2 Pug
.
%

Journal of Nonlinear and Convex Analysis Z Mdm P"“'Shas
Volume 16, Number 2, 2015, 243-254 oo ISSN 1880-5221 ONLINE JOURNAL
Yinee |

© Copyright 2015

Yok%

FIXED POINT THEOREMS FOR TWO HYBRID PAIRS OF
NON-SELF MAPPINGS UNDER JOINT COMMON LIMIT
RANGE PROPERTY IN METRIC SPACES

MOHAMMAD IMDAD, SUNNY CHAUHAN, AND POOM KUMAM*

Dedicated to Professor Sompong Dhompongsa on the occasion of his 65th birthday

ABSTRACT. In this paper, we introduce the notion of joint common limit range
property for two hybrid pairs ofnon-self mappings and utilize the same to obtain
some coincidence and common fixed point theorems defined on an arbitrary set
with values in metric spaces. Some illustrative examples are also given to high-
light the realized improvements. Our results improve, generalize and extend some
results of the existing literature especially the ones due to Liu et al. [Common
fixed points of single-valued and multivalued maps, Internat. J. Math. Math.
Sci. 19 (2005), 3045-3055].

1. INTRODUCTION AND PRELIMINARIES

Nadler [25] proved the classical Banach fixed point theorem for set-valued map-
pings. The first ever use of a weak commutativity condition in a hybrid setting can
be traced back to a Itoh and Takahashi paper of 1977 while the formal use of a weak
commutativity condition essentially belongs to Sessa [34] which appeared in 1982.
Kaneko and Sessa [23] weakened the notion of weak commutativity by extending
the idea of compatibility (due to Jungck [18]) to a hybrid pair of mappings. Pathak
[29] extended the concept of compatibility (due to Jungck [19]) by defining weak
compatibility for hybrid pairs of mappings (including single valued case also) and
utilized the same to prove results on existence of coincidence and common fixed
points. Following this line of research, many authors have proved coincidence and
common fixed point theorems in metric spaces satisfying hybrid-type contraction
conditions (e.g. [4, 6, 7, 8, 29, 30, 37])

It is well known that strict contractive conditions do not ensure the existence of
fixed points unless the underlying space is assumed to be compact or the contractive
conditions are replaced by relatively stronger conditions. In 2004, Kamran [21]
extended the idea of the property (E.A) (due to Aamri and Moutawakil [1]) to a
hybrid pair of mappings and proved some fixed point results. Imdad and Ali [14]
pointed out that the property (E.A) buys the suitable required containment between
the range of one mapping into the range of other mapping of the pair. In 2005, Liu
et al. [24] investigated a new property for two hybrid pairs of mappings and term
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the same as common property (E.A) which reduces to the property (E.A)whenever
restricted to a single pair. By using this interesting property, they extended the
results of Kamran [21]. Also, Ali and Imdad [3] studied the notion of non-compatible
mappings (due to Pant [27]) in the hybrid setting.

In 2011, Samet and Vetro [33] pointed out an error in the proof of Theorem 1 of
Rhoades et al. [32] and proved some results on coincidence points for a hybrid pair
of mappings satisfying ¢-contractive condition in the presence of the property (E.A).
Damjanovi¢ et al. [5] obtained a coincidence point theorem for two hybrid pairs of
mappings which improved the results of Gordji et al. [10]. Sintunavarat and Kumam
[40] coined the idea of ‘common limit range property’ for single-valued mappings
which never demands the completeness (or closedness) of the underlying subspaces.
Most recently, Imdad et al. [15] defined the notion of common limit range property
for a hybrid pair of mappings and proved some fixed point results in symmetric
spaces. Motivated by the idea of Liu et al. [24], Imdad et al. [16] extended the
notion of common limit range property to pair of self mappings and obtained some
fixed point theorems in Menger and metric spaces. In the recent past, several
authors have contributed to the vigorous development of metric fixed point theory
for hybrid mappings (e.g. [2, 3, 9, 11, 12, 13, 14, 22, 26, 31, 35, 36, 38, 39, 41, 42]).

The aim of this paper is to define joint common limit range property for two
hybrid pairs of non-self mappings and utilize the same to prove results on coincidence
and common fixed points in metric spaces. We furnish some examples to support
our main result besides deriving some related results. Our results improve and
generalize a host of previously known results contained in [5, 24, 39] and the ones
contained in cited references.

The following definitions and results will be needed in the sequel.

Definition 1.1. Let (X, d) be a metric space. A subset A of X is said to be
(1) closed if A= A where A = {zx € X : d(x, A) = 0},
(2) bounded if §(A) < oo where §(A) = sup{d(a,b) : a,b € A}.
Let (X, d) be a metric space. Then, on the lines of Nadler [25], we adopt

(1) CL(X) ={A: Ais a non-empty closed subset of X},
(2) CB(X)={A: Ais a non-empty closed and bounded subset of X},
(3) For non-empty closed and bounded subsets A, B of X and = € X,

d(z,A) = inf{d(z,a) :a € A}
and
H(A, B) = max {{supd(a,B) : a € A},{supd(A,b) : b e B}}.

It is easy to see that (CB(X), H) is a metric space wherein CB(X) is a metric
space with the distance H which is known as the Hausdorff-Pompeiu metric on
CB(X) provided (X, d) is a metric space.

Definition 1.2 ([27]). Let (X,d) be a metric space with F' : X — CB(X) and
g : X — X. The pair of hybrid mappings (F, g) is said to be R-weakly commuting
if, for given = € X, gFx € CB(X), there exists some positive real number R such
that H(Fgx,gFz) < Rd(Fz,gx).
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Definition 1.3 ([23]). Let (X,d) be a metric space with F' : X — CB(X) and

g : X — X. The pair of hybrid mappings (F, g) is said to be compatible if gF'z €

CB(X) for all x € X and li_>m H(Fgxy, gFz,) =0 whenever {x,} is a sequence in
n—oo

X such that lim gz, =t € A= lim Fux,.
n—oo

n—oo
Here it may be noted that compatible mappings need not be R-weakly commuting
(see [27]). Also, on the points of coincidence R-weak commutativity is equivalent
to commutativity and remains a necessary minimal condition for the existence of
common fixed points for contractive type mappings.

Definition 1.4 ([3]). Let (X,d) be a metric space with F' : X — CB(X) and
g : X — X. The pair of hybrid mappings (F, g) is said to be non-compatible if there

exists at least one sequence {x,} in X such that lim gz, =t € A= lim Fux, but
n—oo n—oo

lim H(Fgx,,gFx,) is either non-zero or nonexistent.
n—oo

Now we define the following definitions for non-self mappings:

Definition 1.5 (]20, 29]). Let (X, d) be a metric space whereas Y be an arbitrary
non-empty set with F : Y — 2% and g : Y — X. The pair of hybrid mappings
(F,g) is said to be weakly compatible if they commute at their coincidence points,
that is, gF'x = Fgx whenever gz € Fx.

Definition 1.6 ([12]). Let (X, d) be a metric space whereas Y be an arbitrary non-
empty set with F: Y — 2% and g : Y — X. The pair of hybrid mappings (F, g) is
said to be quasi-coincidentally commuting if gz € Fx (for x € X with Fz,gz € Y)
implies gF'z is contained in Fgz.

Definition 1.7 ([12]). Let (X,d) be a metric space whereas Y be an arbitrary
non-empty set with F : Y — 2%X and ¢ : Y — X. The mapping g is said to be
coincidentally idempotent with respect to mapping F, if gr € Fx with gz € Y
imply ggz = gz, that is, g is idempotent at coincidence points of the pair (F,g).

Definition 1.8 ([21]). Let (X, d) be a metric space whereas Y be an arbitrary non-
empty set with F': Y — CB(X) and ¢ : Y — X. Then the pair of hybrid mappings
(F, g) is said to satisfy the property (E.A) if there exists a sequence {x,} in Y, for
some ¢t € X and A € CB(X) such that

lim gz, =t € A= lim Fx,.
n—oo n—oo

Definition 1.9 ([24]). Let (X,d) be a metric space whereas Y be an arbitrary
non-empty set with F,G : Y — CB(X) and f,g:Y — X. Then the pairs of hybrid
mappings (F, f) and (G, g) are said to satisfy the common property (E.A) if there
exist two sequences {z,} and {y,} in Y, some t € Y and A, B € CB(X) such that
lim Fz, = A, lim Gy, =B, lim fx, = lim gy, =t€ ANB.
n—oo n—oo n—oo

n—oo
Definition 1.10. Let (X,d) be a metric space whereas Y be an arbitrary non-
empty set with F': Y — CB(X) and g : Y — X. Then the pair of hybrid mappings
(F,g) is said to satisfy the (CLRg) property if there exists a sequence {z,} in Y,
for some v € Y and A € CB(X) such that
lim gz, =gue A= lim Fux,.

n—oo n—oo
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2. MAIN RESULT

In 2005, Liu et al. [24] proved some common point theorems for two hybrid pairs
of mappings sharing common property (E.A) besides satisfying hybrid contractive
conditions which generalizes certain results of Kamran [21]. The main result of Liu
et al. [24] runs as follows:

Theorem 2.1 (|24, Theorem 2.3]). Let f, g be two self mappings of the metric space
(X,d) and let F,G be two mappings from X into CB(X) such that

(1) (f,F) and (g,G) satisfy the common property (E.A);
2) forallx #y in X,

(
(2.1)
EMP&BGy><Inax{d(ﬂmgy%fovax);%ﬂgyﬂ?y%thx7Gy);wﬂgyer)}.

If f(X) and g(X) are closed subsets of X, then

(a) f and F have a coincidence point;

(b) g and G have a coincidence point;

(¢) f and F have a common fized point provided that f is F-weakly commuting
at v and ffv= fv forve C(f, F);

(d) g and G have a common fized point provided that g is G-weakly commuting
at v and ggv = gv for v € C(g,G);

(e) f,9,F and G have a common fized point provided that both (c) and (d) are

true.

One may notice that the notion of common property (E.A) requires the closedness
of the underlying subspaces to ascertain the existence of coincidence points. Hence
in order to remove this requirement, we introduced the notion of Joint Common
Limit Range Property (in short (JCLR) property) for two hybrid pairs of non-self
mappings as follows:

Definition 2.2. Let (X, d) be a metric space whereas Y be an arbitrary non-empty
set with F;G:Y — CB(X) and f,g:Y — X. Then the pairs of hybrid mappings
(F, f) and (G, g) are said to have the (JCLR) property if there exist two sequences
{zn} and {y,} in Y and A, B € CB(X) such that

lim Fz, = A,
n—oo

lim Gy, = B,

n—oo

ILm fx, = le gyn =t € ANBNf(Y)Ng(Y)

i.e., there exist v and v in Y such that t = fu =¢gv € AN B.

Now, we present some examples which demonstrate the utility of preceeding
definition.

Example 2.3. Consider Y = [0,1] C [0,00) = X equipped with the usual metric.
Define F,G: Y — CB(X) and f,g:Y — X as follows:

l—z, if0<z<l; 1—-22, f0<z<3;
fr=

4 e 1 - 1 e 1
5 lf§<x§1 DR lf§§:€§1
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3.3, ifo<a<i; (3.3,  HOsw<y
FP=V R, iflca<t OFT) [22), ifl<a<t
132), 13 =L 52 ] B> L

If we choose the esteemed sequences {z,} = {1 — %}%N and {y,} = {5 + %}neN

in Y, then one can verify that the pairs (F, f) and (G, g) share the (JCLR) property

1 2 1
lim Fx, = [—,§] , lim Gy, = [—,1] , im fx, = lim gy, = =,
n—00 24| n—oo 5 n—00 n—00 2
1 1 1 13
where f(3) =g(3) =3 € [3.1]-
Notice that the (JCLR) property implies the common property (E.A) but the

converse implication is not true in general. The following example substantiates
this view point.

Example 2.4. In the setting of Example 2.3, replace the mappings f and g (besides
retaining the rest):

1—ux, if0§x<%; 1— a2, ifOS:Ug%;
fr=4 4 o1 9 =19 1 o1
B lf§§x§1 bR lf§<l‘§1
If we consider the sequences as in Example 2.3, then one can verify that
13 2 1
lim Fx, = [—,—] , im Gy, = [—,1] , lim fz, = lim gy, = =(=1t),

where % € [%, %] Hence both the pairs (F, f) and (G, g) share the common property

(E.A). However, there does not exists a point v in Y such that ¢ = fu.
In an attempt to improve the main result of Liu et al. [24], we prove the following:

Theorem 2.5. Let (X,d) be a metric space whereas Y be an arbitrary non-empty
set with F,G:Y — CL(X) and f,g:Y — X. Suppose that

(1) the hybrid pairs (F, f) and (G, g) share the (JCLR) property,

(2) forallx £y inY and 0 < k < 2

(2:2) H(Fa,Gy) < max {d(fz. gy), 5 d(fz, Fz) + d(gy, Gy))

Do |

g[d(f% Gy) + d(gy, F:r)]}-

Then the pairs (F, f) and (G, g) have a coincidence point each.

In particular, if Y C X and the pairs (F, f) and (G,g) are quasi-coincidentally
commuting and coincidentally idempotent, then the pairs (F, f) and (G,g) have a
common fixed point in X.

Proof. Since the pairs (F, f) and (G, g) share the (JCLR) property, there exist two
sequences {x,} and {y,} in Y and A, B € CL(X) such that

lim fz,=t€ A= lim Fz,, lim gy, =t € B = lim Gy,
n—oo n—oo n—oo n—oo

implies that there exist u and v in X such that t = fu = gv € AN B for some
u,v €Y.
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We assert that fu € Fu. Suppose that fu ¢ Fu, then using inequality (2.2), one
gets

gwg%Fw+d@%K%ML

HTFW,Gyn)<1ﬂaX{dLﬁhgyn%

k

5 [d(fu, Gya) + dlgyn, Fu))}.

Taking limit as n — oo, we have

H(Fu,B) < max {d(t, 0, g[d( fu, Fu) + d(t, B)], g[d(t, B) + d(fu, Fu)]}

= gd(fu, Fu)
< d(fu,Fu)

Since t = fu = gv € AN B, it follows from the definition of Hausdorfl metric
that

d(fu, Fu) < H(B, Fu) < d(fu, Fu),

a contradiction. Hence fu € Fu which shows that the pair (F, f) has a coincidence
point v in Y.
Now we show that gv € G, if not, then using inequality (2.2), one obtains

d(gv,Gv) = d(fu,Gv) < H(Fu,Gv)
< max {d(fu, gv), g[d(fu, Fu) + d(gv, Gv)],
k
2
= gd(gv, Gv)
< d(gv,Gv),

[d(fu, Gv) + d(gv,Fu)]}

a contradiction. Hence gv € Gv which shows that the pair (G, g) has a coincidence
point v in Y.

Suppose that ¥ C X. Since u is a coincidence point of the pair (F, f), which
is quasi-coincidentally commuting and coincidentally idempotent with respect to
mapping F', we have fu € Fu and f fu = fu, therefore fu = ffu € f(Fu) C F(fu)
which shows that fu is a common fixed point of the pair (F, f). Similarly, v is a
coincidence point of the pair (G, ¢) which is quasi-coincidentally commuting and
coincidentally idempotent with respect to mapping G, one can easily show that gv
is a common fixed point of the pair (G, g). The analogous arguments work for the
alternate statement as well. This completes the proof. O

Example 2.6. Let Y = [0,2] C [0,00) = X with the usual metric. Define F,G :
Y - CL(X)and f,g:Y — X as follows.

331 ifo<ax<l1;
- { B wn |
1) 9] = 4.

2], if0<z<1;
JEE] D ifl1<a <2

(I oV
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f 1, ifo<z<l; Zoifo<z <
xr = e
Zoifl<az <2 g 1, ifi<z<a2.
Choosing two sequences {z,} = {1 — %}neN and {y,} = {1+ %}nGN in Y, one
can see that the pairs (F, f) and (G, g) enjoy the (JCLR) property, i.e.

lim f 1—l =1e€ §,§ = lim F 1—l ,
n—00 n 52 n—00 n

1 1 1
limg(l+—)=1¢€ —,§ =lim G|1+— ),
n—00 n 272 n—00 n

where 1 = f(1) = g(1) € [%,%] = [%,%] N [3.2]. By a routine calculation one
can show that the contractive condition (2.2) holds for every x # y € X and for
some fixed k € (0,2). Also f(Y) = (%, g] and g(Y) = [0, 2). Hence f(Y) and g(Y)
are not closed subsets of X. The pairs (F, f) and (G,g) are quasi-coincidentally
commuting at z = 1, ie. f(1) € F(1), fF(1) = (2,5) u{1} c [2,3] = Ff(1)
and g(1) € G(1), gG(1) = [23,2) U {1} C [3,2] = Gg(1). Thus, all conditions of
Theorem 2.5 are satisfied and 1 = f(1) = ¢(1) € F(1) = G(1).

Theorem 2.7. Let (X,d) be a metric space whereas Y be an arbitrary non-empty
set with F,G Y — CL(X) and f,g:Y — X. Suppose that the hybrid pairs (F, f)
and (G, g) share the common property (E.A) and satisfy inequality (2.2). If f(Y)
and g(Y') are closed subsets of X, then the pairs (F, f) and (G,g) have a point of
coincidence.

In particular, if Y C X and the pairs (F, f) and (G,g) are quasi-coincidentally
commuting and coincidentally idempotent, then the pairs (F, f) and (G,g) have a
common fixed point in X.

Proof. 1If the pairs (F, f) and (G, g) share the common property (E.A), then there
exist two sequences {x,} and {y,} in Y and some ¢t € X, A, B € CL(X) such that

lim fx,=t€ A= lim Fx,, lim gy, =t € B= lim Gy,.
n—oo n—oo

n—o0 n—oo

As f(Y) and ¢(Y) are closed subsets of X, there exist v and v in X such that
t = fu = gv for some u,v € Y. Hence the pairs (F, f) and (G, g) satisfy the (JCLR)
property. The rest of the proof runs on the lines of the proof of Theorem 2.5. [J

Remark 2.8. The conclusions of Theorem 2.5 and Theorem 2.7 remain true if
inequality (2.2) is replaced by one of the following: For all  # y in Y

(2.3)

H(Fz,Gy) < max{d(fz,gy), kld(fz, Fz) + d(gy, Gy)], k[d(gy, Fz) + d(fz,Gy)]},

where 0 < k < 1.

(2.4)
H(Fa, Gly) < Amax {d(fm,gw,d(f:c,m,d(gy,cy), al

fx,Gy) + d(gy, Fx) }
2 b)

where A € (0,1).
(2.5) H(Fz,Fy) < ad(fz,gy) + pmax{d(fz, Fx),d(gy,Gy)}
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d(fz,Gy) +d(gy, Fx),
+’Ymax{ d(fx, Fr) + d(gy, Gy) }

where a + 8+ 2y < 1.
By setting f, g, F' and G suitably, one can deduce corollaries involving two as well

as three non-self mappings. For the sake naturality, we only derive the following
corollary involving a hybrid pair of non-self mappings:

Corollary 2.9. Let (X,d) be a metric space whereas Y be an arbitrary non-empty
set with F: Y — CL(X) and g : Y — X. Suppose that

(1) the hybrid pair (F,g) enjoys the (CLRg) property,

(2) forallz #y inY and 0 < k < 2

(26)  H(Fr,Fy) < max {d(fz, fo). S[d(fz, Fo) + d(fy. Fy))

(e, Py) + d(fy, Fo) )

Then the pair (F, f) has a coincidence.
In particular, if Y C X and the pair (F, f) is quasi-coincidentally commuting
and coincidentally idempotent, then the pair (F, f) has a common fixed point in X .

Our next theorem involves a function ¢ : Rt — R™ which satisfies the following

properties:

(1) ¢ is upper semi-continuous on RT,

(2) 0 < ¢(t) <t for each t € RT.
Theorem 2.10. Let (X,d) be a metric space whereas Y be an arbitrary non-empty
set with F,G:Y — CL(X) and f,g:Y — X. Suppose that

(1) the hybrid pairs (F, f) and (G,g) share the (JCLR) property,

(2) forallx £y €Y,
(2.7) H(Fz,Gy) < ¢(m(z,y)),

where

(2.8)  m(z,y) = max{d(fz, gy),d(fz, Fz),d(gy,Gy),d(fz,Gy),d(gy, Fx)} .

Then the pairs (F, f) and (G, g) have a coincidence point each.

In particular, if Y C X and the pairs (F, f) and (G,g) are quasi-coincidentally
commuting and coincidentally idempotent, then the pairs (F, f) and (G,g) have a
common fixed point in X.

Proof. Suppose the pairs (F, f) and (G, g) share the (JCLR) property, then there
exist two sequences {z,} and {y,} in Y and A, B € CL(X) such that

lim fz,=t€ A= lim Fz,, lim gy, =t € B = lim Gy,
n—00 n—00 n— 00 n—:00
implies that there exist u and v in X such that t = fu = gv € AN B for some

u,v € Y. First we show that fu € Fu. If not, then using inequality (2.7), one
obtains

(2.9) H(Fu,Gyn) < ¢(m(u,yn)),
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where

m(u, yp) = max {d(fu, gyn), d(fu, Fu), d(gyn, Gyn), d(fu, Gyn), d(gyn, Fu)} .
Taking limit as n — oo in (2.9), we have

lim H(Fu,Gy,) < lim ¢(m(u,yn))

n—oo
(2.10) H(Fu,B) < ¢ (nh—?go m(u,yn)> ,
where
lim m(u,y,) = Tim max {d(fu, gya),d(fu. Fu), d(gyn, Gyn),
d(fu,Gyn),d(gyn,FU)}
= d(fu, Fu).

Hence (2.10) implies

H(B,Fu) < ¢(d(fu,Fu))
< d(fu, Fu).
Since t = fu = gv € AN B and (owing to the definition of Hausdorff metric) it
follows that
d(fu, Fu) < H(fu, Fu) < d(fu, Fu),
which is a contradiction. Hence fu € Fu which shows that w € Y is a coincidence

point of the pair (F, f).
Now we assert that gv € Gv. On using inequality (2.7), one gets

d(gv, Gv) = d(fu,Gv) < H(Fu,Gv)

(2.11) < p(m(u,v)),
where
m(u,v) = max{d(fu,gv),d(fu, Fu),d(gv,Gv),d(fu,Gv),d(gv, Fu)}
= d(gv,Gv).

Hence (2.11) implies

d(gv,Gv) < H(Fu,Gv) < ¢(d(gv,Gv))
< d(gv,Gv),

which is a contradiction. Then we have gv € Gv which shows that v € Y is a
coincidence point of the pair (G, g).

The rest of the proof can be completed on the lines of the proof of Theorem 2.5.
This completes the proof. O

Now we prove a more interesting result by introducing the notion of conditionally
commuting (due to Pant and Pant [28]) for a hybrid pair of mappings which is the
weakest form of the commutativity.
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Definition 2.11 ([28]). Let (X,d) be a metric space whereas Y be an arbitrary
non-empty set with £ : Y — 2%¥ and g : Y — X. The pair of hybrid mappings
(F,g) is said to be conditionally commuting if they commute on a nonempty subset
of the set of coincidence points whenever the set of their coincidences is nonempty.

Theorem 2.12. Let (X,d) be a metric space whereas Y be an arbitrary non-empty
set with F,G : Y — CL(X) and f,g:Y — X satisfying inequality (2.2). Suppose
that the hybrid pairs (F, f) and (G,g) enjoy the (JCLR) property. Then the pairs
(F, f) and (G, g) have a point of coincidence.

In particular, if Y C X and 0 < k < 1, then the pairs (F, f) and (G, g) have a
common fized point provided the pairs (F, f) and (G, g) are conditionally commuting.

Proof. In view of proof of Theorem 2.5, the pairs (F, f) and (G, g) have a coincidence
point each u,v in Y. Suppose that ¥ C X. Since the pair (F, f) is conditionally
commuting, two possible cases arise:

Case I: The pair (F, f) commutes at u € Y C X, then fu € Fu so that ffu €
f(Fu) C F(fu). Now we show that fu is a common fixed point of the pair (F, f).
If it is not so, then using inequality (2.2), one gets

H(F fu, Gyn) < max {d(f fu,gy2), S1d(f fu, F ) + d{gyn, G,

g[d(ffu, Gyn) + d(gyn. Ffu)]}-

Taking limit as n — oo, we have
H(F fu, B) <maxx {d(f fu, fu), £ (f fu, F fu) +d(t, B

2107 fu, B) + d(fu, F )]}
=max {d(f fu, fu),kd(f fu, fu)}
=d(fu, ffu).

Since t = fu=gv € ANB and ffu € F fu, it follows (owing to the definition of
Hausdorff metric) that

d(f fu, fu) < H(F fu, B) < d(ffu, fu),
a contradiction. Hence fu = ffu € F fu which shows that fu is a common fixed
point of the pair (F, f).

Case II: If F and f do not commute at u, then by virtue of conditional com-
mutativity of F' and f, there exists a coincidence point of F and f at which
F and f commute, i.e., there exists a point « in Y such that fu' € Fu and
ffu e f(Fu') € F(fu'). Rest of the proof can be completed on the lines of the
Case I when F' and f commute at u.

Similarly, we can show that gv is a common fixed point of the pair (G, g). This
completes the proof of the theorem. O
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