


232 M. KATO AND T. TAMURA

We note that a norm ∥·∥ on CN is absolute if and only if it is monotone (Bhatia [1],
cf. [18]). For any absolute normalized norm ∥ · ∥ on CN let

(1.1) ψ(s) =
∥∥∥(1− N−1∑

i=1

si, s1, . . . , sN−1)
∥∥∥ for s = (s1, . . . , sN−1) ∈ ∆N ,

where

∆N =
{
s = (s1, . . . , sN−1) ∈ RN−1 :

N−1∑
i=1

si ≤ 1, si ≥ 0
}
.

Then ψ is convex (continuous) on ∆N and satisfies the following:

(A0) ψ(0, . . . , 0) = ψ(1, 0, . . . , 0) = · · · = ψ(0, . . . , 0, 1) = 1,

(A1) ψ(s1, . . . , sN−1) ≥
(N−1∑

i=1

si

)
ψ

(
s1∑N−1
i=1 si

, . . . ,
sN−1∑N−1
i=1 si

)
if 0 <

N−1∑
i=1

si ≤ 1,

(A2) ψ(s1, . . . , sN−1) ≥ (1− s1)ψ

(
0,

s2
1− s1

, . . . ,
sN−1

1− s1

)
if 0 ≤ s1 < 1,

. . . . . . . . .

(AN ) ψ(s1, . . . , sN−1) ≥ (1− sN−1)ψ

(
s1

1− sN−1
, . . . ,

sN−2

1− sN−1
, 0

)
if 0 ≤ sN−1 < 1.

In fact, the condition (A0) means that the norm ∥ · ∥ is normalized. For the others,
since ∥ · ∥ is monotone, we have

(M1)
∥∥∥(1− N−1∑

i=1

si, s1, . . . , sN−1)
∥∥∥ ≥ ∥(0, s1, . . . , sN−1)∥,

(M2)
∥∥∥(1− N−1∑

i=1

si, s1, . . . , sN−1)
∥∥∥ ≥

∥∥∥(1− N−1∑
i=1

si, 0, s2, . . . , sN−1)
∥∥∥,

. . . . . . . . .

(MN )
∥∥∥(1− N−1∑

i=1

si, s1, . . . , sN−1)
∥∥∥ ≥

∥∥∥(1− N−1∑
i=1

si, s1, . . . , sN−2, 0)
∥∥∥.

By interpreting (M1)− (MN ) in words of ψ we obtain (A1)− (AN ).
Let ΨN denote the class of all convex functions ψ on ∆N satisfying (A0)− (AN ).

Then, conversely, for any ψ ∈ ΨN let

∥(z1, . . . , zN )∥ψ =



(∑N
j=1 zj

)
ψ

(
|z2|∑N
j=1 zj

, . . . ,
|zN |∑N
j=1 zj

)
if (z1, . . . , zN ) ̸= (0, . . . , 0),

0 if (z1, . . . , zN ) = (0, . . . , 0).

(1.2)
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Then ∥ · ∥ψ is an absolute normalized norm on CN and satisfies (1.1) ([21]; see [2]
for the case N = 2). We refer to the norm ∥ · ∥ψ as ψ-norm. The ℓp-norms

∥(z1, . . . , zN )∥p =

{
{|z1|p + · · ·+ |zN |p}1/p if 1 ≤ p <∞,

max{|z1|, . . . , |zN |} if p = ∞
are basic examples and their corresponding convex functions ψp are given by

ψp(s1, . . . , sN−1) =


{(

1−
∑N−1

i=1 si

)p
+ sp1 + · · ·+ spN−1

}1/p
if 1 ≤ p <∞,

max{1−
∑N−1

i=1 si, s1, . . . , sN−1} if p = ∞.

In particular the function ψ1(t) = 1 corresponds to the ℓ1-norm. For all ψ ∈ ΨN

we have ∥ · ∥∞ ≤ ∥ · ∥ψ ≤ ∥ · ∥1 ([21]).

Let X1, . . . , XN be Banach spaces and let ψ ∈ ΨN . The ψ-direct sum (X1⊕· · ·⊕
XN )ψ is their direct sum X1 ⊕ · · · ⊕XN equipped with the norm

∥(x1, . . . , xN )∥ψ := ∥(∥x1∥, . . . , ∥xN∥)∥ψ for (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕XN

([9, 22]). As usual SX stands for the unit sphere of a Banach space X. X is called
uniformly non-square provided there exists ε (0 < ε < 1) such that

min{∥x+ y∥, ∥x− y∥} ≤ 2(1− ε) for all x, y ∈ SX .

More generally, X is called uniformly non-ℓn1 provided there exists ε (0 < ε < 1)
such that for all x1, . . . , xn ∈ SX there exists θ = (θj) (an n-tuple of signs) for which

(1.3)

∥∥∥∥∥∥
n∑
j=1

θjxj

∥∥∥∥∥∥ ≤ n(1− ε).

Here the unit sphere SX can be replaced with the colsed unit ball of X (cf. [11]).
If n = 2, uniform non-ℓ21-ness coincides with uniform non-squareness. If n = 3,
uniform non-ℓ31 spaces are called uniformly non-octahedral. If n = 1, the formal
definition is possible, but no Banach space is uniformly non-ℓ11. Every uniformly

non-ℓn1 space is uniformly non-ℓn+1
1 .

A Banach space X is said to have the fixed point property (resp. weak fixed point
property) for nonexpansive mappings if every nonexpansive self-mapping T of any
nonempty bounded closed (resp. weakly compact) convex subset C of X has a fixed
point, where T is called nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. We
say the former as FPP (resp. WFPP) in short.

2. Uniform non-ℓn1 -ness

In this section we shall discuss uniform non-ℓn1 -ness for direct sums of Banach
spaces.

Theorem 2.1 (Kato-Saito-Tamura [10]). The following are equivalent.
(i) X ⊕ψ Y is uniformly non-square.
(ii) X and Y are uniformly non-square and ψ ̸= ψ1, ψ∞.

This is extended to the uniform non ℓn1 -ness.
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Theorem 2.2 (Kato-Saito-Tamura [12]). Assume that neither X nor Y is uni-
formly non-ℓn−1

1 . Then the following are equivalent.
(i) X ⊕ψ Y is uniformly non-ℓn1 .
(ii) X and Y are uniformly non-ℓn1 and ψ ̸= ψ1, ψ∞.

Remark 2.3. (i) Theorem 2.2 includes Theorem 2.1 as the case n = 2, since no
Banach space is uniformly non-ℓ11.

(ii) We cannot remove the condition that neither X nor Y is uniformly non-ℓn−1
1 .

Theorem 2.1 asserts that X ⊕1 Y and X ⊕∞ Y cannot be uniformly non-square
for all X and Y . This is also readily seen by the fact that ℓ21 and ℓ2∞ are not
uniformly non-square since these spaces are regarded as subspaces of X ⊕1 Y and
X ⊕∞ Y , respectively. On the other hand, Theorem 2.2 indicates that if X and Y
are uniformly non-ℓn−1

1 (or if one of them is so for X ⊕∞ Y ), X ⊕1 Y and X ⊕∞ Y
can be uniformly non-ℓn1 (n ≥ 3). Thus we shall confine ourselves to these extreme
cases.

Theorem 2.4 (Kato-Tamura [14]). The following are equivalent.
(i) X ⊕1 Y is uniformly non-ℓn1 , n ≥ 3.

(ii) There exist n1, n2 ∈ N with n1+n2 = n−1 such that X is uniformly non-ℓn1+1
1

and Y is uniformly non-ℓn2+1
1 .

As the case N = 3 we have the following.

Corollary 2.5 (Kato-Saito-Tamura [12]). The following are equivalent.
(i) X ⊕1 Y is uniformly non-ℓ31.
(ii) X and Y are uniformly non-square.

For the ℓ∞-sum we have the following ([12]): Let X and Y be uniformly non-
square. Then X ⊕∞ Y is uniformly non-ℓ31. The converse is not true (see Example
1 below). For three Banach spaces we have the following.

Theorem 2.6 (Kato-Saito-Tamura [12]). The following are equivalent.
(i) (X ⊕ Y ⊕ Z)∞ is uniformly non-ℓ31.
(ii) X, Y and Z are uniformly non-square.

Example 2.7. Let X, Y and Z be uniformly non-square and let W = Y ⊕∞ Z.
Then X ⊕∞ W = (X ⊕ Y ⊕ Z)∞ is uniformly non-ℓ31 by Theorem 2.6, while W =
Y ⊕∞ Z is not uniformly non-square.

Theorem 2.4 is extended as follows.

Theorem 2.8 (Kato-Tamura [14]). The following are equivalent.
(i) (X1 ⊕ · · · ⊕XN )1 is uniformly non-ℓn1 .
(ii) There exist N positive integers n1, . . . , nN with n1 + n2 + · · · + nN = n − 1

such that Xj is uniformly non-ℓ
nj+1
1 for all 1 ≤ j ≤ N .

The space (X1 ⊕ · · · ⊕ Xn)1 cannot be uniformly non-ℓn1 . To the contrary, by
Theorem 2.8 we have the next result which extends Corollary 2.5.

Theorem 2.9 (Kato-Tamura [14]). The following are equivalent.
(i) (X1 ⊕ · · · ⊕Xn)1 is uniformly non-ℓn+1

1 .
(ii) X1, . . . , Xn are uniformly non-square.
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Concerning the ℓ∞-sum we have the following result which extends Theorem 2.6.

Theorem 2.10 (Kato-Tamura [15]). Let n ≥ 2. The following are equivalent.
(i) (X1 ⊕ · · · ⊕X2n−1)∞ is uniformly non-ℓn+1

1 .
(ii) X1, . . . , X2n−1 are uniformly non-square.

3. Weak nearly uniform smootheness

First we shall discuss partial ℓ1-norms, which are recently introduced by the
present authors.

Definition 3.1 (cf. [16]). An absolute normalized norm ∥ ·∥ on CN is called partial
ℓ1-norm if there esists a = (a1, . . . , aN ) ∈ RN+ such that with some nonempty proper
subset T of {1, . . . , N}

∥(a1, . . . , aN )∥ = ∥(χT (1)a1, . . . , χT (N)aN )∥+ ∥(χT c(1)a1, . . . , χT c(N)aN )∥,
where (χT (1)a1, . . . , χT (N)aN ) and (χT c(1)a1, . . . , χT c(N)aN ) are nonzero. Let

Ψ
(1)
N denote the class of convex functions ψ ∈ ΨN for which ∥ · ∥ψ is a partial

ℓ1-norm.

Theorem 3.2 ([16]). Let ψ ∈ ΨN . The following are equivalent.

(i) ψ ∈ Ψ
(1)
N .

(ii) There exists a = (a1, . . . , aN ) ∈ RN+ such that with some nonempty proper
subset T of {1, . . . , N}
∥(a1, . . . , aN )∥ψ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ + ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ,

where ∥(χT (1)a1, . . . , χT (N)aN )∥ψ = ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 1.

(iii) There exists (s1, . . . , sN−1) ∈ ∆N with 0 < M :=
∑N−1

i=1 χS(i)si < 1 for
some nonempty subset S of {1, . . . , N − 1} such that

ψ(s1, . . . , sN−1) = Mψ

(
χS(1)s1
M

, . . . ,
χS(N − 1)sN−1

M

)
+(1−M)ψ

(
χSc(1)s1
1−M

, . . . ,
χSc(N − 1)sN−1

1−M

)
,

where χS denotes the characteristic function of the set S.

We note that the implication (i) ⇒ (ii) is obtained owing to the sharp triangle
inequality ([11]). The equivalence of (i) and (iii) is merely reformulation of Definition
3.1 by means of the convex function ψ.

Example 3.3 (cf. [18]). Let N ≥ 3. We consider the absolute normalized norm

∥(a1, . . . , aN )∥ = max
{
|a1|, . . . , |aN |,

1

2

N∑
j=1

|aj |
}
.

The corresponding convex function ψ ∈ ΨN is given by

ψ(s1, . . . , sN−1) = max
{
1−

N−1∑
i=1

si, s1, . . . , sN−1,
1

2

}
.
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Since
∥(1, . . . , 1)∥ψ = ∥(1, 1, 0, . . . , 0)∥ψ + ∥(0, 0, 1, . . . , 1)∥ψ,

this norm is a partial ℓ1-norm and hence ψ ∈ Ψ
(1)
N .

Proposition 3.4 ([16]). Let ψ ∈ ΨN be strictly convex. Then ψ ̸∈ Ψ
(1)
N .

Proof. Assume that ψ ∈ Ψ
(1)
N . Then by Theorem 3.2 there exist a = (a1, . . . , aN ) ∈

RN+ and a nonempty proper subset T of {1, . . . , N} such that

∥(a1, . . . , aN )∥ψ = ∥(χT (1)a1, . . . , χT (N)aN )∥ψ + ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ
and

∥(χT (1)a1, . . . , χT (N)aN )∥ψ = ∥(χT c(1)a1, . . . , χT c(N)aN )∥ψ = 1.

Therefore the norm ∥ · ∥ψ is not strictly convex, which is a contradiction. (Note
that ∥ · ∥ψ is strictly convex if and only if ψ is strictly convex.) �

Example 3.5 ([16]). Let 1 < p ≤ ∞. Then ψp ̸∈ Ψ
(1)
N .

Indeed if 1 < p <∞, the ℓp-norm, and hence ψp is strictly convex. Therefore we

have ψp ̸∈ Ψ
(1)
N by Proposition 3.4. Let p = ∞. Suppose that ψ∞ ∈ Ψ

(1)
N . Then

there exist (a1, . . . , aN ) ∈ RN+ and a nonempty proper subset T of {1, . . . , N} such
that

∥(a1, . . . , aN )∥∞ = ∥(χT (1)a1, . . . , χT (N)aN )∥∞ + ∥(χT c(1)a1, . . . , χT c(N)aN )∥∞,
where (χT (1)a1, . . . , χT (N)aN ) and (χT c(1)a1, . . . , χT c(N)aN ) are nonzero. Since

∥(a1, . . . , aN )∥∞ = ∥(χT (1)a1, . . . , χT (N)aN )∥∞
or

∥(a1, . . . , aN )∥∞ = ∥(χT c(1)a1, . . . , χT c(N)aN )∥∞,
we have a contradiction. Consequently, ψ∞ ̸∈ Ψ

(1)
N .

Now, a Banach space X is called weakly nearly uniformly smooth (WNUS) ([19],
cf. [20]) if there exist ε < 1 and ν > 0 such that for any basic sequence {xn} in
BX and any 0 < t < ν there is k > 0 so that ∥x1 + txk∥ ≤ 1 + tε. According to
Garćıa-Falset [6] X is WNUS if and only if X is reflexive and R(X) < 2. Here the
Garćıa-Falset coefficient R(X) is defined by

R(X) = sup {lim inf
n→∞

∥xn + x∥},

where the supremum is taken over all weakly null sequences {xn} in BX and all
x ∈ BX . It is known that uniformly convex, resp., uniformly smooth spaces are
WNUS, and WNUS spaces have FPP (Garćıa-Falset [7]).

Theorem 3.6 (Kato-Tamura [16]). Let X1, . . . , XN be infinite dimensional. Let
ψ ∈ ΨN . Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕XN )ψ is weakly nearly uniformly smooth.

(ii) All X1, . . . , XN are weakly nearly uniformly smooth and ψ ̸∈ Ψ
(1)
N .

Remark 3.7. The implication (ii) ⇒ (i) holds without the assumption on dimen-
sion. We refer the reader to [16] for the other cases on dimension.
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Since strictly convex functions in ΨN are not in Ψ
(1)
N , the following result by

Dhompongsa et al. are obtained as a corollary.

Corollary 3.8 (Dhompongsa-Kaewcharoen-Kaewkhao [3]). Let ψ ∈ ΨN be strictly
convex. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕XN )ψ is weakly nearly uniformly smooth.
(ii) All X1, . . . , XN are weakly nearly uniformly smooth.

4. Applications to FPP

It is well known that all uniformly non-square spaces have FPP (Theorem A
below). In this section we shall construct some direct sums of Banach spaces with
FPP which are not uniformly non-square.

We shall first discuss FPP for uniformly non-octahedral spaces. We need some
previous results. For 0 ≤ a ≤ 1 let

(4.1) R(a,X) = sup
{
lim inf
n→∞

∥xn + x∥
}
,

where the supremum is taken over all x ∈ X with ∥x∥ ≤ a and all weakly null
sequences {xn} in the unit ball of X such that limn,m→∞;n ̸=m ∥xn − xm∥ ≤ 1
(Domı́nguez Benavides [4]).

Theorem A (Domı́nguez Benavides [4]). Let R(1, X) < 2. Then X has WFPP.

In 2006 Garćıa-Falset et.al obtained the next result.

Theorem B (Garćıa-Falset, et al. [8]). Let X be uniformly non-square. Then
R(1, X) < 2, and hence X has FPP.

Since all uniformly non-square spaces have FPP, it is natural to ask whether
all uniformly non-octahedral (uniformly non ℓ31) spaces have FPP. We have the
following.

Theorem 4.1 (Kato-Tamura [15]). Let X be uniformly non-octahedral. If X is
isometric to an ℓ∞-sum of 3 Banach spaces, then X has FPP, while X is not
uniformly non-square.

More generally we have

Theorem 4.2 (Kato-Tamura [15]). Let X be uniformly non-ℓn+1
1 . If X is isometric

to an ℓ∞-sum of 2n − 1 Banach spaces, then X has FPP, while X is not uniformly
non-square.

To present a proof of Theorem 4.2 we need the next result.

Lemma 4.3 ([15]). For all Banach spaces X1, . . . , XN

R(1, (X1 ⊕ · · · ⊕Xm)∞) = max
1≤j≤m

R(1, Xj).
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Proof of Theorem 4.2. Assume that X = (X1⊕· · ·⊕X2n−1)∞ is uniformly non-ℓn+1
1 .

Then, by Theorem 3.6 all X1, . . . , X2n−1 are uniformly non-square. Therefore, by
Theorem B

R(1, Xj) < 2 for all 1 ≤ j ≤ 2n − 1.

Hence, by Lemma 4.3 we have

R(1, (X1 ⊕ · · · ⊕Xm)∞) < 2,

which implies that X = (X1 ⊕ · · · ⊕Xm)∞ has WFPP by Theorem A. Since X is
reflexive, X has FPP. �

Example 4.4. Since Lp, 1 < p <∞, is uniformly convex, a fortiori, uniformly non-
square, the space X = (Lp ⊕ Lp ⊕ Lp)∞ is uniformly non-octahedoral by Theorem
2.6. Therefore X has FPP by Theorem 4.1, while it is not uniformly non-square.

Next by using Theorem 3.6 we shall construct a plenty of Banach spaces with
FPP failing to be UNSQ.

Proposition 4.5 (Kato-Tamura [16]). Let φ ∈ Ψ2, φ ̸= ψ1 and define ψ ∈ ΨN by

ψ(s1, . . . , sN−1)

= max

{
∥(1−

N−1∑
i=1

si, s1)∥φ, ∥(s1, s2)∥φ, ∥(s2, s3)∥φ, . . . , ∥(sN−2, sN−1)∥φ

}
for (s1, . . . , sN−1) ∈ ∆N .

Then ψ ̸∈ Ψ
(1)
N and ∥ · ∥ψ is not uniformly non-square.

We note that the corresponding norm is

∥(a1, a2 . . . , aN )∥ψ = max{∥(a1, a2)∥φ, ∥(a2, a3)∥φ, . . . , ∥(aN−1, aN )∥φ}
for (a1, . . . , aN ) ∈ CN

In fact, we considered first this norm which is in ANN , and the above ψ was derived

by ψ(s) = ∥(1−
∑N−1

i=1 si, s1, . . . , sN−1)∥. Therefore ψ ∈ ΨN . Then we have ψ ̸∈ Ψ
(1)
N

and the norm ∥ · ∥ψ is not UNSQ.

Theorem 4.6 (Kato-Tamura [16]). Let X1, . . . , XN be weakly nearly uniformly
smooth, N ≥ 3. Let ψ ∈ ΨN be as in Proposition 4.5. Then (X1 ⊕ · · · ⊕XN )ψ has
FPP, whereas it is not uniformly non-square.

Proof. By Theorem 3.6 and Remark 3.7, (X1⊕· · ·⊕XN )ψ is WNUS, and hence has

FPP. On the other hand, it is not UNSQ since (CN , ∥ · ∥ψ) is not so by Proposition
4.5. �

By Theorem 3.6 and Remark 3.7 we also obtain

Corollary 4.7. Let X1, . . . , XN be weakly nearly uniformly smooth, N ≥ 3. Then
(X1 ⊕ · · · ⊕XN )∞ has FPP, whereas it is not uniformly non-square.

Example 4.8. Let

ψ(s1, . . . , sN−1)
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= max

{
∥(1−

N−1∑
i=1

si, s1)∥2, ∥(s1, s2)∥2, ∥(s2, s3)∥2, . . . , ∥(sN−2, sN−1)∥2

}
for (s1, . . . , sN−1) ∈ ∆N .

The corresponding norm

∥(a1, a2 . . . , aN )∥ψ = max{∥(a1, a2)∥2, ∥(a2, a3)∥2, . . . , ∥(aN−1, aN )∥2}
is not partial ℓ1 by Proposition 4.5. Since Lpj , 1 < pj < ∞ (1 ≤ j ≤ N), are
uniformly convex and hence WNUS, the space X = (Lp1 ⊕ · · · ⊕ LpN )ψ has FPP,
while it is not uniformly non-square by Theorem 4.6. Also, the ℓ∞-sum X =
(Lp1 ⊕ · · · ⊕ LpN )∞, which is not uniformly non-square, has FPP by Theorem 3.6.

5. Concluding remarks

As another notion of direct sum of Banach spaces the Z-direct sum is dis-
cussed (cf. [5]). Let Z be a finite dimensional normed space (RN , ∥ · ∥Z), whose
norm is monotone in RN+ , that is, ∥(a1, . . . , aN )∥Z ≤ ∥(b1, . . . , bN )∥Z if 0 ≤ aj ≤
bj for all 1 ≤ j ≤ N. The Z-direct sum (X1 ⊕ · · · ⊕ XN )Z of X1, . . . , XN is their
direct sum equipped with the norm

∥(x1, . . . , xN )∥Z := ∥(∥x1∥, . . . , ∥xN∥)∥Z for (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕XN ,

where the norm ∥ · ∥Z on RN is assumed to be absolute without loss of generality.
Clearly, the Z-direct sum is more general than the ψ-direct sum. On the other hand,
as is mensioned in [5], any Z-direct sum is isometrically isomorphic to a ψ-direct
sum. Thus, these notions are equivalent. This is true for a more general direct sum
([18]).

According to Dowling and Saejung [5], a norm ∥·∥ on CN is said to have property
TN1 if for all a = (a1, . . . , aN ), b = (b1, . . . , bN ) ∈ CN with ∥a∥ = ∥b∥ = 1

2∥a+b∥ = 1
it follows that supp a ∩ supp b ̸= ∅, where supp a = {j : aj ̸= 0}. Also ∥ · ∥ is
said to have property TN∞ if for all a = (a1, . . . , aN ), b = (b1, . . . , bN ) ∈ CN with
∥a∥ = ∥b∥ = ∥a+ b∥ = 1 it follows that supp a ∩ supp b ̸= ∅. Using these notions,
they characterized the uniform non-squareness of a Z-direct sum, or equivalently, a
ψ-direct sum under the condition that the norm ∥ · ∥ (or ∥ · ∥ψ) is strictly monotone
(for N = 3 without this condition). These properties for an absolute norm are

interpreted in words of partial ℓ1-norms or the class Ψ
(1)
N as follows.

Proposition 5.1 (Kato-Tamura [18]). Let ψ ∈ ΨN .

(i) The ψ-norm ∥ · ∥ψ has property TN1 if and only if ψ ̸∈ Ψ
(1)
N .

(ii) The ψ-norm ∥ · ∥ψ has property TN∞ if and only if ψ∗ ̸∈ Ψ
(1)
N , where ψ∗ is the

dual function of ψ which corresponds to the dual norm of ∥ · ∥ψ.
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