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ABSTRACT. In this paper, we introduce a class of nondifferentiable multiobjective
programs with inequality and equality constraints, in which every component
of the objective function contains a term involving the support function of a
compact convex set. A mixed type dual for the primal problem is formulated.
We establish weak and strong duality theorems for efficient solutions under (V/ p)-
invexity assumptions. Some special cases of our duality results are presented.

1. INTRODUCTION AND PRELIMINARIES

The concept of efficiency was handled in game theory, optimal decision problems
and optimization problems. In 1968, Geoffrion [6] introduced a slightly restricted
definition of efficiency called proper efficiency. In virtue of proper efficiency, Weir
[16] established some duality results between primal problem and Wolfe type dual
problem and extended the duality results of Wolfe [17] for scalar convex program-
ming problems, then duality results for scalar nonconvex programming problems to
vector valued programs were established.

A new model for studying duality in nonlinear programming was given by Mond
and Weir [13]. Based on the results in [14, 15], Egudo [5] formulated Wolfe type and
Mond-Weir type dual problems and established duality theorems under generalized
convexity assumptions.

Later, Xu [18] introduced a mixed type dual problem for differentiable multi-
objective programs, in which Wolfe type and Mond-Weir type duals were special
cases. More duality results were presented under generalized (F, p)-convexity as-
sumptions. Subsequently, Bector et al. [3] devoted to the study of mixed duality for
(generalized) fractional programming problems. Ahmad [1] introduced mixed du-
ality for nondifferentiable programming with a square root term. Duality theorems
for nondifferentiable static multiobjective programming problem with a square root
term were obtained by Lal et al. [10].

On the other hand, Mond and Schechter [12] introduced firstly symmetric du-
ality and optimality conditions for nondifferentiable multiobjective programming
problems involving a support function. Yang et al. [19] formulated a mixed dual
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problem for a nondifferentiable multiobjective programming problem involving sup-
port function of a compact convex set. They established only weak duality theorems
for efficient solutions by using the generalized (F, p)-convexity.

Recently, Kim and Bae [7] introduced nondifferentiable multiobjective programs
involving support function of a compact convex set and linear function. They gave
a mixed type dual problem and established weak and strong duality theorems under
generalized (F,«, p,d)-convexity assumptions. Subsequently, Bae et al. [2] formu-
lated Mond-Weir type and Wolfe type dual models and presented weak and strong
duality theorems for efficient solutions by using generalized convexity conditions.
Very recently, Kim et al. [8] introduced a G-mixed dual problem for a class of non-
differentiable multiobjective programs with inequality and equality constraints in
which each component of the objective function contains a term involving the sup-
port function of a compact convex set. Weak, strong and converse duality theorems
were proved by them.

In this paper, we introduce a mixed type dual problem. Our mixed dual is
unifying the Wolfe and Mond-Weir type duals which was considered in Bae et al.
[2]. Mixed duality relations are established by using more generalized convexity.

We consider the following nondifferentiable multiobjective programming problem
involving the support function of a compact convex set.

(MP)g  Minimize  (fi(z) + s(z|D1),..., fp(z) + s(z|Dp))
subject to gj(z) £0,5 € M ={1,2,...,m},
hl(-’E) :Ovl € Q:{1>2""aQ}a r € X,

where f;,g;,h; : R" — IR are differentiable functions, i € P = {1,2,...,p}, X =
{z e R"|g(x) £ 0,h(x) =0}, D; is a compact convex subset of IR".

Definition 1.1. A point 2° € X is said to be an efficient solution of (MP)g if
there exists no other € X such that

fio(x) + s(z|Diy) < fiy(2°) + 5(2°|Dy,), for some ig € P,

and
fi(x) + s(z|D;) < fi(x°) + s(2°|Dy), for all i € P.
Definition 1.2. Let D be a compact convex set in IR"™. The support function s(:| D)
is defined by
s(z|D) := max{zTy : y € D}.

The support function s(-|D) has a subdifferential. The subdifferential of s(:|D)

at x is given by
ds(z|D) :={z € D : 2Tz = s(z|D)}.

The support function s(-|D) is convex and everywhere finite, that is, there exists

z € D such that
s(y|D) > s(x|D) + 2T (y — x) for all y € D.
Equivalently,
2Tx = s(x|D).

Now, we define a differentiable (V, p)-invex function due to [9].
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Definition 1.3. A vector function f : IR"™ — IR? is said to be (V,p)-invex at
u € IR™ with respect to the function n and 6 : IR" x R™ — IR" if there exist
a;: R" xIR" — R4 \ {0} and p; € IR, ¢ € P, such that for any x € IR"

ai(@,u)[fi(x) = fiw)] 2 V filw)n(a,u) + pil§(z, w)|*.
If this inequality is replaced by strict inequality, then f is called strictly (V, p)-invex.

For each k € P, we consider the following scalarizing problem Py (x°) of (MP)g
due to the one in [4].

Minimize  fg(z) + s(z|Dx)

subject to  f;(z) + s(z|D;) < f;(2°) + s(2°|Dy),i # k € P,
gj(®) £0, j €M,
hi(x) =0, l € Q.

In order to establish strong duality results, we need the following theorem between
(MP)E and Pk(XO).

Theorem 1.4. 2° is an efficient solution of (MP)g if and only if 2° solves Py (x?)
for every k=1,2,...,p.

Proof. Assume that 2° is not a solution of Py (x%). Then there exists € X such
that

(1.1) fe(z®) + s(z°|Dy) > fr(x) + s(z|Dy), k € P,
(1.2) fi(@®) 4+ s(2°|Dy) = fi(w) + s(x|Dy),i # k.
From (1.1) and (1.2), we conclude that z° is not efficient for (MP)g.

Conversely, let 2 solve Py (x°) for every k € P, then for all z € X with f;(2°) +
S(20|Dy) 2 filx) + s(zlDi),i # k, we have fy(a%) + s(:°|Dx) < fu(a) + s(z|Dy).
Then, there exists no other x € X such that f;(z) + s(z|D;) £ fi(2°) + s(z°|D;),

i € P with strict inequality holding for at least one i. This implies that 20 is efficient
for (MP)g. O

2. MIXED TYPE DUALITY

We propose the following mixed dual problem (MD)g to (MP)g:

(MD)g Maximize (fi(u)+ulwy + Z wigi(u) + Z vihi(u), ...,
j€Jo leKo

Folw) +uTwy + > pgs(w) + Y vily(w))

Jj€Jo leKy

p m
subject to Z Xi(V fi(u) +w;) + Z 1 Vyg;(u)

i=1 j=1

(2.1) +> 1y Vhi(u) =0,
=1
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(2.2) Z pigs(u) + Z vihi(u) 2 0,a0=1,...,r,
j€Ja leKa
P
(2.3) AiZ0, w €D, i€P, Yy N=1
i=1
(2.4) szo,jEM, eR,leqQ,

where J, C M,a=0,1,...,r with U,_qJo = M and J,NJg =0 if a # ,K, C
Q,a=0,1,...,r with U,_,K, = Q and K, N Kz =0 if o # .

Now, we establish weak and strong duality relations between (MP)g and (MD)g.
First, we give a weak duality result by using suitable (V, p)-invexity.

Theorem 2.1 (Weak Duality). Let x and (u,w, A, p,v) be feasible solutions of
(MP)g and (MD)g, respectively. If 3 ;e 1igi() + 2 ex, vilu(-), = 1,... 1 is
strictly (V, o)-invex at u with respect ton, fi(-)+ () wi, i € P are (V, p)-invez at u
with respect to n and Y- ,c ;0 1i9i(-) + D e, vilu(-) is (V. p)-inver at u with respect
ton witho =20, YF  N\ip; =0, then the following cannot hold:

(2.5) fio(x) + S($|Dio) < fio(u) + uTwio + Z /ngj(u) + Z vihi(u),
l

j€do €Ko
for some ig € P,

(2.6)  fi(z) +s(zDy) £ filw) +ulwi + Y pigi(u) + Y vihi(w), for alli € P,
Jj€Jo leKp

Proof. Let z and (u,w, A, i, v) be feasible solutions of (MP)g and (MD)g, respec-
tively. Since B(z,u) > 0, we have

Bla,w) (Y wigs @)+ Y whi(@)) £ Bleu)( Y migilw) + Y- i),
j€Ja leKo Jj€Ja leKq
By the strictly (V,o)-invexity of > .c; n;g;(w) + >0k, vilu(u), for a =1,...,r,

we have

@71 [ X Ve + 3 uVhi)]|ntu) + o6, ) <o,
J€Ja lEKq

Suppose contrary to the results that (2.5) and (2.6) hold. Since z7w; < s(z|D;), i €
P, Zjejo pigi(xz) < 0 and ZZGKO vihi(u) = 0, we have

fio (x) + JET’in + Z [ngj(JT) + Z vihy(x)

j€Jo leKy

< fio(w) + uTw, + Z 1igi(u) + Z vihi(u), for some ig € P,
j€Jo leKy

filw) +awi + ) pgi(e) + Y vihi(@)

j€Jo leKy

< filw) + ulw; + Z pigs(u) + Z vihy(u), for all i € P.
j€Jdo leKo
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Since f;(-)+(-) w;, i € P are (V, p)-invex at u with respect to n and D iedo 139 () +
ZleKo vihi(+) is (V, p)-invex at u with respect to 7, we obtain

iy (, )[fzo( )+ 2T wiy + > pigi(@) + Y vih(x)

j€Jdo leKy
— fio(w) = uTwiy = Y pigi(u) = Y Vlhl(u)}
Jj€Jo leKy
> [ fig (w) + wiy + > 15 V5(0) + 3 wVhi(w)|n(e, )
j€Jdo leKy

+ pio 10io (2, u)HQ, for some ig € P,

iz, u) [fz(I) + " w; + Z 13 95(x) + Z vihi(z)

j€Jo €K
- fz —auT Wi — Z M]g] Z Vlhl(u):|
j€Jo leKy

> [Wu) it Y Vg0 + Y nVh(w) |ne,w)

j€Jo leKy
+ pil|0i(z, w)||?, for all i € P.

Since \; 20, i € P and Y F_; \; = 1, we have

(28) | D A(ilw) +wi) + 3 Vi) + > viVii(w)|n(,w)
=1

j€Jo leKy

p
+ ) Nipillf(z, w)|* £ 0.
i=1
By (2.7) and (2.8), we obtain

[Z i(Vfi(u) +wi) + Y 0 Vai(u) + ) Vthz(U)}"?(ﬂ% w)
P =

J=1

P
<= dwpill(z, w)|* — 0|8z, w)|* < 0.
i=1
This inequality contradicts (2.1). O

Remark 2.2. If the strictly (V,o)-invexity assumption of > ., w;jg;(-)+
> ek, vihi(+) is replaced by (V, o)-invexity, then our Theorem 2.1 also holds between
(MP)g and (MD)g with \; > 0,27 \; = 1.

Theorem 2.3. Suppose that the assumptions of Theorem 2.1 are held. If
(u®,w?, X0, 10, 10) is a feasible solution of (MD)g such that u® is a feasible solution
of (MP)E and (u )T U = s(u|Dy), i € P, then u® is an efficient solution of
(MP)g and (u®, w® )\0,,u VO) is an efficient solution of (MD)g.
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Proof. Tt follows on the lines of Egudo (Ref.[5], Corollary 1) along with Theorem
2.1. Il

Theorem 2.4 (Strong Duality). If 2° is an efficient solution of (MP)g and satisfy
a constraint qualification [11] for Py (x%) for at least one k € P then there exist
ANoe RPu® € R™, 10 € R? and w) € D;, i € P such that (2%, w% X% u° 10)
is a feasible solution of (MD)g and (z°)Tw{ = s(z°|D;), i € P. Moreover, if
the assumptions of Theorem 2.1 are satisfied then (z°,w®, A0, 1%, 10) is an efficient

solution of (MD)g.

Proof. Since 2 is an efficient solution of (MP)g, then from Theorem 1.4, 2° solves
Py (x%) for all k € P. By the assumption, there exists at least one k € P for which
20 satisfies a constraint qualification [11] for Py (x°). Now from the Kuhn-Tucker
necessary conditions [11], there exist A 2 0, i # k, 0 < p® € R™, 1 € RY and
w? € D;, i € P such that

ARV Fie(@®) ) + Y- AV fila®) +wf)

itk
m q
(2.9) +> Vg ) + > 1 Viy(a) =0,
j=1 =1
(wH)T'z® = 5(2°|Dy), i € P,
(2.10) S lg5(e%) = 0.
j=1
Now dividing (2.9) and (2.10) by 1+ 37, . A; and letting
AQ:;>O oA sy for all i # k
and
o___ " >y o__ Y
: IO Y L+ A

Then, we have >0 A)(V fi(2®)+w))+ 30, 19V g (%) + 371, 1)V hy(2°) = 0, and

ZjeJa ,u?gj(:vo) + ek, z/lohl(xo) >20,a=1,....,7. So (z°w® \° u 10) satisfy

(2.1), (2.2), (2.3) and (2.4). Thus, (z°,w" A%, u°,1?) is feasible for (MD)g.
Hence, (20, w%, X0, 10, 19) is efficient for (MD)g from Remark 2.2. O

3. SPECIAL CASES

Case 1. If D; =0,i € P,Q =0,Jy = M, then our mixed dual problem (MD)g
reduces to Wolfe Vector Dual (WVD) in Egudo [5].

(WVD) Maximize (fi(u)+plg(u), ..., folu) + pg(u))

P
subject to Z NV fi(w) + VL g(u) =0,
i=1
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p
0, Ai=1u
1=1

If D;=0,ie P,Q=10,J, =M, then our mixed dual problem (MD)g reduces to
Mond-Weir Vector Dual (DVOP) in Egudo [5].

(DVOP) Maximize (fi(u),..., fp(u))

Ai 0.

1\
1\

p
subject to Z NV fi(u) + VT g(u) =0,
i=1

ulg(u) 2 0,
p

)\i Z Ouz)‘l = 1),“’2 07
i=1

Case 2. If P = {1}, s(z|D) = (" Bz)'/? and Q = (), then our mixed dual problem
(MD)g reduces to the one in Ahmad [1].

Case 3. If s(x|D;) = (#"Biz)/?i € P, Q =0, Jo = M and X = {z| — g(z) £ 0},
then our mixed dual problem (MD)g reduces to (VOP); in Lal et al. [10].

(VDP); Maximize (fi(u)+ ul Byw — uTg(u), ooy fp(u) + uTBpw — ,uTg(u))

p p
subject to " gu(u) = Z Aifi, (u) + Z AiBjw,
i=1 i=1

p
wTBiw § 1;Ai Z O,Z)\i = 1,/1, Z 0.
i=1

If s(z|D;) = (xTBix)1/2,i € P,Q =0,J, = M, then our mixed dual problem
(MD)g reduces to (VDP)z in Lal et al. [10].

(VDP)2 Maximize (fi(u) +u’ Biw,. .., fy(u) +u’ Byw)
p p
subject to " ga(u) =Y Aifi, (u) + > NiBiw,
i=1 i=1
plg(u) £0,w" Biw <1,
p
AiZ 0, Ai=1p20.
i=1

Case 4. D; = 0,i € P,Q = 0, then our mixed dual problem (MD)g reduces to
the mixed dual (MDP) in Xu [18].

(MDP) Maximize f(u)+ u?l gy, (u)e
subject to  Vf(u)T X+ Vg(u)Tp =0,
P
1590, (u) 2 0,0 Z0,) " Ni=1,120.
i=1

where J; is a subset of M and Jo = M/ J;.
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Case 5. If J, = 0 and K, = (), then our mixed dual problem (MD)g reduces to
(WVODE) in Bae et al. [2].

(WVODE) Maximize (fi(u)+ulw; + pfg(u) + v h(u),. ..,
fo(w) +ulw, + p g(uw) + v h(u))

P
subject to Z N(Vfi(u) +w;) + Vil gu) + Vol h(u) =0,
i=1

p
wi € Diy A2 0,) Ai=1,1520,j € M.
i=1

If Jo = 0 and K¢ = 0, then our mixed dual problem (MD)g reduces to (MVODE)
in Bae et al. [2].

(1]
2]
8l

(4]

(10]

(11]
(12]

(13]

(MVODE) Maximize (f1(u) +u”wi,. .., fo(u) +ulw,)

P
subject to Z (Y fi(u) +w;) + VL g(u) + Vvl h(u) = 0,
i=1
p'g(u) + v h(u) 20,

p
wi € Dy, Ai 20, A =151 20,5 € M.
=1
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