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Dedicated to Professor Sompong Dhompongsa on the occasion of his 65th birthday.

ABSTRACT. This is a survey on some recent results on direct sums of Banach
spaces, especially concerning uniform non-¢7-ness and weak nearly uniform smooth-
ness with application to the fixed point property for nonexpansive mappings.

1. INTRODUCTION AND PRELIMINARIES

Recently the present authors have discussed uniform non-¢7-ness and weak nearly
uniform smoothness for v¢-direct sums of Banach spaces ([9, 11, 13, 14, 15, 16, 17,
18]). The starting point on these themes is the following: A -direct sum X @, Y
is uniformly non-square (UNSQ) if and only if X and Y are UNSQ and neither
Y = 11 nor ¥ = P, where Y1 and Yo are the corresponding convex functions to
the 01- and lxo-norms, respectively ([9]). Our first concern is to extend this result to
the uniform non-/7-ness and also to investigate the extreme cases, ¢;- and {-sums
([12, 14, 15]). The next interest is to extend the above result to the N Banach spces
case. In the course of trying this we treated the weak nearly uniform smoothness
([13, 16], cf. [17, 18]). In the 2-dimensional case we have the following: A v-direct
sum X @y Y is weakly nearly uniformly smooth (WNUS) if and only if X and Y
are WNUS and ¢ # 11 ([13]). This was extended to the N-dimensional case by

introducing a class of convex functions 1115\1,) which yield partial ¢1-norms; we need
to remove these functions more than the function ; ([16], see also [17, 18]).

The aim of this paper is to present a survey on these results in relation to the
fixed point property for non-expansive mappings (FPP). In particular, keeping it
in mind that all uniformly non-square Banach spaces have FPP (Garcia-Falset, et
al. [8]), we shall present a plenty of direct sums of Banch spaces with FPP which
are not uniformly non-square.

A norm || - || on CV is called absolute if ||(21,...,zn)|| = ||(]zl\ | ~])|| for all
(21,...,25) € CN, and normalized if ||(1,0,...,0)| = --- = ||(0, =10 A
norm || - || on CV is called monotone if

|zj| <|wjl foralll <j <N = ||(21,...,2n5)] < |[(wi,...,wn)]-
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We note that a norm ||-|| on CV is absolute if and only if it is monotone (Bhatia [1],
cf. [18]). For any absolute normalized norm || - || on CV let
N-1
(1.1) ¢(S) = H(l — Z SiyS1y. .- ,SN_l)H for s = (81, “. 73N—1> S AN,
i=1
where
N-1
Ay = {3: (S1y.+.ySN-1) e RV Z $; <1, s; 20}.
i=1

Then v is convex (continuous) on Ay and satisfies the following:

(Ap) ¥(0,...,0) =¢(1,0,...,0) =---=1(0,...,0,1) =1,
N-1 5 s N—1
1 N-1 .
T B (S (s IILLRD ST
i—1 D1 Si D1 Si i=1
(A2) (51, sn-1) > (1 —s1)( 0, —2—, ..., N1 it0<s <1,
1-— S1 1-— S1
(AN) (51, sne1) > (1 — sy —2 . —N=2 ) if 0 <sy_q < 1.
1—sn-_1 1—sn_1
In fact, the condition (Ag) means that the norm || - || is normalized. For the others,
since | - || is monotone, we have
N-1
(Ml) (1_Zsi>517"'>51\7—1) > ||(0781>"'78N—1)||7
i=1
N-1 N-1
(MZ) (1_25%817"'751\/71) Z H(]-_Zsi70732a"'7sN71)H5
i=1 i=1
N-1 N-1
(MN) (1—282‘,81,...,81\1_1) Z H(l—281,81,...,81\[_2,0))’.
i=1 =1

By interpreting (M;) — (My) in words of 1) we obtain (A1) — (An).
Let ¥ denote the class of all convex functions ¢ on Ay satisfying (Ag) — (An).

Then, conversely, for any 1 € Uy let

N |22 |2n |
(Ejzl zj>¢<2§y1 R S Zj>
(12) (21,5 2n)lly = if (21,...,25) # (0,...,0),
0 if (z1,...,2n) = (0,...,0).
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Then || - || is an absolute normalized norm on CV and satisfies (1.1) ([21]; see [2]
for the case N = 2). We refer to the norm || - ||, as ¢-norm. The £,-norms

{lza P+ -+ |ZN|p}1/p if 1 <p<oo,
H(Zla"'?ZN)HP =

max{|z1],...,|zn]|} if p=o0

are basic examples and their corresponding convex functions v, are given by

» 1/p
(s v e ) o
SN—l):

max{l—Zfi_llsi,sl,...,sN_l} if p = o0.

Yp(s1,- ..,

In particular the function 1 (¢t) = 1 corresponds to the ¢1-norm. For all ¢ € Uy
we have ||+ [loo < [+ ly < [+ [l ([21]).

Let X1,...,Xxn be Banach spaces and let ¢ € Uy. The t-direct sum (X1 - -- @
XnN)y is their direct sum X1 @ --- ® Xy equipped with the norm

1, an)lly = [l -l Dl for (21, zn) € X @ ® Xy

(19, 22]). As usual Sx stands for the unit sphere of a Banach space X. X is called
uniformly non-square provided there exists € (0 < € < 1) such that

min[jz + g, |z — g} < 2(1 - ) for all 2,y € Sx.

More generally, X is called uniformly non-¢} provided there exists ¢ (0 < ¢ < 1)
such that for all 1, ..., z, € Sx there exists § = (6;) (an n-tuple of signs) for which

(1.3) i Ojx;| <n(l—e).
j=1

Here the unit sphere Sx can be replaced with the colsed unit ball of X (cf. [11]).
If n = 2, uniform non-f2-ness coincides with uniform non-squareness. If n = 3,
uniform non-#3 spaces are called uniformly non-octahedral. If n = 1, the formal
definition is possible, but no Banach space is uniformly non-£1. Every uniformly
non-¢} space is uniformly non—f’f“.

A Banach space X is said to have the fized point property (resp. weak fized point
property) for nonexpansive mappings if every nonexpansive self-mapping 7' of any
nonempty bounded closed (resp. weakly compact) convex subset C' of X has a fixed
point, where T is called nonexpansive if ||[Tz — Ty|| < ||z — y|| for all z,y € C. We
say the former as FPP (resp. WFPP) in short.

2. UNIFORM NON-/}-NESS

In this section we shall discuss uniform non-¢7}-ness for direct sums of Banach
spaces.

Theorem 2.1 (Kato-Saito-Tamura [10]). The following are equivalent.
(i) X @y Y is uniformly non-square.
(ii) X and Y are uniformly non-square and ¥ # 1, Y.

This is extended to the uniform non ¢7-ness.
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Theorem 2.2 (Kato-Saito-Tamura [12]). Assume that neither X nor Y is uni-
formly non-ﬁ?il. Then the following are equivalent.

(i) X @y Y is uniformly non-(7.

(ii) X and Y are uniformly non-0¢ and 1 # 1, Yeo.
Remark 2.3. (i) Theorem 2.2 includes Theorem 2.1 as the case n = 2, since no

Banach space is uniformly non-/£1.
(ii) We cannot remove the condition that neither X nor Y is uniformly non-¢7"!.

Theorem 2.1 asserts that X &1 Y and X @ Y cannot be uniformly non-square
for all X and Y. This is also readily seen by the fact that ¢? and (2, are not
uniformly non-square since these spaces are regarded as subspaces of X &1 Y and
X B Y, respectively. On the other hand, Theorem 2.2 indicates that if X and Y
are uniformly non—f’ffl (or if one of them is so for X @ Y), X &1 Y and X ®, Y
can be uniformly non-¢7 (n > 3). Thus we shall confine ourselves to these extreme
cases.

Theorem 2.4 (Kato-Tamura [14]). The following are equivalent.

(i) X @1 Y is uniformly non-£y, n > 3.

(ii) There exist ni,ny € N with ny+ne = n—1 such that X is uniformly non-f’flJrl
and Y is uniformly non—é’fz—"l.

As the case N = 3 we have the following.

Corollary 2.5 (Kato-Saito-Tamura [12]). The following are equivalent.
(i) X @1 Y is uniformly non-£3.
(ii) X and Y are uniformly non-square.
For the /s-sum we have the following ([12]): Let X and Y be uniformly non-

square. Then X ©s Y is uniformly non-f3. The converse is not true (see Example
1 below). For three Banach spaces we have the following.

Theorem 2.6 (Kato-Saito-Tamura [12]). The following are equivalent.

(1) (X DY & 2)eo is uniformly non-£3.

(ii) X, Y and Z are uniformly non-square.
Example 2.7. Let X, Y and Z be uniformly non-square and let W =Y @, Z.
Then X @oo W = (X ®Y @ Z)oo is uniformly non-¢3 by Theorem 2.6, while W =
Y G Z is not uniformly non-square.

Theorem 2.4 is extended as follows.

Theorem 2.8 (Kato-Tamura [14]). The following are equivalent.

(1) (X1 ®---® Xn)1 is uniformly non-£7.

(ii) There exist N positive integers ny,...,ny withny +ng+---+ny =n—1
such that X; is uniformly non-ﬁfj—H foralll1 <j <N.

The space (X1 @& -+ @ X,,)1 cannot be uniformly non-¢}. To the contrary, by
Theorem 2.8 we have the next result which extends Corollary 2.5.

Theorem 2.9 (Kato-Tamura [14]). The following are equivalent.
(i) (X1 ®---® Xy)1 is uniformly non—ﬁf“.
(ii) Xq,..., X, are uniformly non-square.
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Concerning the {o-sum we have the following result which extends Theorem 2.6.
Theorem 2.10 (Kato-Tamura [15]). Let n > 2. The following are equivalent.

(1) (X1 @ @ Xon_1)eo is uniformly non-£7+.
(ii) X1,..., Xon_1 are uniformly non-square.

3. WEAK NEARLY UNIFORM SMOOTHENESS

First we shall discuss partial ¢;-norms, which are recently introduced by the
present authors.

Definition 3.1 (cf. [16]). An absolute normalized norm ||-|| on C¥ is called partial
l1-norm if there esists @ = (a1,...,an) € ]Rf such that with some nonempty proper

subset T" of {1,..., N}

I(ay,....an)l = [(xe(M)ar, ..., x2(N)an) || + [|(xze(Das, ..., xze(N)an)|],
where (xr(1)ay,...,x7(N)ay) and (x7e(1)aq,...,xr<(N)ay) are nonzero. Let
\PE\I,) denote the class of convex functions 9 € Wy for which || - |4 is a partial
{1-norm.

Theorem 3.2 ([16]). Let i € Un. The following are equivalent.

1) v e v
(ii) There ezists a = (ai,...,an) € Rf such that with some nonempty proper
subset T of {1,...,N}

(a1, - an)lly = [(xr(Dar, -, xr (N)an)[ly + [ (xre(Dar, - -, xre(N)an) |y,

where ||(xr(Day, ..., xo(N)an)lly = [|(xze(Das, ..., xze(N)an)[ly = 1.
(iii) There exists (s1,...,Sn-1) € An with 0 < M := Ef\i—ll xs(i)s; < 1 for
some nonempty subset S of {1,..., N — 1} such that

¢(81,...78N_1) = My <XS](\2)31"“’X5(N ;41)3]\[_1)
Xse(1)s1 Xse(N —1)sy—1
+<1—M)¢<1_M,..., — >

where xs denotes the characteristic function of the set S.

We note that the implication (i) = (ii) is obtained owing to the sharp triangle
inequality ([11]). The equivalence of (i) and (iii) is merely reformulation of Definition
3.1 by means of the convex function .

Example 3.3 (cf. [18]). Let N > 3. We consider the absolute normalized norm

N
1
| = max{ya1|,...,yaN|,§Z\aj\}.
=1

The corresponding convex function ¢ € Wy is given by

H(al,.. . ,aN)

N-1

1
w(sl,...,sN,l):maX{l— Z;s,-, S1, «+-y SN—1, 5}
1=
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Since
(1, D]y = [[(1,1,0,...,0) || +11(0,0,1,..., 1)y,
(1)

this norm is a partial /1-norm and hence 9 € Uj’.
Proposition 3.4 ([16]). Let ¢ € U be strictly convex. Then ¢ & \Ifs\l,).

Proof. Assume that ¢ € \Ifg\l,). Then by Theorem 3.2 there exist a = (a1,...,an) €
Rf and a nonempty proper subset 1" of {1,..., N} such that

(a1, ., an)lly = [(xr(Dar, s xr (N)an)[ly + [ (xre(Dar, - .. xre(N)an) ||y
and
IOer(Way, -, xr(N)an)lly = [[(xre(Da, - -, xre(N)an) [y = 1.
Therefore the norm || - ||, is not strictly convex, which is a contradiction. (Note
that || - ||, is strictly convex if and only if ¢ is strictly convex.) O

Example 3.5 ([16]). Let 1 < p < co. Then v, ¢ \Ilg\l,).

Indeed if 1 < p < oo, the £,-norm, and hence v, is strictly convex. Therefore we

have v, ¢ \Ilg\l,) by Proposition 3.4. Let p = co. Suppose that ¥, € \Ilg\l,). Then
there exist (aq,...,an) € Rf and a nonempty proper subset T" of {1,..., N} such
that

l(ars- - an)lloo = [(xr(Da, -, xr(N)an)[loo + [[(xre(L)ar, . xre(N)an) oo,
where (xr(1)a1,...,xr(N)ayn) and (xre(1)aq,. .., xre(N)ay) are nonzero. Since
)

N)
(a1, .- an)lloo = [(xT(D)as, ..., xr(N)an) |
or
”(ah R G’N)HOO = H(XTC(I)CU? e 7XTC(N)aN)H007
we have a contradiction. Consequently, Voo & \IJS\}).

Now, a Banach space X is called weakly nearly uniformly smooth (WNUS) ([19],
cf. [20]) if there exist ¢ < 1 and v > 0 such that for any basic sequence {z,} in
Bx and any 0 < t < v there is k > 0 so that ||z + txg|| < 1 + te. According to
Garcia-Falset [6] X is WNUS if and only if X is reflexive and R(X) < 2. Here the
Garcia-Falset coefficient R(X) is defined by

R(X) =sup {lirginf lxn + ||},

where the supremum is taken over all weakly null sequences {z,} in Bx and all
x € Bx. It is known that uniformly convex, resp., uniformly smooth spaces are

WNUS, and WNUS spaces have FPP (Garcia-Falset [7]).

Theorem 3.6 (Kato-Tamura [16]). Let X1,...,Xn be infinite dimensional. Let
Y € Un. Then the following are equivalent.
(i) (X1 @ - ® Xn)y is weakly nearly uniformly smooth.

(ii) All Xq,..., XN are weakly nearly uniformly smooth and ¢ ¢ \Ilg\lf).

Remark 3.7. The implication (ii) = (i) holds without the assumption on dimen-
sion. We refer the reader to [16] for the other cases on dimension.
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Since strictly convex functions in Wy are not in \115\1,), the following result by

Dhompongsa et al. are obtained as a corollary.

Corollary 3.8 (Dhompongsa-Kaewcharoen-Kaewkhao [3]). Let ¢ € Uy be strictly
convex. Then the following are equivalent.

(i) (X1 @ - ® Xn)y is weakly nearly uniformly smooth.

(ii) All Xq,..., XN are weakly nearly uniformly smooth.

4. APPLICATIONS TO FPP

It is well known that all uniformly non-square spaces have FPP (Theorem A
below). In this section we shall construct some direct sums of Banach spaces with
FPP which are not uniformly non-square.

We shall first discuss FPP for uniformly non-octahedral spaces. We need some
previous results. For 0 < a <1 let

(4.1) R(a, X) = sup {liniinf\|1:n+x||},

where the supremum is taken over all z € X with ||z|| < a and all weakly null
sequences {z,} in the unit ball of X such that lim, y,—comtm [|[Tn — Tm| < 1
(Dominguez Benavides [4]).

Theorem A (Dominguez Benavides [4]). Let R(1,X) < 2. Then X has WFPP.
In 2006 Garcia-Falset et.al obtained the next result.

Theorem B (Garcia-Falset, et al. [8]). Let X be uniformly non-square. Then
R(1,X) <2, and hence X has FPP.

Since all uniformly non-square spaces have FPP, it is natural to ask whether
all uniformly non-octahedral (uniformly non ¢3) spaces have FPP. We have the
following.

Theorem 4.1 (Kato-Tamura [15]). Let X be uniformly non-octahedral. If X is
isometric to an ls-sum of 3 Banach spaces, then X has FPP, while X is not
uniformly non-square.

More generally we have

Theorem 4.2 (Kato-Tamura [15]). Let X be uniformly non-03**. If X is isometric
to an fo-sum of 2™ — 1 Banach spaces, then X has FPP, while X is not uniformly
non-square.

To present a proof of Theorem 4.2 we need the next result.
Lemma 4.3 ([15]). For all Banach spaces X1,...,Xn

R(l, (Xl DD Xm)oo) = maXx R(l,X])
1<i<m
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Proof of Theorem 4.2. Assume that X = (X1®- - -® Xon_1)o is uniformly non—f’f“.
Then, by Theorem 3.6 all Xy, ..., Xon_1 are uniformly non-square. Therefore, by
Theorem B
R(1,Xj)<2forall 1 <j<2"—1.
Hence, by Lemma 4.3 we have
R, (X1 & ® Xm)oo) < 2,

which implies that X = (X; @ --- ® X;;)00 has WFPP by Theorem A. Since X is
reflexive, X has FPP. O

Example 4.4. Since L, 1 < p < 00, is uniformly convex, a fortiori, uniformly non-
square, the space X = (L, @ L, & Ly)oo is uniformly non-octahedoral by Theorem
2.6. Therefore X has FPP by Theorem 4.1, while it is not uniformly non-square.

Next by using Theorem 3.6 we shall construct a plenty of Banach spaces with
FPP failing to be UNSQ.

Proposition 4.5 (Kato-Tamura [16]). Let ¢ € Wo, ¢ # 11 and define p € U by
w(sla s >3N—1)

N-1
= maX{H(l = sisst)lls (51 82)lles I (s2,8) -+ H(SN—z,SN—l)Heo}

i=1
for (s1,...,8n-1) € An.
Then ¢ & \115\1[) and || - ||y s not uniformly non-square.
We note that the corresponding norm is
(a1, a2 ... an)lly = max{[|(a1, az)lly, [ (a2, as)ll; - - s [(an—1, an)llo}
for (aj,...,ay) € CN

In fact, we considered first this norm which is in ANy, and the above 1 was derived
by w(s) = |(1="N1 s, 81, .., sn_1)||. Therefore 1) € ¥y. Then we have ¢ ¢ \I/S\l,)
and the norm || - ||, is not UNSQ.

Theorem 4.6 (Kato-Tamura [16]). Let Xi,...,Xn be weakly nearly uniformly
smooth, N > 3. Let ¢ € U be as in Proposition 4.5. Then (X1 @ ---® Xn)y has
FPP, whereas it is not uniformly non-square.

Proof. By Theorem 3.6 and Remark 3.7, (X1 ®---@® Xx)y is WNUS, and hence has
FPP. On the other hand, it is not UNSQ since (CV, || - ||) is not so by Proposition
4.5. O

By Theorem 3.6 and Remark 3.7 we also obtain

Corollary 4.7. Let X1,...,Xn be weakly nearly uniformly smooth, N > 3. Then
(X1 @ - ® XN)oo has FPP, whereas it is not uniformly non-square.

Example 4.8. Let

w(sl, e >3N—1)
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i=1

N—-1
= maX{ll(l = sivso)ll2s (st 82) 12, [1(52,88) |2 - - - H(SN—z,SN—l)HQ}
for (s1,...,8n-1) € An.
The corresponding norm

[(a1,az2...,an)|ly = max{[|(a1,a2)|l2, [[(az,as)|2, .., [[(an—1,an)|l2}

is not partial /1 by Proposition 4.5. Since L,;, 1 < p; < co (1 < j < N), are
uniformly convex and hence WNUS, the space X = (Lp, @ --- @ Ly, )y has FPP,
while it is not uniformly non-square by Theorem 4.6. Also, the fy-sum X =
(Lp, @ -+ @ Lpy )oo, which is not uniformly non-square, has FPP by Theorem 3.6.

5. CONCLUDING REMARKS

As another notion of direct sum of Banach spaces the Z-direct sum is dis-
cussed (cf. [5]). Let Z be a finite dimensional normed space (R, || - ||z), whose
norm is monotone in R_i]\_/, that is, [|(a1,...,an)|lz < ||(b1,...,0N)||z f 0 < a; <
bj for all 1 < j < N. The Z-direct sum (X; & --- @ Xpn)z of Xq,..., Xy is their
direct sum equipped with the norm

(@1, .. zn)llz = (2], . .-, [len]Dllz for (z1,...,2n) € X1 ® - ® XN,

where the norm || - ||z on RY is assumed to be absolute without loss of generality.
Clearly, the Z-direct sum is more general than the ¢-direct sum. On the other hand,
as is mensioned in [5], any Z-direct sum is isometrically isomorphic to a 1)-direct
sum. Thus, these notions are equivalent. This is true for a more general direct sum

([18]).

According to Dowling and Saejung [5], a norm |- || on C¥ is said to have property
TY ifforalla = (a1,...,an),b= (b1,...,by) € CN with |la|| = ||b]| = i||a+b| =1
it follows that supp a Nsupp b # ), where supp a = {j : a; # 0}. Also | - | is

said to have property T if for all @ = (ay,...,an),b = (b1,...,bx) € CV with
lla|l = ||b]| = ||a + b]| =1 it follows that supp a Nsupp b # (). Using these notions,
they characterized the uniform non-squareness of a Z-direct sum, or equivalently, a
tp-direct sum under the condition that the norm || -|| (or || -|y) is strictly monotone
(for N = 3 without this condition). These properties for an absolute norm are

interpreted in words of partial £1-norms or the class \Ilg\l,) as follows.

Proposition 5.1 (Kato-Tamura [18]). Let ¢ € Wy.

(i) The v-norm || - ||, has property T if and only if ¢ & \Il%).

(ii) The ¥-norm || ||y has property TN if and only if 1* ¢ \Ifg\lf), where Y* is the
dual function of ¢ which corresponds to the dual norm of || - ||y.
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