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Definition 1.2. A multi-valued operator G : H → 2H is said to be:
(1) monotone if

⟨y2 − y1, x2 − x1⟩ ≥ 0

for all x1, x2 ∈ H, y1 ∈ Gx1 and y2 ∈ Gx2;
(2) maximal monotone if it is monotone and there is no other monotone operator

whose graph contains strictly the graph G(G) of G, where graph of G is defined by

G(G) = {(x, y) ∈ H ×H : x ∈ D(G), y ∈ Gx};

(3) strongly monotone if there exists α > 0 such that

(1.1) ⟨y2 − y1, x2 − x1⟩ ≥ α∥x1 − x2∥2

for all x1, x2 ∈ H, y1 ∈ Gx1 and y2 ∈ Gx2.

A well-known example (see [7, 8]) of a maximal monotone operator is the sub-
gradient

∂ϕ(x) = {z ∈ H : ϕ(x)− ϕ(y) ≤ ⟨z, x− y⟩, ∀y ∈ H}
of a proper lower semi-continuous convex function ϕ : H → (−∞,∞].

In the sequel, we regard the statements [x, y] ∈ G, G(x) ∋ y, −y +G(x) ∋ 0 and
y ∈ G(x) as synonymous. In [7], it is shown that, if G is maximal monotone, then
G is closed in the sense that

[xm, ym] ∈ G, lim
m→∞

xm = x, lim
m→∞

ym = y =⇒ [x, y] ∈ G.

In this paper, we consider the following problem: Let F : D → H be an operator
which is Fréchet differentiable at each point of D0 and G : H → 2H be a maximal
monotone operator. Find x ∈ H such that

(1.2) Fx+Gx ∋ 0.

Examples of the variational inclusion (1.2) are as follows:

(1) If G = ∂ϕ, then the problem (1.2) reduces to the following problem:
Find x ∈ H such that

(1.3) ⟨Fx, y − x⟩ ≥ ϕ(x)− ϕ(y)

for all y ∈ H, which is called the mixed variational inequality and has been studied
by many authors (see, for example, [4, 5, 9]).

(2) Let G = ∂δK , where ∂δK is the indicator function of a nonempty closed and
convex subset K of H defined by

∂δK(x) =

{
0, x ∈ K;
∞, otherwise.

In this case, the problem (1.2) reduces to the following problem:
Find x ∈ K such that

⟨Fx, y − x⟩ ≥ 0

for all y ∈ K, which is the classical variational inequality (see [6, 12]).
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For solving the operator equation (1.2), the generalized Newton method is given
by

(1.4) F ′
xn
xn+1 +Gxn+1 ∋ F ′

xn
xn − Fxn

for all n ≥ 0, where F ′
x denotes the Fréchet derivative of F at the point x ∈

D0. The convergence of the generalized Newton method (1.4) can be found in
[1, 2, 10, 11, 13, 14, 15, 16, 17].

In [13, Theorem 2.10], the existence and uniqueness of solutions of the problem
(1.2) was discussed and the following semi-local convergence analysis of (1.4) was
given.

Theorem 1.3. Let F be an operator defined on a closed convex set D of a Hilbert
space H and has the Fréchet derivative at each point of D0. Assume that G : H →
2H be a maximal monotone operator satisfying (1.1). For some x0 ∈ D0, assume
that the operators F and G satisfy the following conditions:

(C1) there exists y0 ∈ H such that y0 ∈ G(x0) and ∥F (x0) + y0∥ ≤ β for some
β > 0;

(C2) ⟨F ′
x0
x, x⟩ ≥ c0∥x∥2 for all x ∈ H and for some real number c0;

(C3) ∥F ′
x − F ′

y∥ ≤ K∥x− y∥ for all x, y ∈ D0 and for some K ≥ 0.

Let c0 + α > 0 and denote d = β
c0+α and h = Kd

c0+α . Assume that h < 1
2 and

Br[x0] ⊆ D0, where r = 2d
1+

√
1−2h

. Then we have the following:

(1) The operator equation (1.2) has a unique solution x∗ in Br1 [x0] ∩D, where
r1 =

2d
1−

√
1−2h

.

(2) The sequence {xn} generated by (1.4) remains in Br[x0] and converges to x∗.
(3) The following error estimate holds:

(1.5) ∥xn+1 − x∗∥ ≤ d

h
γn+1

for all n ≥ 1, where γ = 1−
√
1− 2h.

In [2, 17], the authors discussed the semilocal convergence analysis of (1.4) using
all the conditions of Theorem 1.3 and the center Lipschitz condition

(1.6) ∥F ′
x − F ′

x0
∥ ≤ K0∥x− x0∥

for all x, y ∈ D0 and for some K0 ≥ 0. In [18, 19, 20], the following general condition
is considered for the convergence of Newton-like methods

(1.7) ∥F ′
x − F ′

y∥ ≤ ω(∥x− y∥)

for all x, y ∈ D0, where ω ∈ Φ. It is interesting to consider the following condition:

(1.8) ∥F ′
x − F ′

x0
∥ ≤ ω0(∥x− x0∥)

for all x ∈ D0, where ω0 ∈ Φ. It is easy to see that (1.8) is a weaker assumption
than (1.7).

Recently, Argyros and Hilout [3] have studied the convergence analysis of

(1.9) xn+1 = xn −A(xn)
−1(F (xn) +G(xn))
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using the conditions (1.7) and (1.8) for solving the operator equation

(1.10) F (x) +G(x) = 0,

where F is Fréchet differentiable, G is continuous operator defined on Banach spaces
and A(x) is an approximation of F ′

x.
In the present paper, we introduce the following Newton-like method for finding

the solution of the operator equation (1.2) in Hilbert spaces.

Algorithm 1.1. Let A(x) be an approximation of F ′
x for each x ∈ D0. Starting

with x0 ∈ D0 and, after xn ∈ D0 is defined, we define the next iterate xn+1 as
follows:

(1.11) A(xn)xn+1 +Gxn+1 ∋ A(xn)xn − Fxn

for all n ≥ 0.

Motivated by Argyros and Hilout [3], the purpose of this paper is to prove the
semi-local convergence analysis of Algorithm 1.1 under both the conditions (1.7) and
(1.8). The results presented in this paper improve and extend the corresponding
results announced in [3, 13, 15]. As applications of our results, we discuss the
solution of the nonlinear variational inequality. By numerical example, we show the
applicability of our results.

2. Convergence analysis

Before giving our main convergence result, we establish two technical lemmas
which are useful in the sequel.

Lemma 2.1. Let c0, l0, H, l1, α be some nonnegative real numbers and ω, ω0, ω1 ∈
Φ. Let η > 0. Assume that the scalar equation

(2.1) (c0 + α− l0 − ω0(r))(η − r) + (Hω(η) + ω1(r) + l1)r = 0

has a minimum positive zero r∗ such that

(2.2) Hω(η) + ω1(r
∗) + ω0(r

∗) < c0 + α− l0 − l1.

Then the sequence {tn} defined by

(2.3)

{
t0 = 0, t1 = η,

tn+1 = tn + (Hω(tn−tn−1)+ω1(tn)+l1)
(c0+α−l0−ω0(tn))

(tn − tn−1)

is nondecreasing in [η, r∗] with

tn − tn−1 ≤ dn−1η(2.4)

for all n ≥ 1, where d = (Hω(η)+ω1(r∗)+l1)
(c0+α−l0−ω0(r∗))

and it converges to its least upper bound

t∗.

Proof. By the principle of induction, we show that the sequence {tn} remains in
[η, r∗] and holds (2.4). Since r∗ is the minimum positive root of (2.1), we have
t1 = η ≤ r∗. Hence our assertion holds for n = 1. Assume that our assertion holds
for some positive integer n = k. Using (2.3), we have

tk+1 = tk +
(Hω(tk − tk−1) + ω1(tk) + l1)

(c0 + α− l0 − ω0(tk))
(tk − tk−1)
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≤ tk + d(tk − tk−1)

≤ tk−1 + d(tk−1 − tk−2) + d(tk − tk−1)

≤ tk−1 + dk−1η + dkη

≤ (1 + d+ · · ·+ dk)η

=
1− dk

1− d
η

<
η

1− d
= r∗.

Hence tk+1 is in [η, r∗]. Using (2.3), we have

tk+1 − tk =
(Hω(tk − tk−1) + ω1(tk) + l1)

(c0 + α− l0 − ω0(tk))
(tk − tk−1)

≤ (Hω(η) + ω1(r
∗) + l1)

(c0 + α− l0 − ω0(r∗))
(tk − tk−1)

≤ dkη.

Thus (2.4) holds for n = k + 1. Therefore, {tn} defined by (2.3) is in [η, r∗] and
holds the estimate (2.4). By the definitions of ω, ω0, ω1 and (2.3), it follows that
tn ≤ tn+1 for all n ≥ 0. Hence the sequence {tn} is nondecreasing, bounded above
and as such it converges to its unique least upper bound t∗ for some t∗ ∈ [η, r∗].
This completes the proof. �

Lemma 2.2 ([7, 8, 13, 17]). Let S be a bounded linear operator from H into H and
G be a maximal monotone operator from H into 2H satisfying (1.1). Assume that

(i) ⟨S(x), x⟩ ≥ c0∥x∥2 for all x ∈ H and for some real number c0;

(ii) c0 + α > 0.

Then, for any b ∈ H, there exists a unique z ∈ H satisfying the generalized equation

Sz +Gz ∋ b.

Now, we ready to present the semilocal convergence analysis of (1.11).

Theorem 2.3. Let F be an operator defined on a closed convex subset D of a Hilbert
space H with values in H such that F is continuously Fréchet differentiable at each
point of D0 and G be a maximal monotone operator from H into 2H satisfying (1.1).
Let A(x) be an approximation of F ′

x, x ∈ D0. For some x0 ∈ D0, assume that the
operators F , G, F ′

x and A(x) satisfy (C1) and (1.7) with ω ∈ Φ and the following
conditions:

(C4) ⟨A(x0)(x), x⟩ ≥ c0∥x∥2 for all x ∈ H and for some real number c0;
(C5) ∥A(x)−A(x0)∥ ≤ ω0(∥x−x0∥)+ l0 for all x ∈ D0, for some l0 ≥ 0 and for

some ω0 ∈ Φ;
(C6) ∥F ′

x − A(x)∥ ≤ ω1(∥x − x0∥) + l1 for all x ∈ D0, for some l1 ≥ 0 and for
some ω1 ∈ Φ;

(C7) the function ω satisfies ω(ts) ≤ h(t)ω(s) for all t ∈ [0, 1] and s ∈ [0,∞),
where h is a continuous, positive and nondecreasing function defined on [0, 1].
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Let H =
∫ 1
0 h(t)dt and η = β

c0+α . Assume that the scalar equation defined by

(2.1) has a minimum positive zero r∗ such that (2.2) is satisfied. Let Br∗ [x0] ⊆ D0.
Then we have the following:

(1) The sequence {xn} generated by (1.11) is well defined, remains in Br∗ [x0]
and converges to a solution x∗ ∈ Br∗ [x0] of (1.2). Moreover, the following error
estimates hold:

(2.5) ∥xn − xn−1∥ ≤ tn − tn−1,

(2.6) ∥xn − x0∥ ≤ tn

and

(2.7) ∥xn − x∗∥ ≤ t∗ − tn,

where {tn} is a sequence generated by (2.3) and t∗ is the limit of sequence {tn}.
(2) Further, if

(2.8) Hω(r∗) + ω1(r
∗) + ω0(r

∗) < c0 + α− l0 − l1,

then the solution of (1.2) is unique in Br∗ [x0].

Proof. (1) It follows from Lemma 2.1 that the sequence {tn} defined by (2.3) is non-
decreasing in [η, r∗] and converges to some t∗ ∈ [η, r∗]. By the principle of induction,
we show that the sequence {xn} is well defined in Br∗ [x0] and the conditions (2.5)–
(2.6) hold for all n ≥ 1. It follows from the condition (C4) and Lemma 2.2 that the
first iterate x1 in (1.11) is defined uniquely. Using (1.1) and (1.11), we have

α∥x1 − x0∥2 ≤ ⟨−A(x0)(x1 − x0)− F (x0)− y0, x1 − x0⟩
≤ −⟨A(x0)(x1 − x0), x1 − x0⟩+ ⟨−F (x0)− y0, x1 − x0⟩.

Using (C1) and (C4), we have

∥x1 − x0∥ ≤ β

c0 + α
= η = t1 − t0 < r∗.

Hence x1 ∈ Br∗ [x0] and (2.5)–(2.6) hold for n = 1. Assume that vector xk given by
(1.11) is well defined in Br∗ [x0] and (2.5)-(2.6) hold for some positive integer n = k.
Note that

∥A(xk)−A(x0)∥ ≤ ω0(∥xk − x0∥) + l0 ≤ ω0(tk) + l0.

Therefore, we have

⟨A(x0)x−A(xk)x, x⟩ ≤ ∥A(xk)−A(x0)∥∥x∥2 ≤ (ω0(tk) + l0)∥x∥2

for all x ∈ H, which implies that

⟨A(xk)x, x⟩ ≥ (c0 − l0 − ω0(tk))∥x∥2

for all x ∈ H. Hence it follows from Lemma 2.2 that the vector xk+1 given by (1.11)
is well defined in H. Using (1.1), (1.7), (1.11) and (C6)–(C7), we have

α∥xk+1 − xk∥2

≤ ⟨−A(xk)(xk+1 − xk)− F (xk) +A(xk−1)(xk − xk−1) + F (xk−1), xk+1 − xk⟩
= ⟨−A(xk)(xk+1 − xk), xk+1 − xk⟩

+⟨−F (xk) + F ′
xk−1

(xk − xk−1) + F (xk−1), xk+1 − xk⟩
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+⟨−F ′
xk−1

(xk − xk−1) +A(xk−1)(xk − xk−1), xk+1 − xk⟩

≤ −(c0 − l0 − ω0(tk))∥xk+1 − xk∥2

+∥F (xk)− F (xk−1)− F ′
xk−1

(xk − xk−1)∥∥xk+1 − xk∥
+∥F ′

xk−1
−A(xk−1)∥∥xk − xk−1∥∥xk+1 − xk∥

≤ −(c0 − l0 − ω0(tk))∥xk+1 − xk∥2

+

∫ 1

0
∥F ′

xk−1+t(xk−xk−1)
− F ′

xk−1
∥∥xk − xk−1∥∥xk+1 − xk∥dt

+∥F ′
xk−1

−A(xk−1)∥∥xk − xk−1∥∥xk+1 − xk∥

≤ −(c0 − l0 − ω0(tk))∥xk+1 − xk∥2

+

∫ 1

0
h(t)ω(∥xk − xk−1∥)∥xk − xk−1∥∥xk+1 − xk∥dt

+(ω1(∥xk − x0∥) + l1)∥xk − xk−1∥∥xk+1 − xk∥,

which gives that

∥xk+1 − xk∥

≤ 1

(c0 + α− l0 − ω0(tk))
(Hω(∥xk − xk−1∥) + ω1(∥xk − x0∥) + l1)

×∥xk − xk−1∥

≤ 1

(c0 + α− l0 − ω0(tk))
(Hω(tk − tk−1) + ω1(tk) + l1) (tk − tk−1)

≤ tk+1 − tk.

Note

∥xk+1 − x0∥ ≤ ∥xk+1 − xk∥+ · · ·+ ∥x1 − x0∥ ≤ tk+1 < r∗.

Thus xk+1 ∈ Br∗ [x0], (2.5) and (2.6) hold for all n = k+1. By induction principle,
the sequence {xn} remains in Br∗ [x0] and (2.5)–(2.6) hold. Note that the sequence
{tn} majorizes the sequence {xn}. Hence the sequence {xn} is a Cauchy sequence
and hence converges to some x∗ ∈ Br∗ [x0]. Further, we observe that

∥xm+n − xn∥ ≤ ∥xm+n − xm+n−1∥+ · · ·+ ∥xn+1 − xn∥
≤ tm+n − tm+n−1 + · · ·+ tn+1 − tn(2.9)

= tm+n − tn.

Letting limit as m → ∞ in (2.9), we get (2.7).
Now, we show that x∗ is a solution of (1.2). Write

yn = −A(xn)(xn+1 − xn)− F (xn).

Then, by (1.11), we have yn ∈ G(xn+1). Now, we can write

∥yn + F (x∗)∥
= ∥A(xn)(xn+1 − xn) + F (xn)− F (x∗)∥
≤ ∥A(xn)−A(x0)∥∥xn+1 − xn∥+ ∥A(x0)∥∥xn+1 − xn∥
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+

∫ 1

0
∥F ′

x∗+t(xn−x∗) − F ′
x0
∥∥xn − x∗∥dt+ ∥F ′

x0
∥∥xn − x∗∥

≤ (ω0(r
∗) + ∥A(x0)∥+ l0)∥xn+1 − xn∥+ (ω(r∗) + ∥F ′

x0
∥)∥xn − x∗∥

→ 0

as n → ∞. Hence yn → −F (x∗) as n → ∞. By the definition of G, we have
−F (x∗) ∈ G(x∗). Therefore, x∗ is a solution of (1.2).

(2) Suppose that (2.8) holds. To prove the uniqueness of x∗, let y∗ be another
solution of (1.2) in Br∗ [x0]. It is easy to see that

⟨A(xn)x, x⟩ ≥ (c0 − ω0(tn)− l0)∥x∥2

for all n ≥ 1 and x ∈ H. Since −F (y∗) ∈ G(y∗), it follows from (1.1), (1.7), (1.11)
and (C6)–(C7) that

α∥y∗ − xn+1∥2

≤ −⟨−F (y∗) +A(xn)(xn+1 − xn) + F (xn), y
∗ − xn+1⟩

≤ ⟨−A(xn)(y
∗ − xn+1) +A(xn)(y

∗ − xn) + F (xn)− F (y∗), y∗ − xn+1⟩
= ⟨−A(xn)(y

∗ − xn+1), y
∗ − xn+1⟩+ ⟨A(xn)(y∗ − xn) + F (xn)

−F (y∗), y∗ − xn+1⟩
= −⟨A(xn)(y∗ − xn+1), y

∗ − xn+1⟩+ ⟨A(xn)(y∗ − xn)

−F ′
xn
(y∗ − xn), y

∗ − xn+1⟩

+
⟨ ∫ 1

0
(F ′

xn
− F ′

xn+t(y∗−xn)
)(y∗ − xn)dt, y

∗ − xn+1

⟩
≤ −(c0 − l0 − ω0(tn))∥y∗ − xn+1∥2 + (ω1(∥xn − x0∥) + l1)

×∥y∗ − xn∥∥y∗ − xn+1∥+Hω(∥y∗ − xn∥)∥y∗ − xn∥∥y∗ − xn+1∥,

which gives

∥y∗ − xn+1∥

≤ 1

(c0 + α− l0 − ω0(tn))
(Hω(∥y∗ − xn∥) + ω1(∥xn − x0∥) + l1)(2.10)

×∥y∗ − xn∥.

Now, we prove, by induction, that

(2.11) ∥y∗ − xn+1∥ ≤ 1

(c0 + α− l0 − ω0(r∗))
(Hω(r∗) + ω1(r

∗) + l1))∥y∗ − xn∥

holds for all n ≥ 0. Using (2.8), we see that (2.11) holds for n = 0. Assume that
(2.11) holds for some positive integer n = k. Using (2.8), we note that

∥y∗ − xk+1∥ ≤ ∥y∗ − xk∥ ≤ · · · ≤ ∥y∗ − x0∥ ≤ r∗.

It follows from (2.10) that

∥y∗ − xk+2∥ ≤ 1

(c0 + α− ω0(t1)− l0)
(Hω(r∗) + ω1(r

∗) + l1)∥y∗ − xk+1∥.
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Hence (2.11) holds for n = k + 1. Thus (2.11) holds for all n ≥ 0. It follows from
(2.11) that lim

n→∞
xn = y∗. Therefore, since we already proved that lim

n→∞
xn = x∗, we

have x∗ = y∗. This completes the proof. �
Remark 2.4. Theorem 2.3 is an improvement of Theorem 1.3 in the following
sense:

(1) In Theorem 2.3, the ω-type condition (1.7) is used, which is a generalization
of the Lipschitz condition (C3) of Theorem 1.3.

(2) In Algorithm 1.1, F ′
x is not involved.

(3) The ω-type center condition (C5) is used, which is a generalization of the
center Lipsschitz condition (1.6).

(4) For the convergence of sequence {xn}, majorant theory is adopted. This pro-
vides the domain for existence and uniqueness of solution of the operator equation
(1.2).

For A(x) = F ′
x in Theorem 2.3, we have the following result.

Theorem 2.5. Let F be an operator defined on a closed convex subset D of a Hilbert
space H with values in H such that F is continuously Fréchet differentiable at each
point of D0 and G be a maximal monotone operator from H into H satisfying (1.1).
For any x0 ∈ D, assume that the operators F , G and F ′

x satisfy (C1)–(C2), (C7),

(1.7) and (1.8) with ω, ω0 ∈ Φ. Let η = β
c0+α and assume that the scalar equation

defined by
(c0 + α− l0 − ω0(r))(η − r) +Hrω(η) = 0

See Theorem 2.3 has a minimum positive zero r∗ such that

Hω(η) + ω0(r
∗) < c0 + α− l0

is satisfied. Suppose that Br∗ [x0] ⊆ D. Then we have the following:
(1) The sequence {xn} generated by (1.4) is well defined, remains in Br∗ [x0] and

converges to a solution x∗ ∈ Br∗ [x0] of (1.2). The error estimates (2.5)–(2.7) hold,
where {tn} is a sequence generated by

t0 = 0, t1 = η, tn+1 = tn +
Hω(tn − tn−1)(tn − tn−1)

(c0 + α− l0 − ω0(tn))

and t∗ is the limit of the sequence {tn}.
(2) Further, if Hω(r∗)+ω0(r

∗) < c0+α− l0, then the solution of (1.2) is unique
in Br∗ [x0].

Proof. For A(x) = F ′
x in Theorem 2.3, we can take ω1(t) = 0 for all t ∈ [0,∞) and

l1 = 0. Hence the condition (C6) satisfies trivially. Note that the conditions (C5)
and (C6) reduce to (C2) and (1.8), respectively. Hence all the conditions of Theorem
2.3 are satisfied. Thus the remaning portion follows from Theorem 2.3. �

In the special case, when A(x) = F ′
x, ω(t) = Kt, ω0(t) = K0t, ω1(t) = 0 and

l0 = l1 = 0, we have the following result which follows from Theorem 2.5.

Corollary 2.6. Let F be an operator defined on a closed convex subset D of a
Hilbert space H with values in H such that F is continuously Fréchet differentiable
at each point of D0 and G be a maximal monotone operator from H into H satisfying
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(1.1). For any x0 ∈ D, assume that the operators F , G and F ′
x satisfy (C1)–(C3)

and (1.6). Let η = β
c0+α and assume that the scalar equation defined by

(c0 + α−K0r)(η − r) +
1

2
Krη = 0

has a minimum positive zero r∗ such that

1

2
Kη +K0r

∗ < c0 + α

is satisfied. Suppose that Br∗ [x0] ⊆ D. Then we have the following:
(1) The sequence {xn} generated by (1.4) is well defined, remains in Br∗ [x0] and

converges to a solution x∗ ∈ Br∗ [x0] of (1.2). The error estimates (2.5)–(2.7) hold,
where {tn} is a sequence generated by

t0 = 0, t1 = η, tn+1 = tn +
K(tn − tn−1)

2

2(c0 + α−K0tn)
(2.12)

and t∗ is the limit of the sequence {tn}.
(2) Further, if

(
1
2K +K0

)
r∗ < c0 + α, then the solution of(1.2) is unique in

Br∗ [x0].

Now, we discuss the existence and uniqueness of solutions of the mixed variational
inequality problem given by (1.3). The following result follows from Corollary 2.6.

Theorem 2.7. Let F be an operator defined on a closed convex subset D of a
Hilbert space H with values in H such that F is continuously Fréchet differentiable
at each point of D0 and ϕ : H → (−∞,∞] be a proper lower semi-continuous convex
function. Let G = ∂ϕ be the subgradient of ϕ. For any x0 ∈ D, assume that the
operators F , G and F ′

x satisfy (C1)–(C3), (1.1) and (1.6). Let η = β
c0+α and assume

that the scalar equation defined by

(c0 + α−K0r)(η − r) +
1

2
Krη = 0

has a minimum positive zero r∗ such that

1

2
Kη +K0r

∗ < c0 + α

is satisfied. Suppose that Br∗ [x0] ⊆ D. Then we have the following:
(1) The sequence {xn} generated by

(2.13) F ′
xn
(xn+1) + ∂ϕ(xn+1) ∋ F ′

xn
(xn)− F (xn)

is well defined, remains in Br∗ [x0] and converges to a solution x∗ ∈ Br∗ [x0] of the
variational inequality given by (1.3). The error estimates (2.5)–(2.7) hold, where
{tn} is a sequence generated by (2.12) and t∗ is the limit of the sequence {tn} defined
by (2.12).

(2) Further, if
(
1
2K +K0

)
r∗ < c0 + α, then the solution of (1.3) is unique in

Br∗ [x0].
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3. Numerical examples

In this section, we provide some numerical examples.

Example 3.1. Let H = D = R and consider the problem of finding the zero of

(3.1) x2 + 3x+ 1 = 0.

For F (x) = x2+x+1, G(x) = 2x and A(x) = F ′
x = 2x+1, the equation (3.5) can be

modeled as the problem (1.2). Since G is single-valued, we express the generalized
Newton iterates (1.11) in the form

A(xn)(xn+1) +G(xn+1) = A(xn)(xn)− F (xn),

which can we written as in the following form:

(3.2) (3 + 2xn)xn+1 = xn
2 − 1.

For x0 = 0, we get

β = c0 = 1, α = 2, ω(t) = ω0(t) = 2t, h(t) = t, ω1(t) = 0, l0 = l1 = 0

for all t ≥ 0, which gives that η = 1
3 and H = 1

2 . In this case, the scalar equation
(2.1) reduces to

(3.3) 6r2 − 10r + 3 = 0.

The minimum positive root r∗ of the scalar equation (3.3) is given by r∗ = 5−
√
7

6 .

Since 6−
√
7

3 < 3, the condition (2.2) is satisfied. Thus all the conditions of Theorem
2.3 are satisfied. Hence Theorem 2.3 guarantees that the sequence {xn} generated
by (3.2) converges to a unique solution x∗ ∈ Br∗ [x0] of (3.5). The error estimates
are given by (2.5)–(2.7), where the scalar sequence {tn} is given by

(3.4) t0 = 0, t1 =
1

3
, tn+1 = tn +

(tn − tn−1)
2

3− 2tn
.

The convergence analysis of (3.2) and the difference rate of the sequence {tn} is
given in Table 1.

n xn tn+1 − tn
0 0 0.333333333333333
1 -0.333333333333333 0.047619047619048
2 -0.380952380952381 0.001013171225937
3 -0.381965552178318 0.000000459071693
4 -0.381966011250011 0.000000000000094
5 -0.381966011250105 0
6 -0.381966011250105 0
7 · · · · · ·

Table 1. The convergence of (3.2)
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Example 3.2. Let H = D = R and consider the problem of finding the zero of

(3.5) F (x) +G(x) ∋ 0,

where F (x) = x2 + 3x, G(x) = ∂g(x), g(x) = |x| and A(x) = F ′
x = 2x + 3 for all

x ∈ R. Recall that ∂g(x) is the set defined by

∂g(x) = {z ∈ R : g(x)− g(y) ≥ z(x− y), ∀y ∈ R}.
A straightforward computation gives

G(x) = ∂g(x) =

 −1, x < 0;
[−1, 1], x = 0;
1, x > 0.

In this case, the generalized Newton iterates (2.13) can be written in the following
form:

(3.6) 2xnxn+1 +G(xn+1) ∋ x2n.

For x0 = 0, choose y0 = 0 and

β = 1, c0 = 3, α = 0, ω(t) = ω0(t) = 2t,

ω1(t) = 0, h(t) = t, l0 = l1 = 0,

which gives that η = 1
3 and H = 1

2 . In this case, the scalar equation (2.1) reduces
to the scalar equation given in (3.3). As in Example 3.1, the minimum positive

root r∗ of the scalar equation (3.3) is given by r∗ = 5−
√
7

6 . Since 6−
√
7

3 < 3, the
condition (2.2) is satisfied. Thus all the conditions of Corollary 2.6 are satisfied.
Hence Corollary 2.6 guarantees that the sequence {xn} generated by (3.6) converges
to a unique solution x∗ ∈ Br∗ [x0] of (3.5). The error estimates are given by (2.5)–
(2.7), where the scalar sequence {tn} is given by (3.4). Using the definition of G
and (3.6), we can also verify that {xn} converges to 0. Indeed, xn = 0 for all n ≥ 1.
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