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ABSTRACT. In this paper, we will introduce first the notions of measure of non-
singletonsness (denoted by ¢), 6-Cauchy sequence and d-completeness in the set-
ting of generalized L-spaces. Main result of the paper is a new endpoint theorem
in generalized L-spaces from which we will derive an order-theoretic Cantor the-
orem in such spaces. Some examples are also given to support our main result.
Our results generalize some recent results in the literature.

1. INTRODUCTION AND PRELIMINARIES

Let X be a nonempty set, 2% be the set of all subsets of X and let T : X — 2%
be a set-valued mapping on X. By definition, an element x € X is said to be an
endpoint (also called strict fixed point or stationary point) of T"if Tx = {x}.

The existence of endpoints of set-valued mappings has significant applications
in the Optimization Theory, Operatorial Inclusions, Mathematical Economics and
Variational Analysis; for more details see [1,12,14, 19,20, 23,24, 28]. Most of the
existence results of endpoints and of asymptotic stationary points are proved in
metric spaces and uniform spaces (see [1-4,13,14,19-21, 25, 26, 28] and references
therein). Recently, Jachymski [20] proved an endpoint theorem for a set-valued map
on a metric space from which he derived the famous Ekeland variational principle
and the order-theoretic Cantor theorem.

The first aim of this paper is to give a generalization of the above mentioned
theorem of Jachymski in the setting of generalized L-spaces. Then, we derive an
order-theoretic Cantor type theorem in such spaces.

2. MAIN RESULTS

We first introduce the notion of a measure of non-singletonsness in a very general
setting.

Definition 2.1. Let X be a nonempty set. Then the generalized functional § :
2% — [0,00] is called a measure of non-singletonsness if the following axioms are
satisfied:
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(i) for each A,B€2X, ACB = §(A) <4(B).
(ii) If A # 0, then 6(A) = 0 < A is a singleton.

Following M. Fréchet [16], we present now the concept of generalized L-space.
Definition 2.2. Let X be a nonempty set. Let
$(X) == {(zn)nen | zn € X, n € N}.

Let ¢(X) be a subset of s(X) and Lim : ¢(X) — 2% \ 0 be a set-valued operator.
By definition the triple (X, c¢(X), Lim) is called a generalized L-space (denoted by
(X, —)) if the following conditions are satisfied:
(i) if &, =z, for all n € N, then (z,,)nen € ¢(X) and Lim(xy,)neny = {2}
(ii) if (xn)nen € ¢(X) and Lim(zy,)neny = {2}, then for all subsequences (2, )ien
of (zn)nen we have that (z,,)en € ¢(X) and

Lim(zp, )ien = {z}.

By definition, an element of ¢(X) is said to be a convergent sequence and Lim(zy,)nen
is the set of all limits of this sequence. If Lim(xy,)neny = {2}, then we write

T, — T as n — 00.

Remark 2.3. A generalized L-space is any set endowed with a structure implying
a notion of convergence for sequences. For example, any topological space is a
generalized L-space.

Definition 2.4. Let (X, —) be a generalized L-space. Then, a subset Y of X is
called closed in (X, —) if and only if for each sequence (z,) € ¢(Y') we have that
Lim(xp)neny C Y.

The concept of closedness introduced by Definition 2.4 does not coincide with
the concept of closedness in a general topological space, but they coincide in first
countable topological spaces.

Remark 2.5. Notice that, if in above definition Lim : ¢(X) — X (i.e., it is a single-

valued operator), then we get the concept of L-space, which was also introduced by
M. Fréchet.

Remark 2.6. An L-space is any generalized L-space endowed with a structure
generating a notion of convergence for sequences with a unique limit. For example,
Hausdorff topological spaces, metric spaces, different generalized metric spaces (in
the sense that d(z,y) € R or in in the sense that d(x,y) € Ry U {+o0} or in
the sense that d(z,y) € K, where K is a cone in an ordered Banach space, etc.),
2-metric spaces, D-R-spaces, probabilistic metric spaces, syntopogenous spaces, are
examples of L-spaces. For more details see Fréchet [16], Blumenthal [8] and I. A.
Rus [22].

Definition 2.7. Let (X, —) be a generalized L-space and let ¢ be a measure of
non-singletonsness on X. Let {x,} be a sequence in X. We say that:

(i) {zn} is a 6-Cauchy sequence if

lim 6({zn, Tni1, Tns2,--.}) =0,
n—oo
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(ii) (X,—) is called d-complete if for every §-Cauchy sequence {z,} in X we
have that {x,} € ¢(X) and Lim(x,)neny = {Z}.

Example 2.8. Let (X, d) be a complete metric space. Let us consider the general-
ized diameter functional on X, i.e. let § : 2X — [0, 0o] be given by §(A) = diam(A)
(where diam(A) := sup{d(a,b) : a,b € A}). Then, we have:

i) 0 is a measure of non-singletonsness on X;

i) (X, i>) is §-complete, where % denotes the convergence generated by d.
Example 2.9. Let (X, d) be a complete b-metric space (see [5], [9], [10], ....) with
constant s > 1. Let & : 2X — [0,00] be given by 6(A) = diam(A). Then § is a
measure of non-singletonsness on X and (X, i)) is d-complete.

Notice that, in the above cases, the notions of §-Cauchy sequence and d-Cauchy
sequence coincide.

To prove our main result we need the following intersection lemma.

Lemma 2.10. Let (X,—) be a §-complete generalized L-space. Let {A,} be a
sequence of nonempty closed subsets of X such that

Al DAy D DA, DApy1 DO... and lim §(A,) = 0.

n—o0

o
Then ﬂ A, = {7}.
n=1
Proof. Let x, € A,,. Since {A,,} is a decreasing sequence, we get that {x,, Ty i1,...} C
A, and, thus,
d{xn, Tnt1,...}) <0(4,), for each n € N,

Since lim 6(Ay) =0, we get

n—oo

lim d({zn,Tnt1,...}) =0,

n—oo

and so {z,} is a 0-Cauchy sequence. Since (X, —) is d-complete, we deduce that
there exists an element = € X such that Lim(zp)neny = {Z}. Since {xn, Tpt1,...} C

o
A, and A, is closed, we have that T € A,,, for each n € N. Thus 7 € ﬂ A,,. Since,

n=1
for each n € N, we have ﬂl A, C A, we get that §( ﬂl Ap) < nli_)rglod(An) = 0.
Thus (5(ﬂ Ap) =0 and so ﬂAn:{f}. O
n=1 n=1

Now we are ready to state our main result.

Theorem 2.11. Let (X, —) be a §-complete generalized L-space and T : X — 2X be
a set-valued map with nonempty closed values such that Ty C Tx for each y € Tx.
Assume that, for any x € X and € > 0, there exists y € Tx such that 6(Ty) < e.
Then T has an endpoint.



268 A. AMINI-HARANDI AND A. PETRUSEL

Proof. Let xp € X. By our assumptions, there is x; € T'xy such that §(Tx1) < 1
and Tx; C T'zg. By induction, we get a sequence {z, }7> ; such that

1
(Txy) < — and Taypy1 C Txy, for each n € N.
n

oo
By Lemma 2.10, there exists Z € X such that ﬂ Tz, = {T}. Since T € Txy,

n=1
by the assumption imposed, we get that Tx C Tx,, for each n € N. Thus, T7Z C
o
ﬂ Tz, = {7} and so TT = {T}. O

n=1
From Theorem 2.11, we obtain, as a consequence, the following result due to
Jachymski [20].

Theorem 2.12. Let (X,d) be a complete metric space and let T : X — 2% be a
set-valued map with nonempty closed values such that Ty C Tx for each y € Tx.
Assume that for any x € X and € > 0, there exists y € Tx such that diam(Ty) < e.
Then T has an endpoint.

Another consequence of the main result can be obtained in the context of a
b-metric space. We will first give the definition of a b-metric space.

Definition 2.13. (Bakhtin [5], Czerwik [11]) Let X be a set and let s > 1 be a
given real number. A functional d : X x X — Ry is said to be a b-metric if and
only if for all x,y, 2z € X the following conditions are satisfied:
(1) d(z,y) =0 if and only if z = y;
(2) d(z,y) = d(y,z);
(3) d(zx,z) < sld(z,y) + d(y, 2)].
The pair (X, d) is called a b-metric space with constant s.

Several examples of b-metric spaces are given by V. Berinde [7], S. Czerwik [11],
[10], etc.

Remark 2.14. Notice that in a b-metric space (X, d) the following assertions hold:
(1) a convergent sequence has a unique limit;

(ii) (X, i>) is an L-space (see Fréchet [16], Blumenthal [8]);
(iii) in general, a b-metric is not continuous;
(iv) a continuous b-metric induce a topology on X (see Blumenthal [8]).

The following generic example was also given in [10].

Example 2.15. Let E be a Banach space, let P be a cone in E with intP # () and
let < be a partial ordering with respect to P. A mapping d : X x X — F is called
a cone metric on the nonempty set X if the following axioms are satisfied:

1) 0 < d(z,y) for all z,y € X and d(x,y) = 0 if and only if z = y;

2) d(z,y) = d(y,x), for all z,y € X

3) d(z,y) < d(z,z) +d(zvy), for all z,y,z € X.

The pair (X, d), where X is a nonempty set and d is a cone metric is called a
cone metric space.
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If the cone P is normal with constant K, then the cone metricd : X x X — F
is continuous.

Let E be a Banach space and P be a normal cone in E with the coefficient of
normality denoted by K. Let D : X x X — R be defined by D(z,y) = ||d(x,y)],
where d : X x X — E is a cone metric. Then (X, D) is a b-metric space with
constant s := K > 1.

Moreover, since the topology 74 generated by the cone metric d coincides with the
topology 7p generated by the b-metric D, we have that the b-metric D is continuous
too.

From Lemma 2.10, we obtain, as a consequence, the following result proved in [10]

Theorem 2.16. Let (X, d) be a complete b-metric space. Then, for every descend-
ing sequence {Ap}tn>1 of nonempty closed subsets of X such that diam(A,) —
oo

0 as n — co. Then the intersection m A, contains one and only one point.

n=1
Thus, we also get the following extension of Jachymski’s theorem from [20].

Theorem 2.17. Let (X,d) be a complete b-metric space and let T : X — 2% be a
set-valued map with nonempty closed values such that Ty C Tx for each y € Tx.
Assume that for any x € X and € > 0, there exists y € Tx such that diam(Ty) < e.
Then T has an endpoint.

Notice that, the above results in b-metric spaces generate a Cantor type intersec-
tion Lemma and an endpoints theorem in cone metric spaces, due to Example 2.15.

Now we illustrate our main result by the following examples.

Example 2.18. Let X = {0,1,2} and consider on X a topology 7 on X given by
r=1{0,X,{1},{2},{0,1},{1,2}}. Let 4 : 2¥ — [0, 00] be given by 6(0) = 5({0}) =
d({1}) = 6({2}) =0, §({0,1}) = §({0,2}) = 6({1,2}) = 1,6({0,1,2}) = 2. Let
T : X — 2% be given by
T0={0}, T1 ={0,1} and T2 = {0, 1, 2}.

Notice that (X, —) is a generalized L-space, where — is the convergence generated
by 7. Then it is straightforward to show that all of the assumptions of Theorem
2.11 are satisfied and T has an endpoint Z = 0. Since the topological space (X, 7) is
not metrizable (actually the topology 7 is not Hausdorff) we can’t invoke the above
mentioned theorem of Jachymski to show the existence of an endpoint for 7.

Example 2.19. Let X = [0,1] and let 7 = {0, X,[0,1)} U{4A: A CQ°N[0,1]} a
topology on X. Let 6 : 2% — [0, 00| be defined as
5(A) = 0, A is either empty or a singleton
| 1. otherwise

Let T : X — 2% be given by

_ [ z€Q
Ta = { QnNJ0,1]. otherwise
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Let (z,) be a §-Cauchy sequence, i.e., li_>m d({xn, Tpt1,...}) = 0. Thus, there
n—oo

exists k € N such that §({zn, Zn+1,...}) <1 for n > k. Thus, by the definition of
§ we get that §({zp,zpnt+1,...}) = 0 and so the set {x,,zni1,...} 18 a singleton,
for n > k. Hence xp = 11 = T2 = .. .., that is, the sequence (z,,) is eventually
constant. Hence, it is convergent with respect to the convergence generated by
7. Thus (X,7) is d-complete. Let y = 1. Then y € Tx for each z € X and
d(Ty) =0 < e for each € > 0. Then from Theorem 2.11, we get 7" has an endpoint
(notice again that (X, 7) isn’t a Hausdorff space).

As an application of Theorem 2.11, we obtain the following generalization of the
order-theoretic Cantor type theorem due to Granas and Horvath [17,18].

Theorem 2.20. Let (X,—) be a d-complete generalized L-space endowed with a
partial order <. Assume that for any x € X, the set {y € X : x <y} is closed and
given € > 0, there is y = x such that 6({z € X : y < z}) < e. Then (X, =) has a
mazimal element.

Proof. For x € X let us define Tz := {y € X : x < y}. By hypothesis, T" has closed
values and by transitivity of <, we have that Ty C Tz for each y € Tx. For each
x € X there is y € Tz such that §(Ty) < e. Thus all of the assumptions of Theorem
2.11 are satisfied and so there is T € X such that 77 = {T}. Hence if T < z, i.e.,
x € TT then x = T, which means T is a maximal element. O

Remark 2.21. The above result takes place if we replace “partial order” with
“preorder” (by “preorder” we mean a relation which is only reflexive and transitive).
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