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problem for a nondifferentiable multiobjective programming problem involving sup-
port function of a compact convex set. They established only weak duality theorems
for efficient solutions by using the generalized (F, ρ)-convexity.

Recently, Kim and Bae [7] introduced nondifferentiable multiobjective programs
involving support function of a compact convex set and linear function. They gave
a mixed type dual problem and established weak and strong duality theorems under
generalized (F, α, ρ, d)-convexity assumptions. Subsequently, Bae et al. [2] formu-
lated Mond-Weir type and Wolfe type dual models and presented weak and strong
duality theorems for efficient solutions by using generalized convexity conditions.
Very recently, Kim et al. [8] introduced a G-mixed dual problem for a class of non-
differentiable multiobjective programs with inequality and equality constraints in
which each component of the objective function contains a term involving the sup-
port function of a compact convex set. Weak, strong and converse duality theorems
were proved by them.

In this paper, we introduce a mixed type dual problem. Our mixed dual is
unifying the Wolfe and Mond-Weir type duals which was considered in Bae et al.
[2]. Mixed duality relations are established by using more generalized convexity.

We consider the following nondifferentiable multiobjective programming problem
involving the support function of a compact convex set.

(MP)E Minimize (f1(x) + s(x|D1), . . . , fp(x) + s(x|Dp))

subject to gj(x) 5 0, j ∈ M = {1, 2, . . . ,m},
hl(x) = 0, l ∈ Q = {1, 2, . . . , q}, x ∈ X,

where fi, gj , hl : IR
n → IR are differentiable functions, i ∈ P = {1, 2, . . . , p}, X =

{x ∈ IRn|g(x) 5 0, h(x) = 0}, Di is a compact convex subset of IRn.

Definition 1.1. A point x0 ∈ X is said to be an efficient solution of (MP)E if
there exists no other x ∈ X such that

fi0(x) + s(x|Di0) < fi0(x
0) + s(x0|Di0), for some i0 ∈ P,

and

fi(x) + s(x|Di) 5 fi(x
0) + s(x0|Di), for all i ∈ P.

Definition 1.2. Let D be a compact convex set in IRn. The support function s(·|D)
is defined by

s(x|D) := max{xT y : y ∈ D}.
The support function s(·|D) has a subdifferential. The subdifferential of s(·|D)

at x is given by

∂s(x|D) := {z ∈ D : zTx = s(x|D)}.
The support function s(·|D) is convex and everywhere finite, that is, there exists

z ∈ D such that
s(y|D) ≥ s(x|D) + zT (y − x) for all y ∈ D.

Equivalently,

zTx = s(x|D).

Now, we define a differentiable (V, ρ)-invex function due to [9].
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Definition 1.3. A vector function f : IRn → IRp is said to be (V, ρ)-invex at
u ∈ IRn with respect to the function η and θ : IRn × IRn → IRn if there exist
αi : IR

n × IRn → IR+ \ {0} and ρi ∈ IR, i ∈ P, such that for any x ∈ IRn

αi(x, u)[fi(x)− fi(u)] = ∇fi(u)η(x, u) + ρi∥θ(x, u)∥2.

If this inequality is replaced by strict inequality, then f is called strictly (V, ρ)-invex.

For each k ∈ P , we consider the following scalarizing problem Pk(x
0) of (MP)E

due to the one in [4].

Minimize fk(x) + s(x|Dk)

subject to fi(x) + s(x|Di) 5 fi(x
0) + s(x0|Di), i ̸= k ∈ P,

gj(x) 5 0, j ∈ M,

hl(x) = 0, l ∈ Q.

In order to establish strong duality results, we need the following theorem between
(MP)E and Pk(x

0).

Theorem 1.4. x0 is an efficient solution of (MP)E if and only if x0 solves Pk(x
0)

for every k = 1, 2, . . . , p.

Proof. Assume that x0 is not a solution of Pk(x
0). Then there exists x ∈ X such

that

fk(x
0) + s(x0|Dk) > fk(x) + s(x|Dk), k ∈ P,(1.1)

fi(x
0) + s(x0|Di) = fi(x) + s(x|Di), i ̸= k.(1.2)

From (1.1) and (1.2), we conclude that x0 is not efficient for (MP)E.
Conversely, let x0 solve Pk(x

0) for every k ∈ P , then for all x ∈ X with fi(x
0)+

s(x0|Di) = fi(x) + s(x|Di), i ̸= k, we have fk(x
0) + s(x0|Dk) 5 fk(x) + s(x|Dk).

Then, there exists no other x ∈ X such that fi(x) + s(x|Di) 5 fi(x
0) + s(x0|Di),

i ∈ P with strict inequality holding for at least one i. This implies that x0 is efficient
for (MP)E. �

2. Mixed type duality

We propose the following mixed dual problem (MD)E to (MP)E:

(MD)E Maximize (f1(u) + uTw1 +
∑
j∈J0

µjgj(u) +
∑
l∈K0

νlhl(u), . . . ,

fp(u) + uTwp +
∑
j∈J0

µjgj(u) +
∑
l∈K0

νlhl(u))

subject to

p∑
i=1

λi(∇fi(u) + wi) +

m∑
j=1

µj∇gj(u)

+

q∑
l=1

νl∇hl(u) = 0,(2.1)
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j∈Jα

µjgj(u) +
∑
l∈Kα

νlhl(u) = 0, α = 1, . . . , r,(2.2)

λi = 0, wi ∈ Di, i ∈ P,

p∑
i=1

λi = 1(2.3)

µj = 0, j ∈ M, νl ∈ IR, l ∈ Q,(2.4)

where Jα ⊂ M,α = 0, 1, . . . , r with ∪r
α=0Jα = M and Jα ∩ Jβ = ∅ if α ̸= β,Kα ⊂

Q,α = 0, 1, . . . , r with ∪r
α=0Kα = Q and Kα ∩Kβ = ∅ if α ̸= β.

Now, we establish weak and strong duality relations between (MP)E and (MD)E.
First, we give a weak duality result by using suitable (V, ρ)-invexity.

Theorem 2.1 (Weak Duality). Let x and (u,w, λ, µ, ν) be feasible solutions of
(MP)E and (MD)E, respectively. If

∑
j∈Jα µjgj(·) +

∑
l∈Kα

νlhl(·), α = 1, . . . , r is

strictly (V, σ)-invex at u with respect to η, fi(·)+(·)Twi, i ∈ P are (V, ρ)-invex at u
with respect to η and

∑
j∈J0 µjgj(·) +

∑
l∈K0

νlhl(·) is (V, ρ)-invex at u with respect

to η with σ = 0,
∑p

i=1 λiρi = 0, then the following cannot hold:

fi0(x) + s(x|Di0) < fi0(u) + uTwi0 +
∑
j∈J0

µjgj(u) +
∑
l∈K0

νlhl(u),(2.5)

for some i0 ∈ P,

fi(x) + s(x|Di) 5 fi(u) + uTwi +
∑
j∈J0

µjgj(u) +
∑
l∈K0

νlhl(u), for all i ∈ P.(2.6)

Proof. Let x and (u,w, λ, µ, ν) be feasible solutions of (MP)E and (MD)E, respec-
tively. Since β(x, u) > 0, we have

β(x, u)
( ∑

j∈Jα

µjgj(x) +
∑
l∈Kα

νlhl(x)
)
5 β(x, u)

( ∑
j∈Jα

µjgj(u) +
∑
l∈Kα

νlhl(u)
)
.

By the strictly (V, σ)-invexity of
∑

j∈Jα µjgj(u) +
∑

l∈Kα
νlhl(u), for α = 1, . . . , r,

we have [ ∑
j∈Jα

µj∇gj(u) +
∑
l∈Kα

νl∇hl(u)
]
η(x, u) + σ∥θ(x, u)∥2 < 0.(2.7)

Suppose contrary to the results that (2.5) and (2.6) hold. Since xTwi 5 s(x|Di), i ∈
P,

∑
j∈J0 µjgj(x) 5 0 and

∑
l∈K0

νlhl(u) = 0, we have

fi0(x) + xTwi0 +
∑
j∈J0

µjgj(x) +
∑
l∈K0

νlhl(x)

< fi0(u) + uTwi0 +
∑
j∈J0

µjgj(u) +
∑
l∈K0

νlhl(u), for some i0 ∈ P,

fi(x) + xTwi +
∑
j∈J0

µjgj(x) +
∑
l∈K0

νlhl(x)

5 fi(u) + uTwi +
∑
j∈J0

µjgj(u) +
∑
l∈K0

νlhl(u), for all i ∈ P.
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Since fi(·)+(·)Twi, i ∈ P are (V, ρ)-invex at u with respect to η and
∑

j∈J0 µjgj(·)+∑
l∈K0

νlhl(·) is (V, ρ)-invex at u with respect to η, we obtain

αi0(x, u)
[
fi0(x) + xTwi0 +

∑
j∈J0

µjgj(x) +
∑
l∈K0

νlhl(x)

− fi0(u)− uTwi0 −
∑
j∈J0

µjgj(u)−
∑
l∈K0

νlhl(u)
]

>
[
∇fi0(u) + wi0 +

∑
j∈J0

µj∇gj(u) +
∑
l∈K0

νl∇hl(u)
]
η(x, u)

+ ρi0∥θi0(x, u)∥2, for some i0 ∈ P,

αi(x, u)
[
fi(x) + xTwi +

∑
j∈J0

µjgj(x) +
∑
l∈K0

νlhl(x)

− fi(u)− uTwi −
∑
j∈J0

µjgj(u)−
∑
l∈K0

νlhl(u)
]

=
[
∇fi(u) + wi +

∑
j∈J0

µj∇gj(u) +
∑
l∈K0

νl∇hl(u)
]
η(x, u)

+ ρi∥θi(x, u)∥2, for all i ∈ P.

Since λi = 0, i ∈ P and
∑p

i=1 λi = 1, we have

(2.8)
[ p∑

i=1

λi(∇fi(u) + wi) +
∑
j∈J0

µj∇gj(u) +
∑
l∈K0

νl∇hl(u)
]
η(x, u)

+

p∑
i=1

λiρi∥θ(x, u)∥2 5 0.

By (2.7) and (2.8), we obtain[ p∑
i=1

λi(∇fi(u) + wi) +

m∑
j=1

µj∇gj(u) +

q∑
l=1

νl∇hl(u)
]
η(x, u)

< −
p∑

i=1

λiρi∥θ(x, u)∥2 − σ∥θ(x, u)∥2 5 0.

This inequality contradicts (2.1). �

Remark 2.2. If the strictly (V, σ)-invexity assumption of
∑

j∈Jα µjgj(·)+∑
l∈Kα

νlhl(·) is replaced by (V, σ)-invexity, then our Theorem 2.1 also holds between

(MP)E and (MD)E with λi > 0,
∑p

i=1 λi = 1.

Theorem 2.3. Suppose that the assumptions of Theorem 2.1 are held. If
(u0, w0, λ0, µ0, ν0) is a feasible solution of (MD)E such that u0 is a feasible solution
of (MP)E and (u0)Tw0

i = s(u0|Di), i ∈ P , then u0 is an efficient solution of
(MP)E and (u0, w0, λ0, µ0, ν0) is an efficient solution of (MD)E.
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Proof. It follows on the lines of Egudo (Ref.[5], Corollary 1) along with Theorem
2.1. �

Theorem 2.4 (Strong Duality). If x0 is an efficient solution of (MP)E and satisfy
a constraint qualification [11] for Pk(x

0) for at least one k ∈ P then there exist
λ0 ∈ IRp, µ0 ∈ IRm, ν0 ∈ IRq and w0

i ∈ Di, i ∈ P such that (x0, w0, λ0, µ0, ν0)
is a feasible solution of (MD)E and (x0)Tw0

i = s(x0|Di), i ∈ P. Moreover, if
the assumptions of Theorem 2.1 are satisfied then (x0, w0, λ0, µ0, ν0) is an efficient
solution of (MD)E.

Proof. Since x0 is an efficient solution of (MP)E, then from Theorem 1.4, x0 solves
Pk(x

0) for all k ∈ P . By the assumption, there exists at least one k ∈ P for which
x0 satisfies a constraint qualification [11] for Pk(x

0). Now from the Kuhn-Tucker
necessary conditions [11], there exist λ0

i = 0, i ̸= k, 0 5 µ0 ∈ IRm, ν0 ∈ IRq and
w0
i ∈ Di, i ∈ P such that

λ0
k(∇fk(x

0) + w0
k) +

∑
i ̸=k

λ0
i (∇fi(x

0) + w0
i )

+

m∑
j=1

µ0
j∇gj(x

0) +

q∑
l=1

ν0l ∇hl(x
0) = 0,(2.9)

(w0
i )

Tx0 = s(x0|Di), i ∈ P,
m∑
j=1

µ0
jgj(x

0) = 0.(2.10)

Now dividing (2.9) and (2.10) by 1 +
∑

i ̸=k λi and letting

λ0
k =

1

1 +
∑

i ̸=k λi
> 0, λ0

i =
λi

1 +
∑

i̸=k λi
= 0, for all i ̸= k

and

µ0 =
µ

1 +
∑

i̸=k λi
= 0, ν0 =

ν

1 +
∑

i ̸=k λi
.

Then, we have
∑p

i=1 λ
0
i (∇fi(x

0)+w0
i )+

∑m
j=1 µ

0
j∇gj(x

0)+
∑q

l=1 ν
0
l ∇hl(x

0) = 0, and∑
j∈Jα µ0

jgj(x
0) +

∑
l∈Kα

ν0l hl(x
0) = 0, α = 1, . . . , r. So (x0, w0, λ0, µ0, ν0) satisfy

(2.1), (2.2), (2.3) and (2.4). Thus, (x0, w0, λ0, µ0, ν0) is feasible for (MD)E.
Hence, (x0, w0, λ0, µ0, ν0) is efficient for (MD)E from Remark 2.2. �

3. Special cases

Case 1. If Di = ∅, i ∈ P,Q = ∅, J0 = M , then our mixed dual problem (MD)E
reduces to Wolfe Vector Dual (WVD) in Egudo [5].

(WVD) Maximize (f1(u) + µT g(u), . . . , fp(u) + µT g(u))

subject to

p∑
i=1

λi∇fi(u) +∇µT g(u) = 0,
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λi = 0,

p∑
i=1

λi = 1, µ = 0.

If Di = ∅, i ∈ P,Q = ∅, Jα = M , then our mixed dual problem (MD)E reduces to
Mond-Weir Vector Dual (DVOP) in Egudo [5].

(DVOP) Maximize (f1(u), . . . , fp(u))

subject to

p∑
i=1

λi∇fi(u) +∇µT g(u) = 0,

µT g(u) = 0,

λi = 0,

p∑
i=1

λi = 1, µ = 0,

Case 2. If P = {1}, s(x|D) = (xTBx)1/2 and Q = ∅, then our mixed dual problem
(MD)E reduces to the one in Ahmad [1].

Case 3. If s(x|Di) = (xTBix)
1/2, i ∈ P , Q = ∅, J0 = M and X = {x|− g(x) 5 0},

then our mixed dual problem (MD)E reduces to (VOP)1 in Lal et al. [10].

(VDP)1 Maximize (f1(u) + uTB1w − µT g(u), . . . , fp(u) + uTBpw − µT g(u))

subject to µT gx(u) =

p∑
i=1

λifix(u) +

p∑
i=1

λiBiw,

wTBiw 5 1, λi = 0,

p∑
i=1

λi = 1, µ = 0.

If s(x|Di) = (xTBix)
1/2, i ∈ P,Q = ∅, Jα = M , then our mixed dual problem

(MD)E reduces to (VDP)2 in Lal et al. [10].

(VDP)2 Maximize (f1(u) + uTB1w, . . . , fp(u) + uTBpw)

subject to µT gx(u) =

p∑
i=1

λifix(u) +

p∑
i=1

λiBiw,

µT g(u) 5 0, wTBiw 5 1,

λi = 0,

p∑
i=1

λi = 1, µ = 0.

Case 4. Di = ∅, i ∈ P,Q = ∅, then our mixed dual problem (MD)E reduces to
the mixed dual (MDP) in Xu [18].

(MDP) Maximize f(u) + µT
J1gJ1(u)e

subject to ∇f(u)Tλ+∇g(u)Tµ = 0,

µT
J2gJ2(u) = 0, λi = 0,

p∑
i=1

λi = 1, µ = 0.

where J1 is a subset of M and J2 = M/J1.
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Case 5. If Jα = ∅ and Kα = ∅, then our mixed dual problem (MD)E reduces to
(WVODE) in Bae et al. [2].

(WVODE) Maximize (f1(u) + uTw1 + µT g(u) + νTh(u), . . . ,

fp(u) + uTwp + µT g(u) + νTh(u))

subject to

p∑
i=1

λi(∇fi(u) + wi) +∇µT g(u) +∇νTh(u) = 0,

wi ∈ Di, λi = 0,

p∑
i=1

λi = 1, µj = 0, j ∈ M.

If J0 = ∅ andK0 = ∅, then our mixed dual problem (MD)E reduces to (MVODE)
in Bae et al. [2].

(MVODE) Maximize (f1(u) + uTw1, . . . , fp(u) + uTwp)

subject to

p∑
i=1

λi(∇fi(u) + wi) +∇µT g(u) +∇νTh(u) = 0,

µT g(u) + νTh(u) = 0,

wi ∈ Di, λi = 0,

p∑
i=1

λi = 1, µj = 0, j ∈ M.
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