A NEW ACCURACY CRITERION FOR THE CONTRACTION PROXIMAL POINT ALGORITHM WITH TWO MONOTONE OPERATORS

YAMIN WANG AND HONG-KUN XU*

This paper is dedicated to Professor Sompong Dhompongsa on the occasion of his 65th Birthday

Abstract

An iterative algorithm is proposed to find a common zero of two maximal monotone operators A and B in a Hilbert space. This algorithm is a two-step procedure which alternates the operators A and B. The features of this algorithm are its combination of regularization and contraction for the proximal point algorithm, and its strong convergence under different accuracy criteria on the errors.

1. Introduction

von Neumann (1933) initiated the study of finding a point in the intersection of two closed subspaces of a Hilbert space H by the method of alternating projections. More precisely, let K_{1} and K_{2} be closed subspaces of H. Then von Neumann proved that, for each $x \in H$, the sequence $\left(x_{n}\right)$ defined by the alternating projections

$$
\begin{equation*}
x_{0}:=x, x_{2 k-1}:=P_{K_{1}} x_{2 k-2}, x_{2 k}:=P_{K_{2}} x_{2 k-1}, k=1,2, \ldots \tag{1.1}
\end{equation*}
$$

converges in norm to $P_{K_{1} \cap K_{2}} x$. [Here P_{K} denotes the orthogonal projection from H onto a closed subspace K of H.] A proof to this classic result of von Neumann can be found in [2].

Bregman [9] (1965) extended von Neumann's result to the case where K_{1} and K_{2} are two intersecting closed convex subsets by proving that the sequence (x_{n}) generated by the same method (1.1) of alternating projections converges weakly to a point of the intersection $K_{1} \cap K_{2}$, namely, a point x^{*} that solves the convex feasibility problem

$$
\begin{equation*}
x^{*} \in K_{1} \cap K_{2} . \tag{1.2}
\end{equation*}
$$

[Note that in the case of Bregman's method, $P_{K_{i}}$ denotes the nearest point projection from H onto the closed convex subset $K_{i}(i=1,2)$.]

It had been an outstanding question whether or not the weak convergence of Bregman's alternating projection method above-mentioned can be in norm in the infinite-dimensional case. This question was eventually solved in the negative in 2004 by Hundal's counterexample [13]. This example is also useful in constructing other counterexamples (see [16, 23]).

[^0]It is therefore an interesting topic of designing iterative methods that generate sequences converging in the norm topology to a point in the intersection $K_{1} \cap K_{2}$. The study of this topic has connections to the work of $[15,17,19,22]$.

Another interesting extension of the convex feasibility problem (1.3) is the problem of finding a common zero of two maximal monotone operators, that is, the problem

$$
\begin{equation*}
x^{*} \in A^{-1}(0) \cap B^{-1}(0) \quad \text { or } \quad 0 \in A x^{*} \cap B x^{*} \tag{1.3}
\end{equation*}
$$

where A and B are two maximal monotone operators in H.
The most well-known method for finding a zero of a maximal monotone operator A is Rochafellar's proximal point algorithm (PPA) [18] which has weak convergence, but no strong convergence [11], in general. Strongly convergent modifications of PPA can be found in $[15,17,19,22]$. Note that the PPA essentially iterates the resolvent of the maximal monotone operator A.

Recently, in order to solve the problem (1.3) by strongly convergent resolvent methods, Boikanyo and Morosanu proposed several modifications of the PPA in their papers $[4,5,7]$. In particular, they considered in [7] the following alternating resolvent method that generates a sequence $\left(x_{n}\right)$ according to the rule

$$
\begin{align*}
x_{2 n+1} & =J_{\beta_{n}}^{A}\left(\alpha_{n} u+\left(1-\alpha_{n}\right) x_{2 n}+e_{n}\right), \quad n \geq 0 \tag{1.4}\\
x_{2 n} & =J_{\mu_{n}}^{B}\left(\lambda_{n} u+\left(1-\lambda_{n}\right) x_{2 n-1}+e_{n}^{\prime}\right), \quad n \geq 1 \tag{1.5}
\end{align*}
$$

where $u, x_{0} \in H, A$ and B are maximal monotone operators, $\left(e_{n}\right)$ and $\left(e_{n}^{\prime}\right)$ are sequences of errors, and $\alpha_{n}, \lambda_{n} \in(0,1)$ and $\beta_{n}, \mu_{n} \in(0, \infty)$ are sequences of parameters. Here $J_{\beta}^{A}:=(I+\beta A)^{-1}$ denotes the resolvent of A of index $\beta>0$. Boikanyo and Morosanu showed that the sequence $\left(x_{n}\right)$ generated by the algorithm (1.4)-(1.5) converges strongly to a solution of (1.3) which is nearest to the point u from the common solution set $A^{-1}(0) \cap B^{-1}(0)$ provided the parameter sequences $\left(\alpha_{n}\right),\left(\lambda_{n}\right),\left(\beta_{n}\right)$ and $\left(\mu_{n}\right)$, and the error sequences $\left(e_{n}\right)$ and $\left(e_{n}^{\prime}\right)$ satisfy certain appropriate conditions. The alternating resolvent method (1.4)-(1.5) extends the method given in [1] and also uses regularization of proximal point algorithm. In [21], Wang and Cui investigated the the contraction proximal point algorithm (CPPA) which generates a sequence $\left(x_{n}\right)$ by the recursion process (for a single maximal monotone operator A):

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\delta_{n} x_{n}+\gamma_{n} J_{\beta_{n}}^{A} x_{n}+e_{n}, \quad n=0,1, \ldots \tag{1.6}
\end{equation*}
$$

where $\alpha_{n}, \delta_{n}, \gamma_{n} \in(0,1)$ with $\alpha_{n}+\delta_{n}+\gamma_{n}=1$. They proved that the sequence $\left(x_{n}\right)$ thus generated converges strongly to a zero of A (if any). Boikanyo and Morosanu [6] extended Wang and Cui's algorithm to the case of two maximal monotone operators. More precisely, they introduced the following algorithm

$$
\begin{align*}
x_{2 n+1} & =\alpha_{n} u+\delta_{n} x_{2 n}+\gamma_{n} J_{\beta_{n}}^{A} x_{2 n}+e_{n}, \quad n=0,1, \ldots \tag{1.7}\\
x_{2 n} & =\lambda_{n} u+\rho_{n} x_{2 n-1}+\sigma_{n} J_{\mu_{n}}^{B} x_{2 n-1}+e_{n}^{\prime}, \quad n=1,2, \ldots \tag{1.8}
\end{align*}
$$

where $\alpha_{n}, \delta_{n}, \gamma_{n} \in(0,1)$ are such that $\alpha_{n}+\delta_{n}+\gamma_{n}=1$ and $\lambda_{n}, \rho_{n}, \sigma_{n} \in(0,1)$ such that $\lambda_{n}+\rho_{n}+\sigma_{n}=1$. Note that this algorithm unifies the results in [21, 24, 3].

Recall in [18], to solve the inclusion problem

$$
\begin{equation*}
0 \in A x \tag{1.9}
\end{equation*}
$$

where A is a maximal monotone operator in H such that (1.9) is solvable, Rockafellar proposed the proximal point algorithm (PPA) that generates, with an initial guess $x_{0} \in H$, the sequence $\left(x_{n}\right)$ via the resolvent iteration procedure

$$
\begin{equation*}
x_{n+1}=J_{\beta_{n}}^{A}\left(x_{n}+e_{n}\right) \tag{1.10}
\end{equation*}
$$

where $J_{\beta_{n}}^{A}$ stands for the resolvent of A of index β_{n} and $\left(e_{n}\right)$ is the error sequence. In general, the following accuracy criterion on the error sequence $\left(e_{n}\right)$ applies:

$$
\begin{equation*}
\left\|e_{n}\right\| \leq \varepsilon_{n} \quad \text { with } \quad \sum_{n=0}^{\infty} \varepsilon_{n}<\infty \tag{I}
\end{equation*}
$$

in order to ensure the convergence of PPA. In [18], Rockafellar also presented another accuracy criterion on the error sequence,

$$
\left\|e_{n}\right\| \leq \eta_{n}\left\|\tilde{x}_{n}-x_{n}\right\| \quad \text { with } \quad \sum_{n=0}^{\infty} \eta_{n}<\infty
$$

where $\tilde{x}_{n}=J_{\beta_{n}}^{A}\left(x_{n}+e_{n}\right)$.
This criterion is improved by Han and He [12] as follows

$$
\begin{equation*}
\left\|e_{n}\right\| \leq \eta_{n}\left\|\tilde{x_{n}}-x_{n}\right\| \quad \text { with } \quad \sum_{n=0}^{\infty} \eta_{n}^{2}<\infty \tag{II}
\end{equation*}
$$

Under the criterion (I), Boikanyo and Morosanu proposed some iterative algorithms to ensure the strong convergence for the method of alternating resolvents $[4,6]$.

Let us turn our attention to the criterion (II). In the present paper, under the criterion (II), we will investigate the iterative algorithm as below

$$
\begin{align*}
x_{2 n+1} & =\alpha_{n} u+\delta_{n} x_{2 n}+\gamma_{n} J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right), \quad n=0,1, \ldots \tag{1.11}\\
x_{2 n} & =\lambda_{n} u+\rho_{n} x_{2 n-1}+\sigma_{n} J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right), \quad n=1,2, \ldots \tag{1.12}
\end{align*}
$$

where $u, x_{0} \in H, \alpha_{n}, \delta_{n}, \gamma_{n} \in(0,1)$ are such that $\alpha_{n}+\delta_{n}+\gamma_{n}=1, \lambda_{n}, \rho_{n}, \sigma_{n} \in(0,1)$ such that $\lambda_{n}+\rho_{n}+\sigma_{n}=1$, and $\beta_{n}, \mu_{n} \in(0, \infty)$. This algorithm extends and unifies the algorithms of $[8,20]$.

2. Preliminaries

Let H be a Hilbert space and let $x \in H$ and $\left(x_{n}\right)$ a sequence in H. In what follows, we always denote by ' $x_{n} \rightarrow x$ and ' $x_{n} \rightharpoonup x$ ' the strong and respectively, weak convergence to x of the sequence $\left(x_{n}\right)$. Recall that an operator A with domain $\mathcal{D}(A)$ and range $\mathcal{R}(A)$ in H is said to monotone if

$$
\langle u-v, x-y\rangle \geq 0, \quad x, y \in \mathcal{D}(A), u \in A x, v \in A y
$$

A monotone operator A is said to maximal monotone if its graph

$$
\mathcal{G}(A)=\{(x, y): x \in \mathcal{D}(A), y \in A x\}
$$

is not properly contained in the graph of any other monotone operator.

Associated with a monotone operator A is its resolvent of index $\beta>0$ which is defined by J_{β}^{A}

$$
J_{\beta}^{A}=(I+\beta A)^{-1} .
$$

It is easily known that J_{β}^{A} is single-valued.
Assume now C is a nonempty closed and convex subset of H. We then use P_{C} to denote the projection from H to C. Thus, for $x \in H, P_{C} x$ is the unique point in C with the property: $\left\|x-P_{C} x\right\|=\min _{y \in C}\|x-y\|$.

It is well known that $P_{C} x$ is characterized by

$$
\begin{equation*}
P_{C} x \in C, \quad\left\langle x-P_{C} x, z-P_{C} x\right\rangle \leq 0, \quad z \in C . \tag{2.1}
\end{equation*}
$$

If $T: C \rightarrow H$ is a mapping, then say that
(a) T is nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$;
(b) T is firmly nonexpansive if

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(I-T) x-(I-T) y\|^{2} \quad \text { for all } x, y \in C .
$$

We next collect some nice properties of the resolvent of a monotone operator.
Lemma 2.1. Let A be a maximal monotone operator in H. Then
(i) $J_{\beta}^{A}: H \rightarrow H$ is single-valued and firmly nonexpansive;
(ii) $\operatorname{Fix}\left(J_{\beta}^{A}\right)=\{x \in \mathcal{D}(A): 0 \in A x\}=A^{-1}(0)$;
(iii) $\left\|x-J_{\beta}^{A} x\right\| \leq 2\left\|x-J_{\beta^{\prime}}^{A} x\right\|$ for all $0<\beta \leq \beta^{\prime}$ and for all $x \in H$ [15].

Lemma 2.2 ([10]). Let C be a nonempty closed convex subset of H and $T: C \rightarrow H$ a nonexpansive mapping with Fix $(T) \neq \emptyset$. If $\left(x_{n}\right)$ is a sequence in C such that $x_{n} \rightharpoonup x$ and $(I-T) x_{n} \rightarrow 0$, then $(I-T) x=0$, i.e. $x \in \operatorname{Fix}(T)$.
Lemma $2.3([22])$. Let $\left\{s_{n}\right\},\left\{c_{n}\right\} \subset \mathbb{R}^{+},\left\{\lambda_{n}\right\} \subset(0,1)$ and $\left\{b_{n}\right\} \subset \mathbb{R}$ be sequences such that
If $\lambda_{n} \rightarrow 0, \sum_{n=0}^{\infty} \lambda_{n+1} \leq\left(1-\lambda_{n}\right) s_{n}+b_{n}+c_{n}, \quad n \geq 0 . ~ \sum_{n=0}^{\infty} c_{n}<\infty$ and $\limsup _{n \rightarrow \infty}\left(b_{n} / \lambda_{n}\right) \leq 0$, then $\lim _{n \rightarrow \infty} s_{n}=0$.
Lemma 2.4 ([14]). Let $\left(s_{n}\right)$ be a real sequence that does not decrease at the infinity in the sense that there exists a subsequence $\left(s_{n_{k}}\right)$ so that

$$
s_{n_{k}} \leq s_{n_{k}+1}, \quad k \geq 0
$$

For every $n>n_{0}$ define a sequence of integers, $(\tau(n))$, by

$$
\tau(n)=\max \left\{n_{0} \leq k \leq n: s_{k}<s_{k+1}\right\} .
$$

Then $\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$ and for all $n>n_{0}$,

$$
\begin{equation*}
\max \left(s_{\tau(n)}, s_{n}\right) \leq s_{\tau(n)+1} . \tag{2.2}
\end{equation*}
$$

Lemma 2.5. Let $x, y \in H$ and let $t, s \geq 0$. Then
(i) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$;
(ii) $\|t x+s y\|^{2}=t(t+s)\|x\|^{2}+s(t+s)\|y\|^{2}-s t\|x-y\|^{2}$.

We now include two lemmas which play a role in proving the boundedness of the sequences generated by our iterative algorithms in Section 3.

Lemma 2.6. Let $\beta>0$ and let $\left(s_{n}\right)$ be a nonnegative real sequence so that, for $n \geq 0$,

$$
\begin{align*}
s_{n+1} \leq & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right) s_{n} \\
& +\left[1-\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\right]\left(1+\varepsilon_{n}\right) \beta \tag{2.3}
\end{align*}
$$

where $\left(\lambda_{n}\right) \subset(0,1),\left(\alpha_{n}\right) \subset(0,1)$ and $\left(\varepsilon_{n}\right),\left(\varepsilon_{n}^{\prime}\right) \in l_{1}$ are real sequences. Then $\left(s_{n}\right)$ is bounded; more precisely,

$$
\begin{equation*}
s_{n} \leq \max \left\{\beta, s_{0}\right\} \exp \left(\sum_{k=0}^{\infty} \varepsilon_{k}+\sum_{k=0}^{\infty} \varepsilon_{k}^{\prime}\right), \quad n \geq 0 \tag{2.4}
\end{equation*}
$$

Proof. Seting $a_{n}=\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right) \in(0,1)$, we can rewrite (2.3) as

$$
\begin{equation*}
s_{n+1} \leq a_{n}\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right) s_{n}+\left(1-a_{n}\right)\left(1+\varepsilon_{n}\right) \beta \tag{2.5}
\end{equation*}
$$

It turns out obviously that

$$
\begin{aligned}
s_{n+1} & \leq\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right)\left(a_{n} s_{n}+\left(1-a_{n}\right) \beta\right) \\
& \leq\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right) \max \left\{s_{n}, \beta\right\} \\
& \leq\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right) \max \left\{\left(1+\varepsilon_{n-1}\right)\left(1+\varepsilon_{n-1}^{\prime}\right) \max \left\{s_{n-1}, \beta\right\}, \beta\right\} \\
& \leq\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right)\left(1+\varepsilon_{n-1}\right)\left(1+\varepsilon_{n-1}^{\prime}\right) \max \left\{s_{n-1}, \beta\right\}
\end{aligned}
$$

Continuing this way yields the following inequality from which (2.4) follows.

$$
s_{n+1} \leq \max \left\{\beta, s_{0}\right\} \prod_{k=0}^{n}\left(1+\varepsilon_{k}\right)\left(1+\varepsilon_{k}^{\prime}\right), \quad n \geq 0
$$

Lemma 2.7. Let $\beta>0$ and let $\left(s_{n}\right)$ be a sequence of nonnegative real numbers such that

$$
\begin{align*}
s_{n+1} \leq & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right) s_{n} \\
& +\left[1-\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\right]\left(1+\varepsilon_{n}\right) \beta \tag{2.6}
\end{align*}
$$

where $\left(\alpha_{n}\right),\left(\lambda_{n}\right) \subset(0,1)$ and $\left(\varepsilon_{n}\right),\left(\varepsilon_{n}^{\prime}\right) \subset[0, \infty)$ are real sequences. Set $b_{n}=$ $1-\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)$. If there holds

$$
\begin{equation*}
b_{n} \varepsilon_{n}+2\left(1-b_{n}\right)\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}+\varepsilon_{n} \varepsilon_{n}^{\prime}\right) \leq b_{n} \tag{2.7}
\end{equation*}
$$

then $\left(s_{n}\right)$ is bounded. As a matter of fact, we have that $s_{n} \leq \max \left\{2 \beta, s_{0}\right\}$.
Proof. Denote $\tau_{n}=b_{n}-\left(1-b_{n}\right)\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}+\varepsilon_{n} \varepsilon_{n}^{\prime}\right)$. Then $\tau_{n} \in(0,1)$ and it follows from (2.6) that

$$
\begin{align*}
s_{n+1} & \leq b_{n}\left(1+\varepsilon_{n}\right) \beta+\left(1-b_{n}\right)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right) s_{n} \\
& =\tau_{n}\left(\frac{b_{n}\left(1+\varepsilon_{n}\right)}{\tau_{n}}\right) \beta+\left(1-\tau_{n}\right) s_{n} \tag{2.8}
\end{align*}
$$

Due to the assumption (2.7), we deduce that

$$
\frac{b_{n}\left(1+\varepsilon_{n}\right)}{\tau_{n}}=\frac{b_{n}\left(1+\varepsilon_{n}\right)}{b_{n}-\left(1-b_{n}\right)\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}+\varepsilon_{n} \varepsilon_{n}^{\prime}\right)} \leq 2
$$

Therefore, (2.8) yields that

$$
s_{n+1} \leq 2 \beta \tau_{n}+\left(1-\tau_{n}\right) s_{n} \leq \max \left\{2 \beta, s_{n}\right\} \leq \cdots \leq \max \left\{2 \beta, s_{0}\right\}
$$

3. Algorithms and strong Convergence

In this section, we propose an iterative algorithm for finding a common zero of two maximal monotone operators A and B. To this end, we assume the set of common zeros of A and $B, S:=A^{-1}(0) \cap B^{-1}(0)$, is nonempty. The feature of our algorithm is that it generate strongly convergent sequences under distinct accuracy criteria on the errors. We begin with the following lemma.

Lemma 3.1 ([12, 20]). Let $\eta \in(0,1 / 2), x, e \in H$ and $\tilde{x}:=J_{\beta}^{A}(x+e)$. If $\|e\| \leq$ $\eta\|x-\tilde{x}\|$, then

$$
\|\tilde{x}-z\|^{2} \leq\left(1+(2 \eta)^{2}\right)\|x-z\|^{2}-\frac{1}{2}\|\tilde{x}-x\|^{2}, \forall z \in S
$$

Theorem 3.2. Let $x_{0} \in H$. Consider the sequence $\left(x_{n}\right)$ generated by the algorithm:

$$
\begin{align*}
x_{2 n+1} & =\alpha_{n} u+\delta_{n} x_{2 n}+\gamma_{n} J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right), \quad n=0,1, \ldots \tag{3.1}\\
x_{2 n} & =\lambda_{n} u+\rho_{n} x_{2 n-1}+\sigma_{n} J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right), \quad n=1,2, \ldots \tag{3.2}
\end{align*}
$$

where $u, x_{0} \in H, \alpha_{n}, \delta_{n}, \gamma_{n} \in(0,1)$ are such that $\alpha_{n}+\delta_{n}+\gamma_{n}=1, \lambda_{n}, \rho_{n}, \sigma_{n} \in(0,1)$ such that $\lambda_{n}+\rho_{n}+\sigma_{n}=1$, and $\beta_{n}, \mu_{n} \in(0, \infty)$.

Suppose there hold the conditions:
(i) $\beta_{n} \geq \beta>0, \mu_{n} \geq \mu>0, \gamma_{n} \geq \gamma>0, \sigma_{n} \geq \sigma>0$;
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\lim _{n \rightarrow \infty} \lambda_{n}=0$;
(iii) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ or $\sum_{n=0}^{\infty} \lambda_{n}=\infty$;
(iv) $\left\|e_{n}\right\| \leq \eta_{n}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|, \quad \sum_{n=0}^{\infty} \eta_{n}^{2}<\infty$,

$$
\left\|e_{n}^{\prime}\right\| \leq \eta_{n}^{\prime}\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|, \quad \sum_{n=0}^{\infty}\left(\eta_{n}^{\prime}\right)^{2}<\infty
$$

Then $\left(x_{n}\right)$ converges strongly to $P_{S}(u)$.
Proof. Let $z=P_{S}(u)$. By our hypothesis, we may assume without loss of generality that $\eta_{n} \in(0,1 / 2)$ and $\eta_{n}^{\prime} \in(0,1 / 2)$. Then by Lemma 3.1, we have,

$$
\begin{align*}
\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-z\right\|^{2} \leq & \left(1+\varepsilon_{n}\right)\left\|x_{2 n}-z\right\|^{2} \tag{3.3}\\
& -\frac{1}{2}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2} \\
\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-z\right\|^{2} \leq & \left(1+\varepsilon_{n}^{\prime}\right)\left\|x_{2 n-1}-z\right\|^{2} \tag{3.4}\\
& -\frac{1}{2}\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2}
\end{align*}
$$

where $\varepsilon_{n}:=\left(2 \eta_{n}\right)^{2}$ and $\varepsilon_{n}^{\prime}:=\left(2 \eta_{n}^{\prime}\right)^{2}$ satisfying $\sum_{n=0}^{\infty} \varepsilon_{n}<\infty$ and $\sum_{n=0}^{\infty} \varepsilon_{n}^{\prime}<\infty$. By (3.3), (3.4) and (3.1), we deduce

$$
\begin{aligned}
\left\|x_{2 n+1}-z\right\|^{2}= & \left\|\alpha_{n} u+\delta_{n} x_{2 n}+\gamma_{n} J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-z\right\|^{2} \\
= & \left\|\alpha_{n}(u-z)+\delta_{n}\left(x_{2 n}-z\right)+\gamma_{n}\left(J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-z\right)\right\|^{2} \\
\leq & \alpha_{n}\|u-z\|^{2}+\left(1-\alpha_{n}\right) \| \frac{\delta_{n}}{\delta_{n}+\gamma_{n}}\left(x_{2 n}-z\right) \\
& +\frac{\gamma_{n}}{\delta_{n}+\gamma_{n}}\left(J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-z\right) \|^{2} \\
\leq & \alpha_{n}\|u-z\|^{2}+\delta_{n}\left\|x_{2 n}-z\right\|^{2}+\gamma_{n}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-z\right\|^{2} \\
\leq & \alpha_{n}\|u-z\|^{2}+\delta_{n}\left\|x_{2 n}-z\right\|^{2}+\gamma_{n}\left(1+\varepsilon_{n}\right)\left\|x_{2 n}-z\right\|^{2} \\
& -\frac{\gamma_{n}}{2}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2} \\
\leq & \alpha_{n}\|u-z\|^{2}+\left[\delta_{n}+\gamma_{n}\left(1+\varepsilon_{n}\right)\right]\left\|x_{2 n}-z\right\|^{2}
\end{aligned}
$$

Similarly, we can also get

$$
\begin{equation*}
\left\|x_{2 n}-z\right\|^{2} \leq \lambda_{n}\|u-z\|^{2}+\left[\rho_{n}+\sigma_{n}\left(1+\varepsilon_{n}^{\prime}\right)\right]\left\|x_{2 n-1}-z\right\|^{2} \tag{3.5}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\left\|x_{2 n+1}-z\right\|^{2} \leq & \alpha_{n}\|u-z\|^{2}+\left[\delta_{n}+\gamma_{n}\left(1+\varepsilon_{n}\right)\right]\left[\lambda_{n}\|u-z\|^{2}\right. \\
& \left.+\left(\rho_{n}+\sigma_{n}\left(1+\varepsilon_{n}^{\prime}\right)\right)\left\|x_{2 n-1}-z\right\|^{2}\right] \\
= & \alpha_{n}\|u-z\|^{2}+\lambda_{n}\left[\delta_{n}+\gamma_{n}\left(1+\varepsilon_{n}\right)\right]\|u-z\|^{2} \\
& +\left[\delta_{n}+\gamma_{n}\left(1+\varepsilon_{n}\right)\right]\left[\rho_{n}+\sigma_{n}\left(1+\varepsilon_{n}^{\prime}\right)\right]\left\|x_{2 n-1}-z\right\|^{2} \\
\leq & {\left[\alpha_{n}+\lambda_{n} \delta_{n}+\lambda_{n} \gamma_{n}\left(1+\varepsilon_{n}\right)\right]\|u-z\|^{2} } \\
& +\left(\delta_{n}+\gamma_{n}\right)\left(\rho_{n}+\sigma_{n}\right)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right)\left\|x_{2 n-1}-z\right\|^{2} \\
\leq & \left(\alpha_{n}+\lambda_{n} \delta_{n}+\lambda_{n} \gamma_{n}\right)\left(1+\varepsilon_{n}\right)\|u-z\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right)\left\|x_{2 n-1}-z\right\|^{2} \\
= & \left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left(1+\varepsilon_{n}\right)\|u-z\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right)\left\|x_{2 n-1}-z\right\|^{2} \\
= & {\left[1-\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\right]\left(1+\varepsilon_{n}\right)\|u-z\|^{2} } \\
& +\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right)\left\|x_{2 n-1}-z\right\|^{2} .
\end{aligned}
$$

Applying Lemma 2.6 to the last inequality, we conclude that $\left(x_{2 n+1}\right)$ is bounded. By (3.5), we find that $\left(x_{2 n}\right)$ is bounded as well. In a summary, $\left(x_{n}\right)$ is bounded.

It follows from Lemma 2.5 that,

$$
\begin{aligned}
\left\|x_{2 n+1}-z\right\|^{2} & =\left\|\alpha_{n} u+\delta_{n} x_{2 n}+\gamma_{n} J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-z\right\|^{2} \\
& =\left\|\alpha_{n}(u-z)+\delta_{n} x_{2 n}+\gamma_{n} J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-\left(\delta_{n}+\gamma_{n}\right) z\right\|^{2} \\
& \leq\left\|\delta_{n} x_{2 n}+\gamma_{n} J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-\left(\delta_{n}+\gamma_{n}\right) z\right\|^{2}+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle \\
& =\delta_{n}\left(\delta_{n}+\gamma_{n}\right)\left\|x_{2 n}-z\right\|^{2}+\gamma_{n}\left(\delta_{n}+\gamma_{n}\right)\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-z\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\delta_{n} \gamma_{n}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2}+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle \\
\leq & \delta_{n}\left(\delta_{n}+\gamma_{n}\right)\left\|x_{2 n}-z\right\|^{2}+\gamma_{n}\left(\delta_{n}+\gamma_{n}\right)\left[\left(1+\varepsilon_{n}\right)\left\|x_{2 n}-z\right\|^{2}\right. \\
& \left.-\frac{1}{2}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2}\right]-\delta_{n} \gamma_{n}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2} \\
& +2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle \\
= & \left(1-\alpha_{n}\right)^{2}\left\|x_{2 n}-z\right\|^{2}+\varepsilon_{n} \gamma_{n}\left(\delta_{n}+\gamma_{n}\right)\left\|x_{2 n}-z\right\|^{2} \\
& -\frac{1}{2}\left(3 \gamma_{n} \delta_{n}+\gamma_{n}^{2}\right)\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2}+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{2 n}-z\right\|^{2}+M_{1} \varepsilon_{n} \\
& -\frac{1}{2}\left(3 \gamma_{n} \delta_{n}+\gamma_{n}^{2}\right)\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2} \\
& +2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle
\end{aligned}
$$

where $M_{1}>0$ such that $\gamma_{n}\left(\delta_{n}+\gamma_{n}\right)\left\|x_{2 n}-z\right\|^{2} \leq M_{1}$. Similarly,

$$
\begin{aligned}
\left\|x_{2 n}-z\right\|^{2} \leq & \left(1-\lambda_{n}\right)^{2}\left\|x_{2 n-1}-z\right\|^{2}+\varepsilon_{n}^{\prime} \sigma_{n}\left(\rho_{n}+\sigma_{n}\right)\left\|x_{2 n-1}-z\right\|^{2} \\
& -\frac{1}{2}\left(3 \rho_{n} \sigma_{n}+\sigma_{n}^{2}\right)\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2}+2 \lambda_{n}\left\langle u-z, x_{2 n}-z\right\rangle \\
\leq & \left(1-\lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2}+M_{2} \varepsilon_{n}^{\prime} \\
& -\frac{1}{2}\left(3 \rho_{n} \sigma_{n}+\sigma_{n}^{2}\right)\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2}+2 \lambda_{n}\left\langle u-z, x_{2 n}-z\right\rangle
\end{aligned}
$$

where $M_{2}>0$ such that $\sigma_{n}\left(\rho_{n}+\sigma_{n}\right)\left\|x_{2 n-1}-z\right\|^{2} \leq M_{2}$. Therefore,

$$
\begin{aligned}
\left\|x_{2 n+1}-z\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left[\left(1-\lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2}+M_{2} \varepsilon_{n}^{\prime}\right. \\
& -\frac{1}{2}\left(3 \rho_{n} \sigma_{n}+\sigma_{n}^{2}\right)\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2} \\
& \left.+2 \lambda_{n}\left\langle u-z, x_{2 n}-z\right\rangle\right]+M_{1} \varepsilon_{n} \\
& -\frac{1}{2}\left(3 \gamma_{n} \delta_{n}+\gamma_{n}^{2}\right)\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2}+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle \\
= & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2}+M_{2}\left(1-\alpha_{n}\right) \varepsilon_{n}^{\prime} \\
& -\frac{1}{2}\left(1-\alpha_{n}\right)\left(3 \rho_{n} \sigma_{n}+\sigma_{n}^{2}\right)\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle+M_{1} \varepsilon_{n} \\
& -\frac{1}{2}\left(3 \gamma_{n} \delta_{n}+\gamma_{n}^{2}\right)\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2} \\
& +2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle \\
\leq & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2}-\frac{1}{2} a\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2} \\
& -\frac{1}{2} b\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2}+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right) \\
& +2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle,
\end{aligned}
$$

where $3 \gamma_{n} \delta_{n}+\gamma_{n}^{2} \geq a>0,\left(1-\alpha_{n}\right)\left(3 \rho_{n} \sigma_{n}+\sigma_{n}^{2}\right) \geq b>0$ (by condition (i) and (ii)), and $M=\max \left\{M_{1}, M_{2}\right\}$. It turns out that

$$
\begin{align*}
& \left\|x_{2 n+1}-z\right\|^{2}-\left\|x_{2 n-1}-z\right\|^{2}+\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2} \tag{3.6}\\
& \quad+\frac{1}{2} a\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2}+\frac{1}{2} b\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2} \\
& \leq \\
& \quad 2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right)
\end{align*}
$$

Setting

$$
s=\sum_{k=0}^{\infty} \varepsilon_{k}+\sum_{k=0}^{\infty} \varepsilon_{k}^{\prime}<\infty, \quad t_{n}=s-\sum_{k=0}^{n-1} \varepsilon_{k}-\sum_{k=0}^{n-1} \varepsilon_{k}^{\prime}, \quad s_{n}=\left\|x_{2 n-1}-z\right\|^{2}+M t_{n}
$$

we can rewrite (3.6) as

$$
\begin{align*}
& s_{n+1}-s_{n}+\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2} \tag{3.7}\\
& \quad+\frac{1}{2} a\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2}+\frac{1}{2} b\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2} \\
& \leq 2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle
\end{align*}
$$

It is obviously clear that $s_{n} \rightarrow 0 \Leftrightarrow\left\|x_{2 n-1}-z\right\| \rightarrow 0$.
We next verify that $s_{n} \rightarrow 0$ as $n \rightarrow \infty$ by considering two possible cases for the sequence $\left(s_{n}\right)$.

Case 1: $\left(s_{n}\right)$ is eventually decreasing (i.e. there exists $N>0$ such that $\left(s_{n}\right)$ is decreasing for $n \geq N)$. In this case, $\left(s_{n}\right)$ is convergent. Then passing to the limit in (3.7), we get

$$
\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\| \rightarrow 0, \quad\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\| \rightarrow 0
$$

So it follows that

$$
\begin{aligned}
\left\|x_{2 n+1}-x_{2 n}\right\| & =\left\|\alpha_{n} u+\delta_{n} x_{2 n}+\gamma_{n} J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\| \\
& \leq \alpha_{n}\left\|u-x_{2 n}\right\|+\gamma_{n}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\| \rightarrow 0 \\
\left\|x_{2 n}-x_{2 n-1}\right\| & =\left\|\lambda_{n} u+\rho_{n} x_{2 n-1}+\sigma_{n} J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\| \\
& \leq \lambda_{n}\left\|u-x_{2 n-1}\right\|+\sigma_{n}\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\| \rightarrow 0
\end{aligned}
$$

That is, $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$.
Now take a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ so that $\left(x_{n_{k}}\right)$ converges weakly to \hat{x} and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-z, x_{n}-z\right\rangle=\lim _{k \rightarrow \infty}\left\langle u-z, x_{n_{k}}-z\right\rangle \tag{3.8}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-\left(x_{2 n}+e_{n}\right)\right\| \leq & \left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|+\left\|e_{n}\right\| \\
\leq & \left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|+\eta_{n}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\| \\
& \rightarrow 0
\end{aligned}
$$

and by Lemma 2.1, $\left\|J_{\beta}^{A}\left(x_{2 n}+e_{n}\right)-\left(x_{2 n}+e_{n}\right)\right\| \leq 2\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-\left(x_{2 n}+e_{n}\right)\right\|$, we obtain that $\left\|J_{\beta}^{A}\left(x_{2 n}+e_{n}\right)-\left(x_{2 n}+e_{n}\right)\right\| \rightarrow 0$. Thus we can apply Lemma 2.2 to find that $\omega_{w}\left(x_{2 n}\right) \subset A^{-1}(0)$. By a similar argument, we have $\omega_{w}\left(x_{2 n-1}\right) \subset B^{-1}(0)$.

Since $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$, we conclude that $\omega_{w}\left(x_{n}\right) \subset S$; in particular, $\hat{x} \in S$. Moreover, we have by (3.8)

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-z, x_{n}-z\right\rangle=\left\langle u-P_{S} u, \hat{x}-P_{S} u\right\rangle \leq 0 \tag{3.9}
\end{equation*}
$$

Now from (3.6), we derive that

$$
\begin{aligned}
\| & x_{2 n+1}-z \|^{2} \\
\leq & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2}+2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle \\
& +2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right) \\
= & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2}+2\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle \\
& +2 \alpha_{n}\left\langle u-z, x_{2 n+1}-x_{2 n}\right\rangle+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right) \\
= & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2}+\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left[2\left\langle u-z, x_{2 n}-z\right\rangle\right. \\
& \left.+\frac{2 \alpha_{n}}{\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}}\left\langle u-z, x_{2 n+1}-x_{2 n}\right\rangle\right]+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right) \\
\leq & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left\|x_{2 n-1}-z\right\|^{2}+\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left[2\left\langle u-z, x_{2 n}-z\right\rangle\right. \\
& \left.+2\|u-z\|\left\|x_{2 n+1}-x_{2 n}\right\|\right]+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right) .
\end{aligned}
$$

Conditions (ii) and (iii) trivially imply that

$$
\lim _{n \rightarrow \infty}\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)=0 \quad \text { and } \quad \sum_{n=0}^{\infty}\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)=\infty
$$

Hence we can apply Lemma 2.3 to conclude that $\left\|x_{2 n-1}-z\right\| \rightarrow 0$. According to (3.5), we also get $\left\|x_{2 n}-z\right\| \rightarrow 0$, and therefore, $\left\|x_{n}-z\right\| \rightarrow 0$.

Case 2: $\left(s_{n}\right)$ is not eventually decreasing. In this case, we can find a subsequence $\left(s_{n_{k}}\right)$ of $\left(s_{n}\right)$ so that $s_{n_{k}} \leq s_{n_{k}+1}$ for all $k \geq 0$. Define a sequence of integers $(\tau(n))$ as in Lemma 2.4. Since $s_{\tau(n)} \leq s_{\tau(n)+1}$ for all $n>n_{0}$ and by (3.7), we have

$$
\left\|J_{\beta_{\tau(n)}}^{A}\left(x_{2 \tau(n)}+e_{\tau(n)}\right)-x_{2 \tau(n)}\right\| \rightarrow 0, \quad\left\|J_{\mu_{\tau(n)}}^{B}\left(x_{2 \tau(n)-1}+e_{\tau(n)}^{\prime}\right)-x_{2 \tau(n)-1}\right\| \rightarrow 0
$$

On the other hand, from (3.1) and (3.2), we deduce that

$$
\left\|x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\| \rightarrow 0, \quad\left\|x_{2 \tau(n)}-x_{2 \tau(n)-1}\right\| \rightarrow 0
$$

By an analogous argument to the proof of (3.9), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-z, x_{2 \tau(n)-1}-z\right\rangle \leq 0, \quad \limsup _{n \rightarrow \infty}\left\langle u-z, x_{2 \tau(n)}-z\right\rangle \leq 0 \tag{3.10}
\end{equation*}
$$

Thus we get $\limsup _{n \rightarrow \infty}\left\langle u-z, x_{2 \tau(n)+1}-z\right\rangle \leq 0$. Noticing $s_{\tau(n)+1}-s_{\tau(n)} \geq 0$ and by (3.7), we deduce that

$$
\begin{aligned}
& \left(\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}\right)\left\|x_{2 \tau(n)-1}-z\right\|^{2} \\
& \quad \leq 2 \lambda_{\tau(n)}\left(1-\alpha_{\tau(n)}\right)\left\langle u-z, x_{2 \tau(n)}-z\right\rangle+2 \alpha_{\tau(n)}\left\langle u-z, x_{2 \tau(n)+1}-z\right\rangle \\
& \quad=2\left(\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}\right)\left\langle u-z, x_{2 \tau(n)}-z\right\rangle \\
& \quad+2 \alpha_{\tau(n)}\left\langle u-z, x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\rangle \\
& \quad \leq 2\left(\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}\right)\left\langle u-z, x_{2 \tau(n)}-z\right\rangle
\end{aligned}
$$

$$
+2 \alpha_{\tau(n)}\|u-z\|\left\|x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\|
$$

It turns out that

$$
\begin{aligned}
\left\|x_{2 \tau(n)-1}-z\right\|^{2} \leq & 2\left\langle u-z, x_{2 \tau(n)}-z\right\rangle \\
& +2 \frac{\alpha_{\tau(n)}}{\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}}\|u-z\|\left\|x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\| \\
\leq & 2\left\langle u-z, x_{2 \tau(n)}-z\right\rangle+2\|u-z\|\left\|x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\|
\end{aligned}
$$

This implies that $\limsup _{n \rightarrow \infty}\left\|x_{2 \tau(n)-1}-z\right\| \leq 0$ and hence

$$
\lim _{n \rightarrow \infty}\left\|x_{2 \tau(n)-1}-z\right\|=0 \quad \text { or } \quad \lim _{n \rightarrow \infty} s_{\tau(n)}=0
$$

Similarly, by (3.7) and noticing the fact that $s_{\tau(n)+1}-s_{\tau(n)} \geq 0$, we can also derive that $\lim _{n \rightarrow \infty}\left(s_{\tau(n)+1}-s_{\tau(n)}\right)=0$ so that $\lim _{n \rightarrow \infty} s_{\tau(n)+1}=0$. Now by (2.2) in Lemma 2.4, we obtain $s_{n} \rightarrow 0$, yielding

$$
\lim _{n \rightarrow \infty}\left(\left\|x_{2 n-1}-z\right\|+M t_{n}\right)=0
$$

This together with the fact that $t_{n} \rightarrow 0$ immediately implies that $\lim _{n \rightarrow \infty}\left\|x_{2 n-1}-z\right\|=0$ which in turns implies from (3.5) that $\lim _{n \rightarrow \infty}\left\|x_{2 n}-z\right\|=0$. Therefore, $\lim _{n \rightarrow \infty}\left\|x_{n}-z\right\|=$ 0.

Next we consider the strong convergence of the algorithm (3.1)-(3.2) under an accuracy criterion on the errors distinct from condition (iv) of Theorem 3.2.

Theorem 3.3. Let $\left(x_{n}\right)$ be generated by the algorithm (3.1)-(3.2). Assume the same conditions (i)-(iii) in Theorem 3.2. Assume, in addition, condition (iv) in Theorem 3.2 is replaced with the following condition:

$$
\begin{aligned}
(\mathrm{iv})^{\prime}\left\|e_{n}\right\| & \leq \eta_{n}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|, \quad \lim _{n \rightarrow \infty} \frac{\eta_{n}^{2}}{\alpha_{n}}=0 \\
\left\|e_{n}^{\prime}\right\| & \leq \eta_{n}^{\prime}\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|, \lim _{n \rightarrow \infty} \frac{\left(\eta_{n}^{\prime}\right)^{2}}{\lambda_{n}}=0
\end{aligned}
$$

Then $\left(x_{n}\right)$ converges in norm to $P_{S}(u)$.
Proof. Let $z=P_{S}(u)$. Repeating the argument for estimating $\left\|x_{2 n+1}-z\right\|^{2}$ in the proof of Theorem 3.2, we can get

$$
\begin{aligned}
\left\|x_{2 n+1}-z\right\|^{2} \leq & {\left[1-\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\right]\left(1+\varepsilon_{n}\right)\|u-z\|^{2} } \\
& +\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n}^{\prime}\right)\left\|x_{2 n-1}-z\right\|^{2}
\end{aligned}
$$

where $\varepsilon_{n}:=\left(2 \eta_{n}\right)^{2}$ and $\varepsilon_{n}^{\prime}:=\left(2 \eta_{n}^{\prime}\right)^{2}$ which are easily seen to satisfy two conditions:

$$
\frac{\varepsilon_{n}}{\alpha_{n}} \rightarrow 0 \quad \text { and } \quad \frac{\varepsilon_{n}^{\prime}}{\lambda_{n}} \rightarrow 0
$$

Set $b_{n}=1-\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right)$. Without loss of generality, we assume that

$$
b_{n} \varepsilon_{n}+2\left(1-b_{n}\right)\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}+\varepsilon_{n} \varepsilon_{n}^{\prime}\right) \leq b_{n}
$$

We claim that the sequence $\left(x_{n}\right)$ is bounded. In fact, the boundedness of $\left(x_{2 n+1}\right)$ is guaranteed by Lemma 2.7 and the boundedness of $\left(x_{2 n}\right)$ is then a consequence of (3.5). Further from (3.6), we obtain that

$$
\begin{align*}
& s_{n+1}-s_{n}+\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right) s_{n} \tag{3.11}\\
& \quad+\frac{1}{2} a\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2}+\frac{1}{2} b\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2} \\
& \leq 2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right)
\end{align*}
$$

where we define $s_{n}:=\left\|x_{2 n-1}-z\right\|^{2}$.
To see the strong convergence of $\left(x_{n}\right)$, we again distinguish two cases for $\left(s_{n}\right)$.
Case 1: $\left(s_{n}\right)$ is eventually decreasing (i.e. there exists $N \geq 0$ such that $\left(s_{n}\right)_{n \geq N}$ is decreasing); thus (s_{n}) must converge. We have

$$
\begin{aligned}
& \frac{1}{2} a\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|^{2}+\frac{1}{2} b\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\|^{2} \\
& \quad \leq 2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle+2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle \\
& \quad+M \alpha_{n}\left(\frac{\varepsilon_{n}}{\alpha_{n}}\right)+M \lambda_{n}\left(\frac{\varepsilon_{n}^{\prime}}{\lambda_{n}}\right)+\left(s_{n}-s_{n+1}\right)-\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right) s_{n} \\
& \leq \lambda_{n} M^{\prime}+\alpha_{n} M^{\prime \prime}+M \alpha_{n}\left(\frac{\varepsilon_{n}}{\alpha_{n}}\right)+M \lambda_{n}\left(\frac{\varepsilon_{n}^{\prime}}{\lambda_{n}}\right) \\
& \quad+\left(s_{n}-s_{n+1}\right)-\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right) s_{n} \rightarrow 0
\end{aligned}
$$

where $M^{\prime}>0$ and $M^{\prime \prime}>0$ are constants such that

$$
2\left(1-\alpha_{n}\right)\|u-z\|\left\|x_{2 n}-z\right\| \leq M^{\prime} \quad \text { and } \quad 2\|u-z\|\left\|x_{2 n+1}-z\right\| \leq M^{\prime \prime}
$$

It turns out that

$$
\begin{equation*}
\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\| \rightarrow 0, \quad\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-x_{2 n-1}\right\| \rightarrow 0 \tag{3.12}
\end{equation*}
$$

and consequently, $\left\|x_{2 n+1}-x_{2 n}\right\| \rightarrow 0$ and $\left\|x_{2 n}-x_{2 n-1}\right\| \rightarrow 0$. Namely, we have proven that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$. We also get by (3.12)

$$
\begin{aligned}
\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-\left(x_{2 n}+e_{n}\right)\right\| \leq & \left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|+\left\|e_{n}\right\| \\
\leq & \left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\|+\eta_{n}\left\|J_{\beta_{n}}^{A}\left(x_{2 n}+e_{n}\right)-x_{2 n}\right\| \\
& \rightarrow 0
\end{aligned}
$$

Similarly, we also have

$$
\left\|J_{\mu_{n}}^{B}\left(x_{2 n-1}+e_{n}^{\prime}\right)-\left(x_{2 n-1}+e_{n}^{\prime}\right)\right\| \rightarrow 0
$$

Therefore,

$$
\omega_{w}\left(x_{2 n}\right) \subset A^{-1}(0) \quad \text { and } \quad \omega_{w}\left(x_{2 n-1}\right) \subset B^{-1}(0)
$$

This together with the fact that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ yields that $\omega_{w}\left(x_{n}\right) \subset S$. Analogous to the proof of (3.9) for Theorem 3.2, we have

$$
\limsup _{n \rightarrow \infty}\left\langle u-z, x_{n}-z\right\rangle \leq 0
$$

It now turns out that

$$
s_{n+1} \leq\left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right) s_{n}+2 \lambda_{n}\left(1-\alpha_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle
$$

$$
\begin{aligned}
& +2 \alpha_{n}\left\langle u-z, x_{2 n+1}-z\right\rangle+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right) \\
= & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right) s_{n}+2\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle \\
& +2 \alpha_{n}\left\langle u-z, x_{2 n+1}-x_{2 n}\right\rangle+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right) \\
\leq & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right) s_{n}+2\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left\langle u-z, x_{2 n}-z\right\rangle \\
& +2 \alpha_{n}\|u-z\|\left\|x_{2 n+1}-x_{2 n}\right\|+M\left(\varepsilon_{n}+\varepsilon_{n}^{\prime}\right) \\
= & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right) s_{n}+\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left[2\left\langle u-z, x_{2 n}-z\right\rangle\right. \\
& +2 \frac{\alpha_{n}}{\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}}\|u-z\|\left\|x_{2 n+1}-x_{2 n}\right\| \\
& \left.+M \frac{\varepsilon_{n}}{\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}}+M \frac{\varepsilon_{n}^{\prime}}{\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}}\right] \\
\leq & \left(1-\alpha_{n}\right)\left(1-\lambda_{n}\right) s_{n}+\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)\left[2\left\langle u-z, x_{2 n}-z\right\rangle\right. \\
& \left.+2\|u-z\|\left\|x_{2 n+1}-x_{2 n}\right\|+M \frac{\varepsilon_{n}}{\alpha_{n}}+M \frac{\varepsilon_{n}^{\prime}}{\lambda_{n}}\right] .
\end{aligned}
$$

Again we have the trivial relations from conditions (ii) and (iii)

$$
\lim _{n \rightarrow \infty}\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)=0 \quad \text { and } \quad \sum_{n=0}^{\infty}\left(\alpha_{n}+\lambda_{n}-\alpha_{n} \lambda_{n}\right)=\infty
$$

Applying Lemma 2.3 , we get $s_{n} \rightarrow 0$, that is, $\left\|x_{2 n-1}-z\right\| \rightarrow 0$, which together with (3.5) yields $\left\|x_{2 n}-z\right\| \rightarrow 0$; hence, $\left\|x_{n}-z\right\| \rightarrow 0$ and $x_{n} \rightarrow z$.

Case 2: $\left(s_{n}\right)$ is not eventually decreasing. In this case, define a sequence $(\tau(n))$ of integers as in Lemma 2.4. Since $s_{\tau(n)} \leq s_{\tau(n)+1}$ for all $n>n_{0}$, it follows from (3.11) that

$$
\begin{aligned}
& \left\|J_{\beta_{\tau(n)}}^{A}\left(x_{2 \tau(n)}+e_{\tau(n)}\right)-x_{2 \tau(n)}\right\| \rightarrow 0 \\
& \left\|J_{\mu_{\tau(n)}}^{B}\left(x_{2 \tau(n)-1}+e_{\tau(n)}^{\prime}\right)-x_{2 \tau(n)-1}\right\| \rightarrow 0
\end{aligned}
$$

Furthermore, repeating the main argument for Case 2 of the proof of Theorem 3.2, we get

$$
\begin{aligned}
& \left\|x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\| \rightarrow 0 \quad \text { and } \quad\left\|x_{2 \tau(n)}-x_{2 \tau(n)-1}\right\| \rightarrow 0 \\
& \limsup _{n \rightarrow \infty}\left\langle u-z, x_{2 \tau(n)+1}-z\right\rangle \leq 0 \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\langle u-z, x_{2 \tau(n)}-z\right\rangle \leq 0
\end{aligned}
$$

We deduce from (3.11), for all $n>n_{0}$,

$$
\begin{aligned}
& \left(\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}\right) s_{\tau(n)} \\
& \leq 2 \lambda_{\tau(n)}\left(1-\alpha_{\tau(n)}\right)\left\langle u-z, x_{2 \tau(n)}-z\right\rangle+2 \alpha_{\tau(n)}\left\langle u-z, x_{2 \tau(n)+1}-z\right\rangle \\
& \quad+M\left(\varepsilon_{\tau(n)}+\varepsilon_{\tau(n)}^{\prime}\right) \\
& =2\left(\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}\right)\left\langle u-z, x_{2 \tau(n)}-z\right\rangle \\
& \quad+2 \alpha_{\tau(n)}\left\langle u-z, x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\rangle+M\left(\varepsilon_{\tau(n)}+\varepsilon_{\tau(n)}^{\prime}\right) \\
& \leq 2\left(\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}\right)\left\langle u-z, x_{2 \tau(n)}-z\right\rangle
\end{aligned}
$$

$$
+2 \alpha_{\tau(n)}\|u-z\|\left\|x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\|+M\left(\varepsilon_{\tau(n)}+\varepsilon_{\tau(n)}^{\prime}\right)
$$

Consequently,

$$
\begin{aligned}
s_{\tau(n)} \leq & 2\left\langle u-z, x_{2 \tau(n)}-z\right\rangle \\
& +2 \frac{\alpha_{\tau(n)}}{\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}}\|u-z\|\left\|x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\| \\
& +M\left(\frac{\varepsilon_{\tau(n)}}{\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}}+\frac{\varepsilon_{\tau(n)}^{\prime}}{\alpha_{\tau(n)}+\lambda_{\tau(n)}-\alpha_{\tau(n)} \lambda_{\tau(n)}}\right) \\
\leq & 2\left\langle u-z, x_{2 \tau(n)}-z\right\rangle+2\|u-z\|\left\|x_{2 \tau(n)+1}-x_{2 \tau(n)}\right\|+M\left(\frac{\varepsilon_{\tau(n)}}{\alpha_{\tau(n)}}+\frac{\varepsilon_{\tau(n)}^{\prime}}{\lambda_{\tau(n)}}\right)
\end{aligned}
$$

We arrive at $\lim _{n \rightarrow \infty} s_{\tau(n)}=0$. As $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and $\lim _{n \rightarrow \infty} \varepsilon_{n}^{\prime}=0$, and by (3.11), we find that $\lim _{n \rightarrow \infty}\left(s_{\tau(n)+1}-s_{\tau(n)}\right)=0$. Hence,

$$
\lim _{n \rightarrow \infty} s_{\tau(n)+1}=0
$$

Finally, by (2.2) in Lemma 2.4, we obtain $\left\|x_{2 n-1}-z\right\| \rightarrow 0$, which together with (3.5) immediately implies that $\left\|x_{2 n}-z\right\| \rightarrow 0$, and so $x_{n} \rightarrow z$, as required.

References

[1] H. H. Bauschke, P. L. Combettes and S. Reich, The asymptotic behavior of the composition of two resolvents, Nonlinear Anal. 60 (2005), 283-301.
[2] H. H. Bauschke, E. Matouskova and S. Reich, Projection and proximal point methods: convergence results and counterexamples, Nonlinear Anal. 56 (2004), 715-738.
[3] O. A. Boikanyo and G. Morosanu, Inexact Halpern-type proximal point algorithms, J. Global Optim. 51 (2011), 11-26.
[4] O. A. Boikanyo and G. Morosanu, On the method of alternating resolvents, Nonlinear Anal. 74 (2011), 5147-5160.
[5] O. A. Boikanyo and G. Morosanu, The method of alternating resolvents revisited, Numer. Funct. Anal. Optim. 33 (2012), 1280-1287.
[6] O. A. Boikanyo and G. Morosanu, A contraction proximal point algorithm with two monotone operators, Nonlinear Anal. 75 (2012), 5686-5692.
[7] O. A. Boikanyo and G. Morosanu, Strong convergence of the method of alternating resolvents, J. Nonlinear Convex Anal. 14 (2013), 221-229.
[8] L. Ceng, S. Wu and J. Yao, New accuracy criteria for modified approximate proximal point algorithms in Hilbert spaces, Taiwan J. Math. 12 (2008), 1691-1705.
[9] L. M. Bregman, The method of successive projection for finding a common point of convex sets, Sov. Math. Dokl. 6 (1965), 688-692.
[10] K. Goebel and W. A. Kirk, Topics on Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
[11] O. Güler, On the convergence of the proximal point algorithm for convex optimization, SIAM J. Control Optim. 29 (1991), 403-419.
[12] D. Han and B. S. He, A new accuracy criterion for approximate proximal point algorithms, J. Math. Anal. Appl. 263 (2001), 343-354.
[13] H. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. 57 (2004), 35-61.
[14] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
[15] G. Marino and H. K. Xu, Convergence of generalized proximal point algorithm, Comm. Pure Appl. Anal. 3 (2004), 791-808.
[16] E. Matoukova and S. Reich, The Hundal example revisited, J. Nonlinear Convex Anal. 4 (2003), 411-427.
[17] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379.
[18] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877-898.
[19] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Prog., Ser. A 87 (2000), 189-202.
[20] C. Tian and F. Wang, The contraction-proximal point algorithm with square-summable errors, Fixed Point Theory and Applications 2013, 2013:93, 10 pages.
[21] F. Wang and H. Cui, On the contraction-proximal point algorithms with multi-parameters, J. Global Optim. 54 (2012), 485-491.
[22] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), 240-256.
[23] H. K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150 (2011), 360-378.
[24] Y. Yao and M. A. Noor, On convergence criteria of generalized proximal point algorithms, J. Comput. Appl. Math. 217 (2008), 46-55.

Manuscript received November 18, 2013
revised January 24, 2014
Yamin Wang
Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

E-mail address: wangyaminwangkai@163.com

Hong-Kun Xu

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China; Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; and Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: xuhk@math.nsysu.edu.tw

[^0]: 2010 Mathematics Subject Classification. Primary 47J25; Secondary 47J20, 49N45, 65J15.
 Key words and phrases. Maximal monotone operator, proximal point algorithm, iterative method, nonexpansive mapping, regularization, contraction.
 *H. K. Xu was supported in part by NSC 102-2115-M-110-001-MY3; Corresponding author.

