AN ENDPOINT THEOREM IN GENERALIZED L-SPACES WITH APPLICATIONS

A. AMINI-HARANDI AND ADRIAN PETRUŞEL
Dedicated to Sompomg Dhompongsa on the occasion of his 65th anniversary

Abstract

In this paper, we will introduce first the notions of measure of nonsingletonsness (denoted by δ), δ-Cauchy sequence and δ-completeness in the setting of generalized L-spaces. Main result of the paper is a new endpoint theorem in generalized L-spaces from which we will derive an order-theoretic Cantor theorem in such spaces. Some examples are also given to support our main result. Our results generalize some recent results in the literature.

1. Introduction and preliminaries

Let X be a nonempty set, 2^{X} be the set of all subsets of X and let $T: X \rightarrow 2^{X}$ be a set-valued mapping on X. By definition, an element $x \in X$ is said to be an endpoint (also called strict fixed point or stationary point) of T if $T x=\{x\}$.

The existence of endpoints of set-valued mappings has significant applications in the Optimization Theory, Operatorial Inclusions, Mathematical Economics and Variational Analysis; for more details see [1, 12, 14, 19, 20, 23, 24, 28]. Most of the existence results of endpoints and of asymptotic stationary points are proved in metric spaces and uniform spaces (see [1-4, 13, 14, 19-21, 25, 26, 28] and references therein). Recently, Jachymski [20] proved an endpoint theorem for a set-valued map on a metric space from which he derived the famous Ekeland variational principle and the order-theoretic Cantor theorem.

The first aim of this paper is to give a generalization of the above mentioned theorem of Jachymski in the setting of generalized L-spaces. Then, we derive an order-theoretic Cantor type theorem in such spaces.

2. Main Results

We first introduce the notion of a measure of non-singletonsness in a very general setting.

Definition 2.1. Let X be a nonempty set. Then the generalized functional $\delta:$ $2^{X} \rightarrow[0, \infty]$ is called a measure of non-singletonsness if the following axioms are satisfied:

[^0](i) for each $A, B \in 2^{X}, A \subseteq B \Rightarrow \delta(A) \leq \delta(B)$.
(ii) If $A \neq \emptyset$, then $\delta(A)=0 \Leftrightarrow A$ is a singleton.

Following M. Fréchet [16], we present now the concept of generalized L-space.
Definition 2.2. Let X be a nonempty set. Let

$$
s(X):=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \mid x_{n} \in X, n \in \mathbb{N}\right\}
$$

Let $c(X)$ be a subset of $s(X)$ and $\operatorname{Lim}: c(X) \rightarrow 2^{X} \backslash \emptyset$ be a set-valued operator. By definition the triple $(X, c(X), \operatorname{Lim})$ is called a generalized L-space (denoted by $(X, \rightarrow))$ if the following conditions are satisfied:
(i) if $x_{n}=x$, for all $n \in \mathbb{N}$, then $\left(x_{n}\right)_{n \in \mathbb{N}} \in c(X)$ and $\operatorname{Lim}\left(x_{n}\right)_{n \in \mathbb{N}}=\{x\}$.
(ii) if $\left(x_{n}\right)_{n \in \mathbb{N}} \in c(X)$ and $\operatorname{Lim}\left(x_{n}\right)_{n \in \mathbb{N}}=\{x\}$, then for all subsequences $\left(x_{n_{i}}\right)_{i \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$ we have that $\left(x_{n_{i}}\right)_{i \in \mathbb{N}} \in c(X)$ and

$$
\operatorname{Lim}\left(x_{n_{i}}\right)_{i \in \mathbb{N}}=\{x\}
$$

By definition, an element of $c(X)$ is said to be a convergent sequence and $\operatorname{Lim}\left(x_{n}\right)_{n \in \mathbb{N}}$ is the set of all limits of this sequence. If $\operatorname{Lim}\left(x_{n}\right)_{n \in \mathbb{N}}=\{x\}$, then we write

$$
x_{n} \rightarrow x \text { as } n \rightarrow \infty
$$

Remark 2.3. A generalized L-space is any set endowed with a structure implying a notion of convergence for sequences. For example, any topological space is a generalized L-space.
Definition 2.4. Let (X, \rightarrow) be a generalized L-space. Then, a subset Y of X is called closed in (X, \rightarrow) if and only if for each sequence $\left(x_{n}\right) \in c(Y)$ we have that $\operatorname{Lim}\left(x_{n}\right)_{n \in \mathbb{N}} \subset Y$.

The concept of closedness introduced by Definition 2.4 does not coincide with the concept of closedness in a general topological space, but they coincide in first countable topological spaces.

Remark 2.5. Notice that, if in above definition $\operatorname{Lim}: c(X) \rightarrow X$ (i.e., it is a singlevalued operator), then we get the concept of L-space, which was also introduced by M. Fréchet.

Remark 2.6. An L-space is any generalized L-space endowed with a structure generating a notion of convergence for sequences with a unique limit. For example, Hausdorff topological spaces, metric spaces, different generalized metric spaces (in the sense that $d(x, y) \in \mathbb{R}_{+}^{m}$ or in in the sense that $d(x, y) \in \mathbb{R}_{+} \cup\{+\infty\}$ or in the sense that $d(x, y) \in K$, where K is a cone in an ordered Banach space, etc.), 2-metric spaces, D-R-spaces, probabilistic metric spaces, syntopogenous spaces, are examples of L-spaces. For more details see Fréchet [16], Blumenthal [8] and I. A. Rus [22].

Definition 2.7. Let (X, \rightarrow) be a generalized L-space and let δ be a measure of non-singletonsness on X. Let $\left\{x_{n}\right\}$ be a sequence in X. We say that:
(i) $\left\{x_{n}\right\}$ is a δ-Cauchy sequence if

$$
\lim _{n \rightarrow \infty} \delta\left(\left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\}\right)=0
$$

(ii) (X, \rightarrow) is called δ-complete if for every δ-Cauchy sequence $\left\{x_{n}\right\}$ in X we have that $\left\{x_{n}\right\} \in c(X)$ and $\operatorname{Lim}\left(x_{n}\right)_{n \in \mathbb{N}}=\{\bar{x}\}$.
Example 2.8. Let (X, d) be a complete metric space. Let us consider the generalized diameter functional on X, i.e. let $\delta: 2^{X} \rightarrow[0, \infty]$ be given by $\delta(A)=\operatorname{diam}(A)$ (where $\operatorname{diam}(A):=\sup \{d(a, b): a, b \in A\}$). Then, we have:
i) δ is a measure of non-singletonsness on X;
ii) (X, \xrightarrow{d}) is δ-complete, where \xrightarrow{d} denotes the convergence generated by d.

Example 2.9. Let (X, d) be a complete b-metric space (see [5], [9], [10], \ldots.) with constant $s>1$. Let $\delta: 2^{X} \rightarrow[0, \infty]$ be given by $\delta(A)=\operatorname{diam}(A)$. Then δ is a measure of non-singletonsness on X and (X, \xrightarrow{d}) is δ-complete.

Notice that, in the above cases, the notions of δ-Cauchy sequence and d-Cauchy sequence coincide.

To prove our main result we need the following intersection lemma.
Lemma 2.10. Let (X, \rightarrow) be a δ-complete generalized L-space. Let $\left\{A_{n}\right\}$ be a sequence of nonempty closed subsets of X such that

$$
A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{n} \supseteq A_{n+1} \supseteq \ldots \text { and } \lim _{n \rightarrow \infty} \delta\left(A_{n}\right)=0 \text {. }
$$

Then $\bigcap_{n=1}^{\infty} A_{n}=\{\bar{x}\}$.
Proof. Let $x_{n} \in A_{n}$. Since $\left\{A_{n}\right\}$ is a decreasing sequence, we get that $\left\{x_{n}, x_{n+1}, \ldots\right\} \subseteq$ A_{n} and, thus,

$$
\delta\left(\left\{x_{n}, x_{n+1}, \ldots\right\}\right) \leq \delta\left(A_{n}\right), \text { for each } n \in \mathbb{N} .
$$

Since $\lim _{n \rightarrow \infty} \delta\left(A_{n}\right)=0$, we get

$$
\lim _{n \rightarrow \infty} \delta\left(\left\{x_{n}, x_{n+1}, \ldots\right\}\right)=0
$$

and so $\left\{x_{n}\right\}$ is a δ-Cauchy sequence. Since (X, \rightarrow) is δ-complete, we deduce that there exists an element $\bar{x} \in X$ such that $\operatorname{Lim}\left(x_{n}\right)_{n \in \mathbb{N}}=\{\bar{x}\}$. Since $\left\{x_{n}, x_{n+1}, \ldots\right\} \subseteq$ A_{n} and A_{n} is closed, we have that $\bar{x} \in A_{n}$, for each $n \in \mathbb{N}$. Thus $\bar{x} \in \bigcap_{n=1}^{\infty} A_{n}$. Since, for each $n \in \mathbb{N}$, we have $\bigcap_{n=1}^{\infty} A_{n} \subseteq A_{n}$, we get that $\delta\left(\bigcap_{n=1}^{\infty} A_{n}\right) \leq \lim _{n \rightarrow \infty} \delta\left(A_{n}\right)=0$. Thus $\delta\left(\bigcap_{n=1}^{\infty} A_{n}\right)=0$ and so $\bigcap_{n=1}^{\infty} A_{n}=\{\bar{x}\}$.

Now we are ready to state our main result.
Theorem 2.11. Let (X, \rightarrow) be a δ-complete generalized L-space and $T: X \rightarrow 2^{X}$ be a set-valued map with nonempty closed values such that $T y \subseteq T x$ for each $y \in T x$. Assume that, for any $x \in X$ and $\epsilon>0$, there exists $y \in T x$ such that $\delta(T y)<\epsilon$. Then T has an endpoint.

Proof. Let $x_{0} \in X$. By our assumptions, there is $x_{1} \in T x_{0}$ such that $\delta\left(T x_{1}\right)<1$ and $T x_{1} \subseteq T x_{0}$. By induction, we get a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that

$$
\delta\left(T x_{n}\right)<\frac{1}{n} \text { and } T x_{n+1} \subseteq T x_{n}, \text { for each } n \in \mathbb{N}
$$

By Lemma 2.10, there exists $\bar{x} \in X$ such that $\bigcap_{n=1}^{\infty} T x_{n}=\{\bar{x}\}$. Since $\bar{x} \in T x_{n}$, by the assumption imposed, we get that $T \bar{x} \subseteq T x_{n}$, for each $n \in \mathbb{N}$. Thus, $T \bar{x} \subseteq$ $\bigcap_{n=1}^{\infty} T x_{n}=\{\bar{x}\}$ and so $T \bar{x}=\{\bar{x}\}$.

From Theorem 2.11, we obtain, as a consequence, the following result due to Jachymski [20].

Theorem 2.12. Let (X, d) be a complete metric space and let $T: X \rightarrow 2^{X}$ be a set-valued map with nonempty closed values such that $T y \subseteq T x$ for each $y \in T x$. Assume that for any $x \in X$ and $\epsilon>0$, there exists $y \in T x$ such that diam $(T y)<\epsilon$. Then T has an endpoint.

Another consequence of the main result can be obtained in the context of a b-metric space. We will first give the definition of a b-metric space.
Definition 2.13. (Bakhtin [5], Czerwik [11]) Let X be a set and let $s \geq 1$ be a given real number. A functional $d: X \times X \rightarrow \mathbb{R}_{+}$is said to be a b-metric if and only if for all $x, y, z \in X$ the following conditions are satisfied:
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$;
(3) $d(x, z) \leq s[d(x, y)+d(y, z)]$.

The pair (X, d) is called a b-metric space with constant s.
Several examples of b-metric spaces are given by V. Berinde [7], S. Czerwik [11], [10], etc.

Remark 2.14. Notice that in a b-metric space (X, d) the following assertions hold:
(i) a convergent sequence has a unique limit;
(ii) (X, \xrightarrow{d}) is an L-space (see Fréchet [16], Blumenthal [8]);
(iii) in general, a b-metric is not continuous;
(iv) a continuous b-metric induce a topology on X (see Blumenthal [8]).

The following generic example was also given in [10].
Example 2.15. Let E be a Banach space, let P be a cone in E with int $P \neq \emptyset$ and let \leq be a partial ordering with respect to P. A mapping $d: X \times X \rightarrow E$ is called a cone metric on the nonempty set X if the following axioms are satisfied:

1) $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
2) $d(x, y)=d(y, x)$, for all $x, y \in X$
3) $d(x, y) \leq d(x, z)+d(z, y)$, for all $x, y, z \in X$.

The pair (X, d), where X is a nonempty set and d is a cone metric is called a cone metric space.

If the cone P is normal with constant K, then the cone metric $d: X \times X \rightarrow E$ is continuous.

Let E be a Banach space and P be a normal cone in E with the coefficient of normality denoted by K. Let $D: X \times X \rightarrow \mathbb{R}$ be defined by $D(x, y)=\|d(x, y)\|$, where $d: X \times X \rightarrow E$ is a cone metric. Then (X, D) is a b-metric space with constant $s:=K \geq 1$.

Moreover, since the topology τ_{d} generated by the cone metric d coincides with the topology τ_{D} generated by the b-metric D, we have that the b-metric D is continuous too.

From Lemma 2.10, we obtain, as a consequence, the following result proved in [10]
Theorem 2.16. Let (X, d) be a complete b-metric space. Then, for every descending sequence $\left\{A_{n}\right\}_{n \geq 1}$ of nonempty closed subsets of X such that diam $\left(A_{n}\right) \rightarrow$ 0 as $n \rightarrow \infty$. Then the intersection $\bigcap_{n=1}^{\infty} A_{n}$ contains one and only one point.

Thus, we also get the following extension of Jachymski's theorem from [20].
Theorem 2.17. Let (X, d) be a complete b-metric space and let $T: X \rightarrow 2^{X}$ be a set-valued map with nonempty closed values such that $T y \subseteq T x$ for each $y \in T x$. Assume that for any $x \in X$ and $\epsilon>0$, there exists $y \in T x$ such that $\operatorname{diam}(T y)<\epsilon$. Then T has an endpoint.

Notice that, the above results in b-metric spaces generate a Cantor type intersection Lemma and an endpoints theorem in cone metric spaces, due to Example 2.15.

Now we illustrate our main result by the following examples.
Example 2.18. Let $X=\{0,1,2\}$ and consider on X a topology τ on X given by $\tau=\{\emptyset, X,\{1\},\{2\},\{0,1\},\{1,2\}\}$. Let $\delta: 2^{X} \rightarrow[0, \infty]$ be given by $\delta(\emptyset)=\delta(\{0\})=$ $\delta(\{1\})=\delta(\{2\})=0, \delta(\{0,1\})=\delta(\{0,2\})=\delta(\{1,2\})=1, \delta(\{0,1,2\})=2$. Let $T: X \rightarrow 2^{X}$ be given by

$$
T 0=\{0\}, T 1=\{0,1\} \text { and } T 2=\{0,1,2\}
$$

Notice that (X, \rightarrow) is a generalized L-space, where \rightarrow is the convergence generated by τ. Then it is straightforward to show that all of the assumptions of Theorem 2.11 are satisfied and T has an endpoint $\bar{x}=0$. Since the topological space (X, τ) is not metrizable (actually the topology τ is not Hausdorff) we can't invoke the above mentioned theorem of Jachymski to show the existence of an endpoint for T.

Example 2.19. Let $X=[0,1]$ and let $\tau=\{\emptyset, X,[0,1)\} \cup\left\{A: A \subseteq \mathbb{Q}^{c} \cap[0,1]\right\}$ a topology on X. Let $\delta: 2^{X} \rightarrow[0, \infty]$ be defined as

$$
\delta(A)= \begin{cases}0, & A \text { is either empty or a singleton } \\ 1 . & \text { otherwise }\end{cases}
$$

Let $T: X \rightarrow 2^{X}$ be given by

$$
T x= \begin{cases}\{1\}, & x \in \mathbb{Q} \\ \mathbb{Q} \cap[0,1] . & \text { otherwise }\end{cases}
$$

Let $\left(x_{n}\right)$ be a δ-Cauchy sequence, i.e., $\lim _{n \rightarrow \infty} \delta\left(\left\{x_{n}, x_{n+1}, \ldots\right\}\right)=0$. Thus, there exists $k \in \mathbb{N}$ such that $\delta\left(\left\{x_{n}, x_{n+1}, \ldots\right\}\right)<1$ for $n \geq k$. Thus, by the definition of δ we get that $\delta\left(\left\{x_{n}, x_{n+1}, \ldots\right\}\right)=0$ and so the set $\left\{x_{n}, x_{n+1}, \ldots\right\}$ is a singleton, for $n \geq k$. Hence $x_{k}=x_{k+1}=x_{k+2}=\ldots$, that is, the sequence $\left(x_{n}\right)$ is eventually constant. Hence, it is convergent with respect to the convergence generated by τ. Thus (X, τ) is δ-complete. Let $y=1$. Then $y \in T x$ for each $x \in X$ and $\delta(T y)=0<\epsilon$ for each $\epsilon>0$. Then from Theorem 2.11, we get T has an endpoint (notice again that (X, τ) isn't a Hausdorff space).

As an application of Theorem 2.11, we obtain the following generalization of the order-theoretic Cantor type theorem due to Granas and Horvath [17,18].
Theorem 2.20. Let (X, \rightarrow) be a δ-complete generalized L-space endowed with a partial order \preceq. Assume that for any $x \in X$, the set $\{y \in X: x \preceq y\}$ is closed and given $\epsilon>0$, there is $y \succeq x$ such that $\delta(\{z \in X: y \preceq z\})<\epsilon$. Then (X, \preceq) has a maximal element.

Proof. For $x \in X$ let us define $T x:=\{y \in X: x \preceq y\}$. By hypothesis, T has closed values and by transitivity of \preceq, we have that $T y \subseteq T x$ for each $y \in T x$. For each $x \in X$ there is $y \in T x$ such that $\delta(T y)<\epsilon$. Thus all of the assumptions of Theorem 2.11 are satisfied and so there is $\bar{x} \in X$ such that $T \bar{x}=\{\bar{x}\}$. Hence if $\bar{x} \preceq x$, i.e., $x \in T \bar{x}$ then $x=\bar{x}$, which means \bar{x} is a maximal element.

Remark 2.21. The above result takes place if we replace "partial order" with "preorder" (by "preorder" we mean a relation which is only reflexive and transitive).

References

[1] A. Amini-Harandi, Endpoints of set-valued mappings in metric spaces, Nonlinear Anal. 72 (2010), 132-134.
[2] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York, 1984.
[3] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[4] J. P. Aubin and J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Amer. Math. Soc. 78 (1980), 391-398.
[5] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk 30 (1989), 26-37.
[6] C. Berge, Topological Spaces, Oliver and Boyd, Edinburgh, 1963.
[7] V. Berinde Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory Cluj-Napoca, 1993, pp. 3-9.
[8] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, Oxford, 1953.
[9] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Intern. J. Modern Math. 4 (2009), 285-301.
[10] M. Bota, A. Molnár and Cs. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory 12 (2011), 21-28.
[11] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric space, Atti Sem. Mat. Univ. Modena 46 (1998), 263-276.
[12] S. Dhompongsa, A. Kaewkhao and B. Panyanak, Browder's convergence theorem for multivalued mappings without endpoint condition, Topology Appl. 159 (2012), 2757-2763.
[13] Lj.B. Ćirić and J. S. Ume, Multi-valued mappings on metric spaces, Mathematica (Cluj) 46 (2004), 41-46.
[14] M. Fakhar, Endpoints of set-valued asymptotic contractions in metric spaces, Appl. Math. Lett. 24 (2010), 428-431.
[15] M. Fakhar, Z. Soltani and J. Zafarani, Some asymptotic stationary point theorems in topological spaces, Topology Appl. 159 (2012), 3453-3460.
[16] M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928.
[17] A. Granas and C. D. Horvath, On the order-theoretic Cantor theorem, Taiwanese J. Math. 4 (2000), 203-213.
[18] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[19] N. Hussain, A. Amini-Harandi and Y. J. Cho, Approximate endpoints for set-valued contractions in metric spaces, Fixed Point Theory Appl., Volume 2010, Article ID 614867, 13 pages.
[20] J. Jachymski, A stationary point theorem characterizing metric completeness, Appl. Math. Lett. 24 (2011), 169-171.
[21] S. Moradi and F. Khojasteh, Endpoints of multi-valued generalized weak contraction mappings, Nonlinear Anal. 74 (2011), 2170-2174.
[22] I. A. Rus, Picard operators and applications, Sci. Math. Jpn. 58 (2003), 191-219.
[23] E. Tarafdar, G. X.-Z. Yuan, Set-valued topological contractions, Appl. Math. Lett. 8 (1995), 79-81.
[24] E. Tarafdar and G. X.-Z. Yuan, The set-valued dynamic system and its applications to Pareto optima, Acta Appl. Math. 46 (1997), 93-106.
[25] D. Wardowski, Endpoints and fixed points of a set-valued contractions in cone metric spaces, Nonlinear Anal. 71 (2009), 512-516.
[26] K. Włodarczyk, D. Klim and R. Plebaniak, Existence and uniquness of endpoints of closed set-valued asymptotic contractions in metric spaces, J. Math. Anal. Appl. 328 (2007), 46-57.
[27] K. Włodarczyk, D. Klim and R. Plebaniak, Endpoint theory for set-valued nonlinear asymptotic contractions with respect to generalized psedodistances in uniform spaces, J. Math. Anal. Appl. 339 (2008), 344-358.
[28] G. X.-Z. Yuan, KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker, New York, 1999.

Manuscript received October 10, 2013
revised March 11, 2014

A. Amini-Harandi

Department of Mathematics, University of Isfahan, Isfahan, 81745-163, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

E-mail address: aminih_a@yahoo.com
A. Petruşel

Department of Mathematics, Babeş-Bolyai University Cluj-Napoca, Romania E-mail address: petrusel@math.ubbcluj.ro

[^0]: 2010 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. Endpoint, δ-complete topological space, measure of non-singletonsness, order-theoretic Cantor theorem.

 The first author was partially supported by the Center of Excellence for Mathematics, University of Shahrekord, Iran and by a grant from IPM (No. 93470412). The work of the second author benefits of the financial support of a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

