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ABSTRACT. An iterative algorithm is proposed to find a common zero of two
maximal monotone operators A and B in a Hilbert space. This algorithm is a
two-step procedure which alternates the operators A and B. The features of this
algorithm are its combination of regularization and contraction for the proximal
point algorithm, and its strong convergence under different accuracy criteria on
the errors.

1. INTRODUCTION

von Neumann (1933) initiated the study of finding a point in the intersection of
two closed subspaces of a Hilbert space H by the method of alternating projections.
More precisely, let K1 and K» be closed subspaces of H. Then von Neumann proved
that, for each € H, the sequence (x,) defined by the alternating projections

(1.1) xo 1=, Top—1 = Pk, xop_2, o = Pr,xop_1, k=1,2,...

converges in norm to Px,nk,x. [Here Pk denotes the orthogonal projection from
H onto a closed subspace K of H.] A proof to this classic result of von Neumann
can be found in [2].

Bregman [9] (1965) extended von Neumann’s result to the case where K; and
Ky are two intersecting closed convex subsets by proving that the sequence ()
generated by the same method (1.1) of alternating projections converges weakly
to a point of the intersection K; N K5, namely, a point z* that solves the convex
feasibility problem

(1.2) ¥ € K1 N Ks.

[Note that in the case of Bregman’s method, Pk, denotes the nearest point projec-
tion from H onto the closed convex subset K; (i = 1,2).]

It had been an outstanding question whether or not the weak convergence of
Bregman’s alternating projection method above-mentioned can be in norm in the
infinite-dimensional case. This question was eventually solved in the negative in
2004 by Hundal’s counterexample [13]. This example is also useful in constructing
other counterexamples (see [16, 23]).
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It is therefore an interesting topic of designing iterative methods that generate
sequences converging in the norm topology to a point in the intersection K; N Ks.
The study of this topic has connections to the work of [15, 17, 19, 22].

Another interesting extension of the convex feasibility problem (1.3) is the prob-
lem of finding a common zero of two maximal monotone operators, that is, the
problem

(1.3) z* € A7H0)NB7Y0) or 0€ Az*N Bz,

where A and B are two maximal monotone operators in H.

The most well-known method for finding a zero of a maximal monotone operator
A is Rochafellar’s proximal point algorithm (PPA) [18] which has weak convergence,
but no strong convergence [11], in general. Strongly convergent modifications of
PPA can be found in [15, 17, 19, 22]. Note that the PPA essentially iterates the
resolvent of the maximal monotone operator A.

Recently, in order to solve the problem (1.3) by strongly convergent resolvent
methods, Boikanyo and Morosanu proposed several modifications of the PPA in
their papers [4, 5, 7]. In particular, they considered in [7] the following alternating
resolvent method that generates a sequence (z,) according to the rule

(1.4) Top+1 = Jﬁl(anu + (1 —an)zon +€,), n>0,
(1.5) Top = Ji()\nu + (1= N\)wap—1+€,), n>1,

where u,zy € H, A and B are maximal monotone operators, (e,) and (e},) are
sequences of errors, and ay,, Ay, € (0,1) and B, pu, € (0,00) are sequences of param-
eters. Here J 5‘ := (I + BA)~! denotes the resolvent of A of index 3 > 0. Boikanyo
and Morosanu showed that the sequence (z,,) generated by the algorithm (1.4)-(1.5)
converges strongly to a solution of (1.3) which is nearest to the point u from the com-
mon solution set A~1(0)NB~1(0) provided the parameter sequences (o), (A), (8n)
and (i), and the error sequences (e,) and (e},) satisfy certain appropriate condi-
tions. The alternating resolvent method (1.4)-(1.5) extends the method given in [1]
and also uses regularization of proximal point algorithm. In [21], Wang and Cui
investigated the the contraction proximal point algorithm (CPPA) which generates
a sequence (z,) by the recursion process (for a single maximal monotone operator

A):
(1.6) T+l :anu—i-énxn—i—’ynJaxn—}-en, n=0,1,...,

where ay,, 0y, v € (0,1) with a,, + 0, +7,, = 1. They proved that the sequence (x,)
thus generated converges strongly to a zero of A (if any). Boikanyo and Morosanu [6]
extended Wang and Cui’s algorithm to the case of two maximal monotone operators.
More precisely, they introduced the following algorithm

(1.7) Ton+1 :anu—i—énxgn—i—'ynJéimgn—{—en, n=20,1,...,
(1.8) Ton = AU + ppTon_1 + Jannmgn,l +e, n=12 ...,

where o, O, v, € (0,1) are such that oy, + 9, + v, = 1 and A\, pp, oy € (0, 1) such
that A, + pn + 0, = 1. Note that this algorithm unifies the results in [21, 24, 3].



CONTRACTION PROXIMAL POINT ALGORITHM 275

Recall in [18], to solve the inclusion problem
(1.9) 0€ Ax

where A is a maximal monotone operator in H such that (1.9) is solvable, Rockafellar
proposed the proximal point algorithm (PPA) that generates, with an initial guess
xog € H, the sequence (x,) via the resolvent iteration procedure

(1.10) Tpt1 = Ja(xn +en),

where J gln stands for the resolvent of A of index 3,, and (e,) is the error sequence.
In general, the following accuracy criterion on the error sequence (e, ) applies:

(e}
1) lenl < en with ) e < oo

n=0
in order to ensure the convergence of PPA. In [18], Rockafellar also presented another
accuracy criterion on the error sequence,

oo
lenll < mullZn — zn|  with Znn < 00,
n=0
where Z,, = Jél (Tn + €n).
This criterion is improved by Han and He [12] as follows

oo
(ID) lenll < mullzn — 2| with 277721 < 0.
n=0
Under the criterion (I), Boikanyo and Morosanu proposed some iterative algo-
rithms to ensure the strong convergence for the method of alternating resolvents
[4, 6].
Let us turn our attention to the criterion (II). In the present paper, under the
criterion (II), we will investigate the iterative algorithm as below

(1.11) Tont1 = Gt + Opxon + *ynJ[?n (xon +€n), n=0,1,...,
(1.12) Top = AU+ ppTon—1 + Unjli(Q:Zn—l +e), n=1,2,...,

where u, 29 € H, ap, 0, ¥ € (0, 1) are such that ay, +3,+v, = 1, Ap, pn, opn € (0,1)
such that A, +p, +0, =1, and B, py, € (0,00). This algorithm extends and unifies
the algorithms of [8, 20].

2. PRELIMINARIES

Let H be a Hilbert space and let x € H and (z,,) a sequence in H. In what
follows, we always denote by ‘x, — = and ‘z, — «’ the strong and respectively,
weak convergence to z of the sequence (z,,). Recall that an operator A with domain
D(A) and range R(A) in H is said to monotone if

(u—v,x—y) >0, z,y€DA), ue Az, v e Ay.
A monotone operator A is said to maximal monotone if its graph
G(A) ={(z,y) : x € D(4), y € Az}

is not properly contained in the graph of any other monotone operator.
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Associated with a monotone operator A is its resolvent of index S > 0 which is
defined by J 51

J§ = (I+BA)"
It is easily known that J [34 is single-valued.
Assume now C' is a nonempty closed and convex subset of H. We then use P

to denote the projection from H to C. Thus, for x € H, Pox is the unique point in
C with the property: ||z — Pox| = Iniél |z — yl.
ye

It is well known that Pox is characterized by
(2.1) Pox e C, (x— Pox,z— Pox) <0, ze€C.
If T:C — H is a mapping, then say that
(a) T is nonexpansive if ||Tx — Ty|| < ||z — y|| for all z,y € C;
(b) T is firmly nonexpansive if
|72 = Ty|? < la =yl = |(I = T)a — (I = D)yl for all 2,y € C
We next collect some nice properties of the resolvent of a monotone operator.
Lemma 2.1. Let A be a maximal monotone operator in H. Then
(i) Jg‘ : H — H is single-valued and firmly nonexpansive;
(ii) Fiz(Jg5) ={z € D(A):0 € Az} = A~(0);
(iii) ||z — J/glajH <2||lx — J/g‘,xH for all 0 < g < B' and for all x € H [15].
Lemma 2.2 ([10]). Let C be a nonempty closed convex subset of H and T : C — H

a nonexpansive mapping with Fix(T) # 0. If (z,) is a sequence in C such that
Tp —x and (I —T)xy, — 0, then (I —T)x =0, i.e.x € Fix(T).

Lemma 2.3 ([22]). Let {sn},{cn} CRY, {\,} € (0,1) and {b,} C R be sequences
such that
Spt+1 < (1 - An)sn +by+cn, n>0.

If Ay = 0, > Ap =00, >, ¢ < 00 and limsup(b,/\,) <0, then lim s, =0.
n=0 n=0 n—oo

n—o0

Lemma 2.4 ([14]). Let (sy) be a real sequence that does not decrease at the infinity
in the sense that there exists a subsequence (sy,) so that

Snp < Spp+1, k>0.
For every n > ng define a sequence of integers, (1(n)), by
7(n) =max{ng <k <n:sp < Sgt1}-
Then T(n) — oo as n — oo and for all n > ng,
(2.2) max(Sr(n)s $n) < Sr(n)+1-
Lemma 2.5. Let x,y € H and let t,s > 0. Then

() [+l < 2] + 2.2 + 9); 2 2
(i) 1tz + syll® = t(¢ + s)llalP + s(t + )y — stlla — vl

We now include two lemmas which play a role in proving the boundedness of the
sequences generated by our iterative algorithms in Section 3.
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Lemma 2.6. Let 8 > 0 and let (s,) be a nonnegative real sequence so that, for
n >0,

Snt1 < (1 —ap)(1 =X)L+ en)(1+€))sn
(2'3) + [1 - (1 - an)(l - )‘n)](l + En)ﬂa

where (A\,) C (0,1), (o) C (0,1) and (e,), (e),) € U1 are real sequences. Then (sy,)
is bounded; more precisely,

(2.4) sn, < max{f3, so} exp <Z er + Zsk) , n>0.

k=0 k=0
Proof. Seting a, = (1 — an)(1 — Ay) € (0,1), we can rewrite (2.3) as
(2.5) Snt1 < an(L+en)(142h)sn + (1 — an) (1 +£,)8.
It turns out obviously that
Sp+1 < (L+en)(1+ep)(ansn + (1 — an)B)
< (1 +&,)(1 +€),) max{sy, 8}
< (1+e,)(1+ep)max {(1+ep1)(1 +¢),_;) max{s,_1, 8}, B}
<(1+e)1+e)1+e,-1)1+¢),_;)max{s, 1,5}

Continuing this way yields the following inequality from which (2.4) follows.

snt1 < max{B,so} [[(L+ex)(1+e}), n>0.
k=0

g

Lemma 2.7. Let B > 0 and let (sy,) be a sequence of nonnegative real numbers such
that

Spt1 < (1= an)(1 = A)(L+en)(1+ep,)sn
(2'6) + [1 - (1 - an)(l - )‘n)](l + 5n)ﬁy

where (a), (M) C (0,1) and (gy),(g],) C [0,00) are real sequences. Set b, =
1—(1—apn)(1—A,). If there holds

(2.7) bnen +2(1 — by)(en + €, + eney) < by,
then (sy,) is bounded. As a matter of fact, we have that s, < max{23,so}.

Proof. Denote 7, = by, — (1 — b,)(en + €}, + €nel,). Then 7, € (0,1) and it follows
from (2.6) that

Spt+1 < bn(l + 577,)5 + (1 - bn)(l + €n)(1 + 8;1)371
bn(l+ep
(2.8) =Ty <(+€)> B+ (1—7n)Sn
Tn
Due to the assumption (2.7), we deduce that
bn(l+en) bn(l+ey)

Tn b — (1 —bp)(en + &, +enel) —
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Therefore, (2.8) yields that

Spt1 <2087 + (1 — m)sp < max{28,s,} < --- < max{28, s}

3. ALGORITHMS AND STRONG CONVERGENCE

In this section, we propose an iterative algorithm for finding a common zero of
two maximal monotone operators A and B. To this end, we assume the set of
common zeros of A and B, S := A~}(0) N B~%(0), is nonempty. The feature of our
algorithm is that it generate strongly convergent sequences under distinct accuracy
criteria on the errors. We begin with the following lemma.

Lemma 3.1 ([12, 20]). Let n € (0,1/2), x,e € H and & := Jg‘(x+ e). If |le]| <
n||lz — Z||, then

- 1
12 — 217 < (1 + (20)*) |}z — 2] ~ Sz = zl?, ¥ 2 € 8.

Theorem 3.2. Let xg € H. Consider the sequence (x,,) generated by the algorithm:

(3.1) Tont1 = Qi + OpTop + 'ynJéi (xon +€n), n=0,1,..,
(3.2) Top = AU+ ppTon—1 + aan; (xon—1+e€,), n=12..

where u,xg € H, oy, On,yn € (0,1) are such that o, +6n+vn = 1, An, pnyon € (0,1)
such that A\ + pn + on =1, and By, pn € (0, 00).
Suppose there hold the conditions:
(i) Bn > >0, P> >0, v >27y>0, op >0 >0;

(ii) lim a, =0 and lim A, =0;
n—oo n—oo

oo o0
(iii) > an =00 or Y, Ay = 005
n=0 n=0

oo
(iv) lleall < mall TG, (w2n + €n) — z2nll, Y- 3 < oo,
n=0

o0

llenll < mull T, (w2n—1 + €}) — zonall, 20(77%)2 < 00,
n=
Then (x,,) converges strongly to Ps(u).

Proof. Let z = Ps(u). By our hypothesis, we may assume without loss of generality
that n, € (0,1/2) and 7, € (0,1/2). Then by Lemma 3.1, we have,

(3.3) 1T @an + en) — 212 < (1+ 0) 220 — 21
1
- iHJ,étl(xZn +en) — 55271”27
(3-4) 17,0, (z2n—1 + €p) = 2l|* < (1 +e) 2201 — 2|

1
- §|\J,i (2n-1+ €),) — z2n—1]*,
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o0 o0
where ¢, = (21,)? and €}, := (2n,)? satisfying > &, < co and ) &/, < co. By
n=0 n=0
(3.3), (3.4) and (3.1), we deduce
lT2n+1 — Z||2 = ||anu + 6p2, + 'YnJEln(l‘% +en) — Z||2

= ||an(u — 2) + Op (22 — 2) + ’Yn(Jét(m% +en) — 2)|?

< apflu—z)* + (1 - an)ll (xon — 2)

_n
On + Yn

Tn A 2
Jg (xon +en) — 2
5n+’7n( 6n( 2n n) )H
< — 246 2 A 2
< apllu — 2[|7 + dnl|z2n — 2| ‘f"YnHJﬂn(x?n"‘en) z||

< anllu = 2] + Sullwzn — 217 + (1 +en)llz2n — 2]

+

— 25, (w20 + ea) — w2l
< apllu = zl? + [8n + Y (1 + n)][[220 — 2]
Similarly, we can also get
(35)  lzzn— 2l < Allu— 2l + [pn + on(1 + E)lzan1 — 21
Hence,
22011 = 21* < anllu = 2| + [0 + (L + en)]Anllu — 2|
+ (oo + on(1+ ) |220-1 — 2|
= anllu = 2[I” + An[0n + (1 + en)]flu — 2|
+ [0 + (L +en)][on + on(l + )] w201 — 2|
< [an 4 Mbn + XY (1 + €5)]||u — 2|2
+ (O + ) (P + o) (L + 2n) (1 + ) [22m-1 — 2]*
< (o + M0 + X)) (1 + 0)|Ju — 2|
+ (1= an)(1 = A1 +en) (1 +ep)||lzon-1 — 2|
= (an + M — A\ (1 45 ||lu — 2|2
(1= an)(1 = An) (L +en) (1 + &) 221 — 2]
= [1 = (1= ) (1 = A)](1 +&n)lJu — 2|
(1= an)(1 = A) (1 +en) (1 + &) 221 — 2]

Applying Lemma 2.6 to the last inequality, we conclude that (zg2,+1) is bounded.
By (3.5), we find that (z2,) is bounded as well. In a summary, (z,) is bounded.
It follows from Lemma 2.5 that,

[Z2nt1 — 2||° = |lomt + nBan + VTG, (220 + €n) — 2|2
= Jlan(u = 2) + dnwon + YnJE (w20 + €n) = (On + 7a) 2|
< 16nwan + Yn g (@20 + €n) = (On + Yn)2|1* + 200 (u — 2, Bon11 — 2)
= 0n(6n + W) lm2n — 2117 + W (On + V) T4, (w20 + €n) — 2|1
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- 5n’yn||J/§i (2on + en) — Ton||? + 20 (u — 2, Topy1 — 2)
< 0n(0n + yn)l|z2n — ZH2 + Y (n + Y0) (1 + &n) w20 — z||2
1
- 5”*],5’1(517% +en) — 3327LH2] - 5n'7n||t],61’4n(1’2n +en) — x2n||2
+ 2an<u — 2, T2n4+1 — Z>
=(1- O‘n)2||$2n - ZH2 + enVn(6n + ) |20 — ZH2
1
— = (370n + D) T4 (T2n + €n) — T2n|? + 200 (u — 2, T2ps1 — 2)
9 B
< (1 — Oén)HlL‘zn — Z”2 + M1€n
1
— 5 (37nbn + '772L)HJA (z2n +en) — $2n||2
2 Bn
+ 2an<u — 2, L2n+1 — Z>a
where M; > 0 such that v,,(6, + v )|l z2n — 2||* < My. Similarly,
22n — 2[1* < (1 = An)?[lwan—1 — 2[* + €n,0n(pn + on) 2201 — 2|
1
- *(3pn0n + U%)HJB (xQn—l + 6;1) — m2n—1H2 + 2)\n<u — Z,T2n — Z>
2 pn
< (1 — )\n)Hl'Qn_l — ZH2 + MQE;L

1
— 5 (3pnon + G2 JE (wan—1 + €}) — 2on1|* + 2X\n(u — 2,22, — 2),

where My > 0 such that o, (p, + ) ||T2n_1 — 2||* < Ms. Therefore,
lz2n+1 = 21 < (1= an)[(1 = An)[lw2n—1 — 2[|* + Moe],
— 5 Bonon + DT (o ) — o
+ 2\ (u — 2,29, — 2)| + M,
- %(3%5” + ’y,%)HJBAn (Ton + €n) — Ton||* + 200, (u — 2, 2041 — 2)
= (1 = ap)(1 = M)||@2n_1 — 2]|* + Ma(1 — a)e!

n

1
- 5(1 — ) (3pnon + UZ)HJE;(QU%—I + ) — w21

+ 20, (1 — o) (u — 2,29, — 2) + Myey,

— 5 Bmbn + )T @+ en) = 2
+ 20 (u — 2z, Topt1 — 2)

< (1= an)(1 = A)llean1 — 2l = Sall A (wan + en) — 220
— BT (a1 ) — o a2+ Men + €))

+ 20 (1 — ap){u — 2z, 29y, — 2) + 200 (u — 2, Topt+1 — 2),
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where 37,6, +72 > a > 0, (1 —ay)(3ppon+02) > b > 0 (by condition (i) and (ii)),

n

and M = max{Mj, Ms}. It turns out that
(3.6) |T2n+1 — ZH2 — [|r2n—1 — Z||2 + (an + Ay — anAy) [720-1 — Z||2
1 1
+ §a!\J§n($2n +en) — zon | + §b||in(x2nf1 +el)) — wan_1|?
<20 (1 — ap){u — 2,29, — 2) + 200, (U — 2, Top11 — 2) + M (e, +€),).

Setting
o0 o0 n—1 n—1
s= Zsk ~|—Zs§C <00, tp=s5-— Zsk — ZE;, Sn = ||T2n—1 — 2||* + Mty,
k=0 k=0 k=0 k=0
we can rewrite (3.6) as
(3.7) Snt1 — Sn + (o + Ay — ) |l z2n—1 — 2|

1 1
+ iaHJﬁL(wn +en) = x2a] + inJﬁ(@n—l + ) — w21
<20 (1 — ap){u — z, @9y, — 2) + 205 (U — 2, Topt1 — 2).
It is obviously clear that s, — 0 < ||z2,-1 — z|| — 0.

We next verify that s,, — 0 as n — 0o by considering two possible cases for the
sequence (sp,).

Case 1: (sy) is eventually decreasing (i.e. there exists N > 0 such that (s,,) is
decreasing for n > N). In this case, (s,) is convergent. Then passing to the limit
in (3.7), we get

||Jéi($2n + en) - 1’2n“ — 0, ||Jli(l’2n71 + 6;1) — :l?gnle — 0.
So it follows that
HxZn—i—l - xQ’VLH = Hanu + 57133271 + 'Ynt]éi <x2n + en) - xQnH
< OénH’LL - xZnH + 'YnHJén(xQn + en) - $2n|| — 0.
220 = Zon—1]l = At + pn@on—1 + onJ )} (von—1 + €},) — Ton_1]|
< A\nllu — zon—1] + UnHJBn(mnﬂ +el) — xon_1] — 0.
That is, ||#p41 — Ta] — 0.
Now take a subsequence (x,, ) of (z,) so that (x,,) converges weakly to & and

(3.8) limsup(u — z,x,, — 2) = lim (u — 2z, x,, — 2).
n—00 —00

Since
174 (220 + €n) = (20 + en) | < T4, (@20 + €n) = Tan]| + [leal
<[5 (@an + €n) = Tanl| + mall T3 (w2 + €n) — w2n|
— 0
and by Lemma 2.1, HJg‘(ach +ep) — (Ton +en)| < 2HJ§L($2n +en) — (22, + €n) ],

we obtain that HJE‘(J/‘zn +en) — (2n, +€y)|| = 0. Thus we can apply Lemma 2.2 to
find that wy,(22,) C A71(0). By a similar argument, we have wy,(z2,—1) C B~1(0).
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Since li_>m |Xnt1 — xn|| = 0, we conclude that wy(z,) C S; in particular, & € S.
n—oo
Moreover, we have by (3.8)
(3.9) limsup(u — 2,2, — 2) = (u — Psu, & — Psu) < 0.
n— o0

Now from (3.6), we derive that

|22n+1 — 2”2

< (1= )1 = M) @2n—1 — 2[|2 + 22 (1 — an)(u — 2, 2y, — 2)
+ 20 (u — 2, Ton11 — 2) + M(ep + €)

= (1= an)(1 = A\ ||z2n_1 — 2]|* 4+ 2(cn + A — @) (U — 2, 29y, — 2)
+ 20 (U — 2, Tont1 — Ton) + M(e, +€))

=(1—an)(1 =\ ||z2n-1 — 2||* 4 (an + A — @ dn)[2(u — 2, T9p — 2)

2a

+ Qn + An ﬁ QnAn

< (1= )X = M) 2n—1 — 2||2 + (a4 Ay — @A) [2(u — 2, 29y, — 2)
+ 2|l — 2|||z2n+1 — T2nll] + M (en + £,).

(u— 2, Tont1 — Ton)] + M(ep + €))

Conditions (ii) and (iii) trivially imply that

lim (ay, + A — @A) =0 and Z(an + A — apdy) = oo,

n—00
n=0

Hence we can apply Lemma 2.3 to conclude that ||z2,—1 — z|| — 0. According to
(3.5), we also get ||x2, — z|| — 0, and therefore, ||z, — z|| — 0.

Case 2: (s,,) is not eventually decreasing. In this case, we can find a subsequence
(Sn,,) of (sn) so that s, < sp, 41 for all k£ > 0. Define a sequence of integers (7(n))
as in Lemma 2.4. Since s;(,) < $7(5)41 for all n > ng and by (3.7), we have

||J,§§_<n) (xQT(TL) + eT(n)) — Z27(n) H — 0, ||J;E.(n) (’:UQT(’VL)—l + elr(n)) — L2r(n)—1 H — 0.
On the other hand, from (3.1) and (3.2), we deduce that
H"I}QT(H)"F]. - x2'r(n)H — 0, HxQT(n) - xZT(n)—lH — 0.
By an analogous argument to the proof of (3.9), we have

(3.10) limsup(u — 2, ¥or(my—1 — 2) <0, limsup(u — 2, Zo(,) — 2) < 0.

n—oo n—oo
Thus we get limsup(u — 2, To(n)+1 — 2) < 0. Noticing s;(,)41 — 57y = 0 and by
(3.7), we dedugggflat
(Qr(n) + Ar(n) = Qr(m) Ar) 1 T2r ()1 — 2|17
<200y (1 = (o)) {u = 2, Zar(n) — 2) + 200) (U — 2, Tor(ny 41 — 2)
= 2(r(n) + Ar(n) = Arm)Arn)) (U = 2, Tor(n) — 2)
+ 207 () (U — 2, Tor(n) 41 — T2r(n))
< 2(Qr(n) + Ar(n) = Qrm)Arm)) (U — 2, Tarn) — 2)
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+ 2O‘T(n)”“ - ZH ||$2T(n)+1 — Z27(n) H
It turns out that

HxZT(n)fl - ZHQ < 2<’LL = 2, L2r(n) — Z)
Y1 (n)

() T Ar(n) = Qr(m)Ar(n)
< 2(“ — 2, T27r(n) — Z) + 2”“ - ZH ||"'U2T(TL)+1 - IQT(?’L)H

+2

|u — 2| ||3U27(n)+1 - xZ'r(n)H

This implies that lim sup ”1.27'(n)71 — 2| <0 and hence
n—oo
lim ||x27'(n)71 - ZH =0 or lim ST(n) =0.
n—oo n—o00

Similarly, by (3.7) and noticing the fact that s.(,)11 — $7(n) > 0, we can also derive
that lim (s;(p)41 = S7(n)) = 0 so that ILm Sr(n)+1 = 0. Now by (2.2) in Lemma 2.4,

n—oo
we obtain s, — 0, yielding

lim (||z2p—1 — 2|| + Mt,) = 0.

n—oo
This together with the fact that ¢, — 0 immediately implies that lim |z2,—1—2| =0
n—oo
which in turns implies from (3.5) that lim ||z2,—z| = 0. Therefore, lim ||z,—z| =
0 n—oo n—oo |:|

Next we consider the strong convergence of the algorithm (3.1)-(3.2) under an
accuracy criterion on the errors distinct from condition (iv) of Theorem 3.2.

Theorem 3.3. Let () be generated by the algorithm (3.1)-(3.2). Assume the
same conditions (i)-(iii) in Theorem 3.2. Assume, in addition, condition (iv) in
Theorem 3.2 is replaced with the following condition:

)

. o
(V) [lenll < mall T4, (2n + €n) — z2nl, lim 2 =

/\2
bl < Bl T2, (won 1 4 €)= wonal], Tim = = 0.
n—oo
Then (x,,) converges in norm to Ps(u).

Proof. Let z = Ps(u). Repeating the argument for estimating ||xg,41 — z||* in the
proof of Theorem 3.2, we can get

lz2n1 = 2]* < 1= (1 = an)(1 = Aa)](1 +5) lu — 2|
+ (1= an)(1 = X)) (1 + &) (14 €l) || r2n-1 — 2|?,

where &, := (21,,)? and €/, := (27/,)? which are easily seen to satisfy two conditions:

Set b, =1— (1 — ay,)(1 — \,). Without loss of generality, we assume that

bnen + 2(1 - bn)(gn + E;L + 5n5;1) < by,.
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We claim that the sequence (x,) is bounded. In fact, the boundedness of (z2,+1)
is guaranteed by Lemma 2.7 and the boundedness of (x3,) is then a consequence of
(3.5). Further from (3.6), we obtain that

(3.11)  Spy1 — Sp 4+ (an + A — anAn)sn
1 1
+ g allJg, (zan + en) — w2n® + S0l (2n -1 + €) — 2o [
<22 (1 — ap)(u — 2,29, — 2) + 200 (u — 2, 22041 — 2) + M (e, + €},

where we define s, := ||z2,-1 — 2.
To see the strong convergence of (z,), we again distinguish two cases for (sy,).
Case 1: (sp) is eventually decreasing (i.e. there exists N > 0 such that (s)p>n
is decreasing); thus (s;) must converge. We have

1 1
0l (@an + en) = zan|® + S0l (w201 + €)) = wana®
<20, (1 — ap)(u — 2, oy — 2) + 20 (u — 2, Topt1 — 2)

€n

/
+ Moy, ( > + MM\, <€”> + (Sn = Snt1) — (an + A — apAn)sn

An

Qo

!
< \uM' +a,M" + May, (5”> + MM\, (6”>

Qn An
+ (Sn = Sp+1) — (an + A — anAn)sn — 0,
where M' > 0 and M"” > 0 are constants such that
2(1 — an)llu — zlllwan — 2l < M" and  2flu — 2|[|w2ns1 — 2[| < M".
It turns out that
(3.12) T2 (22n + €n) — 22n]l = 0, |2 (2201 + €,) — Tan-1] = O,

and consequently, ||zop+1 — x2,|| — 0 and ||z2, — x2,—1|| — 0. Namely, we have
proven that ||x,+1 — x,|| = 0. We also get by (3.12)

||Jéi($2n +en) = (z2n + €n)| < ||Jéi($2n + en) — Tanl| + [lex]|
< Ht%i(aﬁn +en) — T2 + 77nHJf;§1 (2, + €n) — Ton|
— 0.
Similarly, we also have
177 (22n—1 + €},) — (w2n—1 + €),)|| = 0.

Therefore,

W (T2,) € A7H0) and  wy(z2,-1) € B71(0).
This together with the fact that ||x,+1—x,| — 0 yields that wy(z,) C S. Analogous
to the proof of (3.9) for Theorem 3.2, we have

limsup(u — z,z, — 2) <0.
n—oo

It now turns out that

Snt1 < (1 —an) (1= Np)sn + 20, (1 — o) (u — 2, 29, — 2)
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+ 20 (u — 2, Tons1 — 2) + M (e, + €))

= (1 —an)(1 = Ap)sn + 2(an + A — anAp)(u — 2z, 22, — 2)
+ 20 (U — 2, Topt1 — Ton) + M (e, +€))

< (1= an)(1 = Ap)sn + 2(an + An — anAn)(u — 2, 22, — 2)
+ 2anlu — 222041 — T2nll + M(en + £3)

= (1= an)(1 = Ap)sn + (an + Ay — anAn) [2<u — 2, Zop — 2)

an
2 _ _
+ an+>\n—an>\n”u z|[|lz2nt1 — @2l
€n el
+ M + M n
ay + A\ — o oy + Ay — ozn)\n]

<(1—an)(1=X)sn + (an + Ay — andy) {2(71 — 2,Xop — Z)

€ el
+ 20w — 2| |wanss — won|| + M2 +M”].
Qi An

Again we have the trivial relations from conditions (ii) and (iii)

nlg](f)lo(an + A —apA,) =0 and Z;)(an + Ay — apy) = 0.

Applying Lemma 2.3, we get s, — 0, that is, ||ze,—1 — z|| — 0, which together with
(3.5) yields ||xz2n, — z|| = 0; hence, ||z, — z|| = 0 and z,, — 2.

Case 2: (sy) is not eventually decreasing. In this case, define a sequence (7(n))
of integers as in Lemma 2.4. Since s;(,) < $r(p)41 for all n > no, it follows from
(3.11) that

||J§‘T<n) (Tor(n) t €r(n)) — Tarm)ll = 0,
||J£(n) (Tor(n)—1 + 6/7(71)) — Tor(n)—-1l = 0.
Furthermore, repeating the main argument for Case 2 of the proof of Theorem 3.2,
we get
[Z2r(m)+1 — Tor) |l = 0 and  ||zor) — Tor(n)—1ll = 0,

limsup(u — z,Tor(ny41 — 2) <0 and  limsup(u — z, Tor () — 2) < 0.
n—oo n—oo

We deduce from (3.11), for all n > ny,
(r(n) + Ar(n) = Ar () Ar(n) )57 ()
<20 () (1 = o) (U = 2, Tar(n) — 2) + 200(0) (U — 2, Tor(ny 41 — 2)
+ M(er(ny + € ()
= 2(0r(n) + Ar(n) — Q@) Ar(n)) (U = 2 Tar(n) — 2)
+ 200 (n) (U = 2, Zar ()41 — T2r(n)) + M (Ern) + 5,7(71))
< 2(ar(n) + Ar(n) = Q) Ar () (U — 2, Tar(n) — 2)
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+ 20 () [t = 2| |Z2r ()11 = ar(m) | + M (Er(n) + E7(my)-
Consequently,

Srn) < 2(U — 2, o7 (n) — 2)

A7 (n)

+2
Qr(n) + Ar(n) = Qr(n)Ar(n)

Hu - Z” HxQT(’I’L)+1 - xZT(n)H

/

Er(n) n “r(n) _
QUr(n) + Ar(n) = QrmyAr(n)  Qr(n) + Ar(n) = Qr()Ar(n)

+ M(

/
€mo+%w
Ar(m)  Ar(n)

< 2<u = 2, L2r(n) Z> + QHU - Z””'%'ZT(n)-i-l - xQT(n)H +M

We arrive at lim s.(,y = 0. As lim ¢, =0 and lim &, =0, and by (3.11), we find

. n—oo n—o0 n—o0
that JLIEO(ST(n)H — 87(n)) = 0. Hence,

Jin srtey1 =0

Finally, by (2.2) in Lemma 2.4, we obtain ||x2,—1 — 2|| — 0, which together with
(3.5) immediately implies that ||x2, — z|| — 0, and so z,, — z, as required. O
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