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(i) for each A,B ∈ 2X , A ⊆ B ⇒ δ(A) ≤ δ(B).
(ii) If A ̸= ∅, then δ(A) = 0 ⇔ A is a singleton.

Following M. Fréchet [16], we present now the concept of generalized L-space.

Definition 2.2. Let X be a nonempty set. Let

s(X) :=
{
(xn)n∈N | xn ∈ X, n ∈ N

}
.

Let c(X) be a subset of s(X) and Lim : c(X) → 2X \ ∅ be a set-valued operator.
By definition the triple (X, c(X), Lim) is called a generalized L-space (denoted by
(X,→)) if the following conditions are satisfied:

(i) if xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = {x}.
(ii) if (xn)n∈N ∈ c(X) and Lim(xn)n∈N = {x}, then for all subsequences (xni)i∈N

of (xn)n∈N we have that (xni)i∈N ∈ c(X) and

Lim(xni)i∈N = {x}.
By definition, an element of c(X) is said to be a convergent sequence and Lim(xn)n∈N
is the set of all limits of this sequence. If Lim(xn)n∈N = {x}, then we write

xn → x as n → ∞.

Remark 2.3. A generalized L-space is any set endowed with a structure implying
a notion of convergence for sequences. For example, any topological space is a
generalized L-space.

Definition 2.4. Let (X,→) be a generalized L-space. Then, a subset Y of X is
called closed in (X,→) if and only if for each sequence (xn) ∈ c(Y ) we have that
Lim(xn)n∈N ⊂ Y .

The concept of closedness introduced by Definition 2.4 does not coincide with
the concept of closedness in a general topological space, but they coincide in first
countable topological spaces.

Remark 2.5. Notice that, if in above definition Lim : c(X) → X (i.e., it is a single-
valued operator), then we get the concept of L-space, which was also introduced by
M. Fréchet.

Remark 2.6. An L-space is any generalized L-space endowed with a structure
generating a notion of convergence for sequences with a unique limit. For example,
Hausdorff topological spaces, metric spaces, different generalized metric spaces (in
the sense that d(x, y) ∈ Rm

+ or in in the sense that d(x, y) ∈ R+ ∪ {+∞} or in
the sense that d(x, y) ∈ K, where K is a cone in an ordered Banach space, etc.),
2-metric spaces, D-R-spaces, probabilistic metric spaces, syntopogenous spaces, are
examples of L-spaces. For more details see Fréchet [16], Blumenthal [8] and I. A.
Rus [22].

Definition 2.7. Let (X,→) be a generalized L-space and let δ be a measure of
non-singletonsness on X. Let {xn} be a sequence in X. We say that:

(i) {xn} is a δ-Cauchy sequence if

lim
n→∞

δ({xn, xn+1, xn+2, . . . }) = 0,



AN ENDPOINT THEOREM 267

(ii) (X,→) is called δ-complete if for every δ-Cauchy sequence {xn} in X we
have that {xn} ∈ c(X) and Lim(xn)n∈N = {x̄}.

Example 2.8. Let (X, d) be a complete metric space. Let us consider the general-
ized diameter functional on X, i.e. let δ : 2X → [0,∞] be given by δ(A) = diam(A)
(where diam(A) := sup{d(a, b) : a, b ∈ A}). Then, we have:

i) δ is a measure of non-singletonsness on X;

ii) (X,
d→) is δ-complete, where

d→ denotes the convergence generated by d.

Example 2.9. Let (X, d) be a complete b-metric space (see [5], [9], [10], . . . .) with
constant s > 1. Let δ : 2X → [0,∞] be given by δ(A) = diam(A). Then δ is a

measure of non-singletonsness on X and (X,
d→) is δ-complete.

Notice that, in the above cases, the notions of δ-Cauchy sequence and d-Cauchy
sequence coincide.

To prove our main result we need the following intersection lemma.

Lemma 2.10. Let (X,→) be a δ-complete generalized L-space. Let {An} be a
sequence of nonempty closed subsets of X such that

A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ An+1 ⊇ . . . and lim
n→∞

δ(An) = 0.

Then

∞∩
n=1

An = {x}.

Proof. Let xn∈An. Since {An} is a decreasing sequence, we get that {xn, xn+1, . . . }⊆
An and, thus,

δ({xn, xn+1, . . . }) ≤ δ(An), for each n ∈ N.
Since lim

n→∞
δ(An) = 0, we get

lim
n→∞

δ({xn, xn+1, . . . }) = 0,

and so {xn} is a δ-Cauchy sequence. Since (X,→) is δ-complete, we deduce that
there exists an element x ∈ X such that Lim(xn)n∈N = {x̄}. Since {xn, xn+1, . . . } ⊆

An and An is closed, we have that x ∈ An, for each n ∈ N. Thus x ∈
∞∩
n=1

An. Since,

for each n ∈ N, we have

∞∩
n=1

An ⊆ An, we get that δ(

∞∩
n=1

An) ≤ lim
n→∞

δ(An) = 0.

Thus δ(
∞∩
n=1

An) = 0 and so
∞∩
n=1

An = {x}. �

Now we are ready to state our main result.

Theorem 2.11. Let (X,→) be a δ-complete generalized L-space and T : X → 2X be
a set-valued map with nonempty closed values such that Ty ⊆ Tx for each y ∈ Tx.
Assume that, for any x ∈ X and ϵ > 0, there exists y ∈ Tx such that δ(Ty) < ϵ.
Then T has an endpoint.
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Proof. Let x0 ∈ X. By our assumptions, there is x1 ∈ Tx0 such that δ(Tx1) < 1
and Tx1 ⊆ Tx0. By induction, we get a sequence {xn}∞n=1 such that

δ(Txn) <
1

n
and Txn+1 ⊆ Txn, for each n ∈ N.

By Lemma 2.10, there exists x ∈ X such that

∞∩
n=1

Txn = {x}. Since x ∈ Txn,

by the assumption imposed, we get that Tx ⊆ Txn, for each n ∈ N. Thus, Tx ⊆
∞∩
n=1

Txn = {x} and so Tx = {x}. �

From Theorem 2.11, we obtain, as a consequence, the following result due to
Jachymski [20].

Theorem 2.12. Let (X, d) be a complete metric space and let T : X → 2X be a
set-valued map with nonempty closed values such that Ty ⊆ Tx for each y ∈ Tx.
Assume that for any x ∈ X and ϵ > 0, there exists y ∈ Tx such that diam(Ty) < ϵ.
Then T has an endpoint.

Another consequence of the main result can be obtained in the context of a
b-metric space. We will first give the definition of a b-metric space.

Definition 2.13. (Bakhtin [5], Czerwik [11]) Let X be a set and let s ≥ 1 be a
given real number. A functional d : X × X → R+ is said to be a b-metric if and
only if for all x, y, z ∈ X the following conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space with constant s.

Several examples of b-metric spaces are given by V. Berinde [7], S. Czerwik [11],
[10], etc.

Remark 2.14. Notice that in a b-metric space (X, d) the following assertions hold:
(i) a convergent sequence has a unique limit;

(ii) (X,
d→) is an L-space (see Fréchet [16], Blumenthal [8]);

(iii) in general, a b-metric is not continuous;
(iv) a continuous b-metric induce a topology on X (see Blumenthal [8]).

The following generic example was also given in [10].

Example 2.15. Let E be a Banach space, let P be a cone in E with intP ̸= ∅ and
let ≤ be a partial ordering with respect to P . A mapping d : X ×X → E is called
a cone metric on the nonempty set X if the following axioms are satisfied:

1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
2) d(x, y) = d(y, x), for all x, y ∈ X
3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.
The pair (X, d), where X is a nonempty set and d is a cone metric is called a

cone metric space.
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If the cone P is normal with constant K, then the cone metric d : X ×X → E
is continuous.

Let E be a Banach space and P be a normal cone in E with the coefficient of
normality denoted by K. Let D : X ×X → R be defined by D(x, y) = ∥d(x, y)∥,
where d : X × X → E is a cone metric. Then (X,D) is a b-metric space with
constant s := K ≥ 1.

Moreover, since the topology τd generated by the cone metric d coincides with the
topology τD generated by the b-metric D, we have that the b-metric D is continuous
too.

From Lemma 2.10, we obtain, as a consequence, the following result proved in [10]

Theorem 2.16. Let (X, d) be a complete b-metric space. Then, for every descend-
ing sequence {An}n≥1 of nonempty closed subsets of X such that diam(An) →

0 as n → ∞. Then the intersection
∞∩
n=1

An contains one and only one point.

Thus, we also get the following extension of Jachymski’s theorem from [20].

Theorem 2.17. Let (X, d) be a complete b-metric space and let T : X → 2X be a
set-valued map with nonempty closed values such that Ty ⊆ Tx for each y ∈ Tx.
Assume that for any x ∈ X and ϵ > 0, there exists y ∈ Tx such that diam(Ty) < ϵ.
Then T has an endpoint.

Notice that, the above results in b-metric spaces generate a Cantor type intersec-
tion Lemma and an endpoints theorem in cone metric spaces, due to Example 2.15.

Now we illustrate our main result by the following examples.

Example 2.18. Let X = {0, 1, 2} and consider on X a topology τ on X given by
τ = {∅, X, {1}, {2}, {0, 1}, {1, 2}}. Let δ : 2X → [0,∞] be given by δ(∅) = δ({0}) =
δ({1}) = δ({2}) = 0, δ({0, 1}) = δ({0, 2}) = δ({1, 2}) = 1, δ({0, 1, 2}) = 2. Let
T : X → 2X be given by

T0 = {0}, T1 = {0, 1} and T2 = {0, 1, 2}.
Notice that (X,→) is a generalized L-space, where → is the convergence generated
by τ . Then it is straightforward to show that all of the assumptions of Theorem
2.11 are satisfied and T has an endpoint x̄ = 0. Since the topological space (X, τ) is
not metrizable (actually the topology τ is not Hausdorff) we can’t invoke the above
mentioned theorem of Jachymski to show the existence of an endpoint for T .

Example 2.19. Let X = [0, 1] and let τ = {∅, X, [0, 1)} ∪ {A : A ⊆ Qc ∩ [0, 1]} a
topology on X. Let δ : 2X → [0,∞] be defined as

δ(A) =

{
0, A is either empty or a singleton
1. otherwise

Let T : X → 2X be given by

Tx =

{
{1}, x ∈ Q
Q ∩ [0, 1]. otherwise
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Let (xn) be a δ-Cauchy sequence, i.e., lim
n→∞

δ({xn, xn+1, . . . }) = 0. Thus, there

exists k ∈ N such that δ({xn, xn+1, . . . }) < 1 for n ≥ k. Thus, by the definition of
δ we get that δ({xn, xn+1, . . . }) = 0 and so the set {xn, xn+1, . . . } is a singleton,
for n ≥ k. Hence xk = xk+1 = xk+2 = . . . ., that is, the sequence (xn) is eventually
constant. Hence, it is convergent with respect to the convergence generated by
τ . Thus (X, τ) is δ-complete. Let y = 1. Then y ∈ Tx for each x ∈ X and
δ(Ty) = 0 < ϵ for each ϵ > 0. Then from Theorem 2.11, we get T has an endpoint
(notice again that (X, τ) isn’t a Hausdorff space).

As an application of Theorem 2.11, we obtain the following generalization of the
order-theoretic Cantor type theorem due to Granas and Horvath [17,18].

Theorem 2.20. Let (X,→) be a δ-complete generalized L-space endowed with a
partial order ≼. Assume that for any x ∈ X, the set {y ∈ X : x ≼ y} is closed and
given ϵ > 0, there is y ≽ x such that δ({z ∈ X : y ≼ z}) < ϵ. Then (X,≼) has a
maximal element.

Proof. For x ∈ X let us define Tx := {y ∈ X : x ≼ y}. By hypothesis, T has closed
values and by transitivity of ≼, we have that Ty ⊆ Tx for each y ∈ Tx. For each
x ∈ X there is y ∈ Tx such that δ(Ty) < ϵ. Thus all of the assumptions of Theorem
2.11 are satisfied and so there is x ∈ X such that Tx = {x}. Hence if x ≼ x, i.e.,
x ∈ Tx then x = x, which means x is a maximal element. �

Remark 2.21. The above result takes place if we replace “partial order” with
“preorder” (by “preorder” we mean a relation which is only reflexive and transitive).
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