boundedness of the sequence

{p;}-

1. INTRODUCTION

Geometric properties are important tools for studying the nonlinear functional
analysis. For example, the problem of finding a nearest point in the best approx-
imation context is solvable if a Banach space has a very nice geometric property.
In the literature, many mathematicians have paid their attention on the classical
sequence spaces P and their generalizations. Recall that P, where 1 < p < oo, is
the space of all real sequences x := (z(j)) such that

S ()P < oc.
j=1

The following two concepts are the natural generalizations of /. To replace the
function t — [t|P by the more general convex function M : [0, 00) — [0, 00|, it leads
to the concept of Orlicz sequence spaces. On the other hand, it is interesting to
study the variable p, that is, the space of all real sequences = := (z(j)) such that

D ()P < oo
j=1

for some A > 0. The latter space is known as the Nakano sequence space.

In [3], Dhompongsa investigated many geometric properties of the Nakano se-
quence space [{Pi}. There are many interesting idea appeared there but, unfortu-
nately, this paper has not been widely known as it should be. It was not even be
reviewed in MathSciNet or Zentralblatt MATH. It is the author’s purpose to draw
the readers’ attention to this paper.

It should be noted that the assumption that the sequence {p;} is bounded is
imposed in the work of Dhompongsa. In this paper, we prove that this condition
turns out to be a necessary condition of some of his results and some can be proved
without this assumption.
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Recall that the Nakano sequence space I3}, where 1 < pj < 00, is the space of
all real sequences x = (z(j)) such that

o0

o) =y Pa(i)|P < oo

J=1

for some A > 0 equipped with the norm defined by
x
=i : — ) < .
Iz 1nf{>\ >0:0 (A) < 1}

o0
— (i 1 |z(j) |Pi
In fact, Nakano defined the norm, for each x = (x(j)) such that '21 pfj‘%‘ T <00
]:

for some A > 0, by

-\ |Pj
0"

=1
||’ =inf S A>0:) —
j=1 P

However, both spaces are isometrically equal (see [4]).

2. RESULTS

Let e; stand for the standard basis for R*. That is, e; = (;x)x for all j.

Lemma 2.1. The following statements are equivalent:
(1) The sequence {p;} is unbounded;
(2) There ezists a norm-one element x such that
o(Az) = o0
for all A > 1.

Proof. (1)=-(2) Without loss of generality, we may assume that p; > j* for all j € N.
Let z := (x(j)) where z(j) = (%)1/J for all j € N. It is easy to see that (2) holds.

(2)=(1) We assume that {p;} is bounded and p; < p for some p > 0. Then, for
each norm-one element z € ¢{Pi}, we have

o(Axr) < MPo(x) < AP < 00
for all A > 1. g

We recall the closed subspace
pPit .= {2 € 0P} ; p(A\z) < oo for all A > 0}.

Note that h{Pit = [{Pi} if and only if the sequence {p;} is bounded. Thus, in [3],
only geometric properties of h{Pi} are characterized. A careful reading allows us to
prove only the following four geometric properties, namely, k-rotundity, reflexivity,
property (H) and uniform A-property. For each of the first three properties, we
prove that the boundedness of the sequence {p;} is its necessary condition. While
the last property, the characterization in [3] still holds even if we drop away the
boundedness of {p;}.
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2.1. k-Rotundity. A Banach space X is said to be k-rotund, where k > 1, if for
any norm-one elements x1,...,x5r1 € X with |21 + -+ + 21| = & + 1 implies
Z1,...,Tp+1 are linearly dependent.

Theorem 2.2. If (1P} s k-rotund, then {p;} is bounded.

Proof. Suppose the assertion does not hold. Thus, by Lemma 2.1, there exists a
norm-one element z := (z(j)) such that p(Ax) = oo for all A > 1. Without loss
of generality, we may assume that x(j) # 0 for all j = 1,...,k + 1. For each
n=1,...,k+ 1, we put

ZTp = x(n)e, + Z z(j)e;.

j=k+2
Then {x1,...,zk11} is a linearly independent subset of norm-one elements of 0pi},
Furthermore,
(o]
. Ty + o+ T
1= 1 < H H <1.

Z z(j)ej|| < k1 <

j=k+2
This is a contradiction. O

2.2. Reflexivity. A Banach space X is said to be reflexive if the canonical map
from X into its second dual X** is surjective. Equivalently, every bounded sequence
in X has a weakly convergent subsequence.

Lemma 2.3. Let x be an element in Lemma 2.1. Then
inf{||z —y| : y € KP}} =1.

Proof. The inequality inf{||z — y|| : y € h{Pi}} < 1 is obvious. To see the reverse
inequality, we first note that the subspace F' of all real sequences with finitely many
nonzero is dense in hiPi}. Now let y := Z?:l y(j)e; € F where n € N. It follows
then that

o0

lz =yl = || Y «(ies| =1.
j=n+1
This completes the proof. O

Theorem 2.4. If (17i} s reflexive, then {p;} is bounded.

Proof. Suppose not, by Lemma 2.1, there exists a norm-one element x = (x(j))
such that o(Ax) = oo for all A > 1. For each n € N, we put

Ty 1= Zx(j)ej.

j=n

It is obvious that {x,} is a sequence of norm-one elements in ¢{Ps}. If the sequence
{z,} has a weakly convergent subsequence, then the whole sequence is a weakly null
sequence. By the Hahn-Banach Theorem, there exists a norm-one bounded linear
functional f such that

flz) = int{||lz —y|| : y € AP} =1,
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and f(y) = 0 for all y € hiri},
On the other hand, we have z,, — 2 € h?i} and hence

fan) = fz) + fon —2) =1

for all n € N which is a contradiction. O

2.3. Property (H). A Banach space X is said to have property (H) if weak con-
vergence and norm convergence of any sequence of norm-one elements coincide.

Theorem 2.5. If (1Pi} has property (H), then {p;} is bounded.
Proof. See [2, Theorem 2. O

2.4. Uniform A-property. A norm-one element e of a Banach space is said to be
an extreme point if it cannot be a midpoint of any two distinct norm-one elements.
For a norm-one element x, we define

Az) :=sup{A € [0,1] : z = Ae + (1 — \)y, e is an extreme point, ||y|| < 1}.
A Banach space X is said to have uniform \-property if
AX) :=inf{\(z) : ||z|| = 1} > 0.

It is easy to see that if x is an extreme point, then A(z) = 1 but the converse
does not hold. However, it is not difficult to prove that if A(z) = 1, then z is a limit
point of the set of extreme points.

Theorem 2.6.
APy = inf{\(z) : o(z) = 1}.

Proof. 1t suffices to prove that
AP > inf{\ () : o(x) = 1} =: .

Let z = (x(j)) € £{?} be a norm-one element such that o(xz) < 1. Then, for any

a € (0,1),
Q(l—a) -

For every n € N, there exists k, € N such that

We can choose ay,, € (0,2) so that

Define
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and

z = Z z(j)e;.

Then p(y) =1 and ||z|| < 1. Moreover,

x=(1—an)y+ ayz.
Hence, by Proposition 2.12 of [1],
AMz) = (1= an)A(y) = (1 — an)Ao.

Letting n — oo yields A(z) > Ao and then A(¢{Pi}) > Xg. This completes the
proof. O

The following is also proved in [5] without assuming the boundedness of the
sequence {p;}.

Proposition 2.7. A norm-one element x = (x(j)) € (1P} is an extreme point if
and only if

(1) o(z) =1 and

(2) the cardinality of {j € N: z(j) #0 and p; =1} < 1.

Supplement to the original proof of [3, Theorem 5], we have the following result.

Theorem 2.8. The space (1Pit has uniform M-property if and only if w =
#{j € N:p; =1} < co. Furthermore,

LR K

Proof. We need only prove the last assertion when w = 0 and 1. In these cases, by
Proposition 2.7, {z € ¢{?i} : ||z|| = 1 and g(z) = 1} is just the set of all extreme
points. Therefore, by the observation before Theorem 2.6, A(z) = 1 for all norm-one
elements = € (1P} with o(x) = 1. O
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