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[22]), and, in fact, this is the main tool to obtain fixed point results for this class of
mappings.

In Section 2 we study Ishikawa iterations for mappings satisfying condition (C)
on unbounded domains. In this case, similarly to the case of nonexpansive mappings
on unbounded domains, the minimal displacement of the mapping can be positive
and so, it is not possible to obtain asymptotic regularity for the Ishikawa iterates.
However, Ishikawa’s result can be also understood as follows: the limit of ∥xn−Txn∥
is equal to the minimal displacement of T , xn = Snx being the iterates of the
average of the nonexpansive mapping T and the identity. The same can be said for
mappings which satisfy condition (C) according to lemma 6 in [22]. Thus, in the
case of a nonexpansive mapping defined on an unbounded domain, with a non-null
minimal displacement, we can ask if the convergence of ∥xn − Txn∥ to the minimal
displacement still holds. In [3] it is proved that this is, in general, the case. (In fact,
the result in [3] shows the convergence for Kranosels’kii-Milman iterates). By using
some technical lemmas we can prove that the same is true for Ishikawa iterates of
mappings satisfying condition (C) which are defined on unbounded domains.

In Section 3 we use the results of Section 2 to prove fixed point results for map-
pings satisfying condition (C) on unbounded sets. Since, in the unbounded setting,
mappings satisfying condition (C) (even nonexpansive mappings) can be fixed point
free (consider, for instance a displacement) we need to assume some additional con-
ditions. In the case of nonexpansive mappings it is usual to assume that the mapping
is, in addition, asymptotically contractive (see, for instance, [16], [13]). We define
the notion of scalar asymptotic contractiveness which is strictly weaker than asymp-
totic contractiveness (as we show in Example 3.3), and we prove that this condition
suffices to prove the existence of a fixed point. Thus, our results in this section
extend those in [16], [13] in two different directions, replacing nonexpasivity by
condition (C) and asymptotic contractiveness by scalar asymptotic contractiveness.

2. Ishikawa iterations for mappings satisfying condition (C)

In the following K will be a closed convex subset of a Banach space X and
T : K → K a mapping which satisfies condition (C). For some α ∈ (1/2, 1) we
denote S = (1− α)I + αT . A more general condition than condition (C) is defined
in [9] as follows:

Definition 2.1. Let M be a metric space. A mapping V : M → M is said to
satisfy condition (Cλ) if for some λ ∈ (0, 1)

λd(x, V x) ≤ d(x, y) ⇒ d(V x, V y) ≤ d(x, y).

Note that S satisfies condition Cr where r = 1/(2α) < 1 [9].
Without loss of generality we assume that 0 ∈ K. For a given mapping V : K →

K, we denote by rK(V ) = inf{∥x− V x∥ : x ∈ K} the minimal displacement of the
mapping V on K. For an arbitrary x0 ∈ K we denote xn = S(xn−1) and yn = Txn.

The following lemma shows some basic properties of the sequences {xn} and {yn}
which are implicitly in [22]. Since we will use these properties in several proofs, we
prefer to state them explicitly.

Lemma 2.2. (a) For every n ∈ N we have ∥yn+1 − yn∥ ≤ ∥xn+1 − xn∥.
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(b) The sequences {∥xn − yn∥} and {∥xn+1 − xn∥} are nonincreasing.

Proof. Since

1

2
∥xn − Txn∥ =

1

2
∥xn − yn∥ < α∥xn − yn∥ = ∥xn − xn+1∥

condition (C) implies

∥yn+1 − yn∥ = ∥Txn+1 − Txn∥ ≤ ∥xn+1 − xn∥.
To prove (b) note that

∥xn+1 − yn+1∥ = ∥(1− α)(xn − yn) + yn − yn+1∥
≤ (1− α)∥xn − yn∥+ ∥xn − xn+1∥
= (1− α)∥xn − yn∥+ ∥xn − (1− α)xn − αyn∥
= (1− α)∥xn − yn∥+ α∥xn − yn∥ = ∥xn − yn∥.

Finally, since xn+1 − xn = α(yn − xn) the monotonicity of ∥xn+1 − xn∥ is now
obvious. �

Note that the above lemma implies that the sequence {yn} is bounded if and
only if {xn} is bounded. In this case, the following lemma shows that the minimal
displacement must be null.

Proposition 2.3. Assume that the sequence {xn} is bounded. Then, limn ∥xn −
yn∥ = 0. In particular rK(T ) = 0 .

Proof. As in the proof of lemma 6 in [22], note that {xn} and {yn} are bounded
sequences which satisfy xn+1 = αyn+(1−α)xn and ∥yn+1− yn∥ ≤ ∥xn+1−xn∥ for
every n ∈ N. Thus, by lemma 3 in [22] (see also [10]) limn ∥yn − xn∥ = 0. �

The following lemma (for non-expansive mappings) appears in [11] (inequality
9.12 in lemma 9.4).

Lemma 2.4. For every n, k ∈ N we have

(2.1) ∥yn+k − xn∥ ≥ (1− α)−k(∥yn+k − xn+k∥ − ∥yn − xn∥) + (1 + kα)∥yn − xn∥.

Proof. The proof is similar to that of inequality 9.12 in [11] for nonexpansive map-
pings using the previous lemma to replace some conditions derived from the non-
expansivity. We include the proof for the sake of the completeness.

We proceed by induction on k. If k = 0 (2.1) is trivial for every n. Assuming
that (2.1) holds for a given k and all n. Replacing n with n+ 1 in (2.1) yields

∥yn+k+1 − xn+1∥ ≥ (1− α)−k[∥yn+k+1 − xn+k+1∥ − ∥yn+1 − xn+1∥]
+(1 + kα)∥yn+1 − xn+1∥.

Also, by lemma 2.2 (a)

∥yn+k+1 − xn+1∥ ≤ (1− α)∥yn+k+1 − xn∥+ α∥yn+k+1 − yn∥

≤ (1− α)∥yn+k+1 − xn∥+ α

k∑
i=0

∥yn+i+1 − yn+i∥
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≤ (1− α)∥yn+k+1 − xn∥+ α
k∑

i=0

∥xn+i+1 − xn+i∥.

Now, combining the above two inequalities:

∥yn+k+1 − xn∥ ≥ (1− α)−(k+1)[∥yn+k+1 − xn+k+1∥ − ∥yn+1 − xn+1∥]
+(1− α)−1(1 + kα)∥yn+1 − xn+1∥

−α(1− α)−1
k∑

i=0

∥xn+i+1 − xn+i∥.

Since ∥xn+i+1 − xn+i∥ = α∥yn+i − xn+i∥, and since the sequence {∥yn − xn∥} is
nonincreasing (by lemma 2.2 (b)) and 1 + kα ≤ (1− α)−k, we have

∥yn+k+1 − xn∥ ≥ (1− α)−(k+1)[∥yn+k+1 − xn+k+1∥ − ∥yn+1 − xn+1∥]
+(1− α)−1(1 + kα)∥yn+1 − xn+1∥
−α2(1− α)−1(k + 1)∥yn − xn∥

= (1− α)−(k+1)[∥yn+k+1 − xn+k+1∥ − ∥yn − xn∥]
+[(1− α)−1(1 + kα)− (1− α)−(k+1)]∥yn+1 − xn+1∥
+[(1− α)−(k+1) − α2(1− α)−1(k + 1)]∥yn − xn∥

≥ (1− α)−(k+1)[∥yn+k+1 − xn+k−1∥ − ∥yn − xn∥]
+[(1− α)−1(1 + kα)− (1− α)−(k+1)]∥yn − xn∥
+[(1− α)−(k+1) − α2(1− α)−1(k + 1)]∥yn − xn∥

= (1− α)−(k+1)[∥yn+k+1 − xn+k+1∥ − ∥yn − xn∥]
+(1 + (k + 1)α)∥yn − xn∥.

Thus (2.1) holds for k + 1, completing the proof. �

The following lemma is inspired on Lemma 6.4 in [19]

Lemma 2.5. Denote L = lim ∥yn − xn∥ and let ϵ be an arbitrary positive number.
Choose n such that |∥xn − yn∥ − L| < ϵ/2. Then, for every k ∈ N one has

∥yn − yn+k∥
kα

> L− ϵ

kα(1− α)k
.

Proof. By lemmas 2.2 and 2.4 we obtain

∥yn+k − yn∥ ≥ ∥yn+k − xn∥ − ∥xn − yn∥
≥ (1− α)−k(∥yn+k − xn+k∥ − ∥xn − yn∥)
+ (1 + kα)∥xn − yn∥ − ∥xn − yn∥
= (1− α)−k(∥yn+k − xn+k∥ − ∥xn − yn∥) + kα∥xn − yn∥

≥ kα∥xn − yn∥ −
ϵ

2(1− α)k
.
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Thus,
∥yn − yn+k∥

kα
> ∥xn − yn∥ −

ϵ

2kα(1− α)k
≥ L− ϵ

kα(1− α)k
.

�
If T is a non-expansive mapping, we have ∥T kx − T ky∥ ≤ ∥x − y∥ and so, the

distance between T kx and T ky keeps bounded by the distance between x and y.
This is not true for mappings satisfying condition C. However, the following lemma
shows that, in this more general case, the distance between two orbits keeps bounded
(even if the orbits do not).

Lemma 2.6. For every x, y ∈ K and every k ∈ N one has

∥Skx− Sky∥ ≤ a(x, y) =: ∥x− y∥+ 2∥x− Sx∥+ ∥y − Sy∥.
In particular, Skx is bounded if and only if Sky is.

Proof. The inequality is obvious for k = 0. By induction, assume that it holds for
k = 0, 1, . . . , n. If ∥Snx − Sn+1x∥ ≤ ∥Snx − Sny∥ condition Cr for S implies that
∥Sn+1x − Sn+1y∥ ≤ ∥Snx − Sny∥ ≤ a(x, y). Otherwise, by using lemma 2.2 we
obtain ∥Snx− Sny∥ < ∥Snx− Sn+1x∥ ≤ ∥Sx− x∥ and we have

∥Sn+1x− Sn+1y∥ ≤ ∥Sn+1x− Snx∥+ ∥Snx− Sny∥+ ∥Sny − Sn+1y∥
≤ 2∥x− Sx∥+ ∥y − Sy∥ ≤ a(x, y).

�
Lemma 2.7. Assume that the sequence {xn} is unbounded. Then, L =: limn ∥xn−
yn∥ does not depend on the initial value x0.

Proof. Consider two initial values x, x∗ and denote L, L∗ the corresponding limits
and xn, yn x∗n , y∗n the corresponding iterates. Assume L∗ < L and choose d such

that L∗ + d < L. Denote M = 2(∥Tx−x∥+a(x,x∗))
α and choose k such that M/k < d/3

and ϵ, n such that ϵ
kα(1−α)k

< d/3, |L − ∥xn − yn∥| < ϵ and |L∗ − ∥x∗n − y∗n∥| < ϵ .

We apply lemma 2.5 and lemma 2.6 to obtain

L ≤ ∥yn − yn+k∥
kα

+
ϵ

kα(1− α)k

≤ ∥xn − xn+k∥+ ∥yn − xn∥+ ∥yn+k − xn+k∥
kα

+ d/3

≤ 2∥Tx− x∥++∥xn − xn+k∥
kα

+ d/3

≤
2∥Tx− x∥+ ∥x∗n − x∗n+k∥+ ∥xn − x∗n∥+ ∥xn+k − x∗n+k∥

kα
+ d/3

≤ M

kα
+

∑k−1
i=0 ∥x∗n+i+1 − x∗n+i∥

kα
+ d/3

≤ 2d/3 +

∑k−1
i=0 ∥x∗n+i − y∗n+i∥

k
≤ 2d/3 + ∥x∗n − y∗n∥ < 2d/3 + L∗ + ϵ < L∗ + d < L.

�
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Theorem 2.8. Let K be a closed convex subset of a Banach space and T : K → K a
mapping which satisfies condition (C). For some α ∈ (1/2, 1) let xn be the Ishikawa
iterates. Then, limn ∥xn − Txn∥ = rK(T ).

Proof. If {xn} is bounded, Proposition 2.3 implies that rK(T ) = 0 = limn ∥xn −
Txn∥. If {xn} is unbounded, the result is an easy consequence of lemma 2.7 and
lemma 2.2 (b). �

3. Fixed point for generalized non-expansive mappings on unbounded
sets

The following notion has been used in [20] and has proved to be very useful to
obtain fixed points of nonexpansive mappings on unbounded domains (see [16], [13])

Definition 3.1. Let C be a subset of a Banach space X. A mapping f : C → X is
said to be asymptotically contractive on C if there exists x0 ∈ C such that

lim sup
x∈C,∥x∥→∞

∥f(x)− f(x0)∥
∥x− x0∥

< 1.

We are going to consider a weaker condition:

Definition 3.2. Let C be a subset of a Banach space X. A mapping T : C → C is
said to be an asymptotically strongly pseudo-contractive mapping on C if there is
x0 ∈ C such that

lim
∥x∥→∞,x∈C

inf
j∈J(x−x0)

j(Tx− Tx0)

∥x− x0∥2
< 1,

where J(x− x0) = {j ∈ X∗ : ∥j∥ = ∥x− x0∥ and j(x− x0) = ∥x− x0∥2}.

The following example shows that asymptotically strongly pseudo-contractiveness
is a strict generalization of asymptotic contractiveness

Example 3.3. Let C = {(x.y) ∈ R2 : x ≥ 0, y ≥ 0}. Easily, C is a convex and
closed subset of R2. Let f : C → C such that

f(x, y) =

(
0,

∥(x, y)∥
2

+
x

2

)
.

Then,

• f is a non-expansive mapping. Indeed, let (x, y), (x′, y′) ∈ C

∥f(x, y)− f(x′, y′)∥ =

∥∥∥∥(0, ∥(x, y)∥ − ∥(x′, y′)∥
2

+
x− x′

2

)∥∥∥∥
≤

∣∣∣∣∥(x, y)∥ − ∥(x′, y′)∥
2

∣∣∣∣+ ∣∣∣∣x− x′

2

∣∣∣∣
≤ ∥(x− x′, y − y′)∥.
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• f is not asymptotically contractive. Indeed, otherwise, we have (x0, y0) such
that

lim sup
∥(x,y)∥→∞

∥f(x, y)− f(x0, y0)∥
∥(x, y)− (x0, y0)∥

< 1

which is a contradiction, because

1 > lim sup
x→∞

∥f(x, 0)− f(x0, y0)∥
∥(x, 0)− (x0, y0)∥

= lim sup
x→∞

∥(0, x)− f(x0, y0)∥
∥(x, 0)− (x0, y0)∥

= 1.

• f is asymptotically strongly pseudo-contractive. Indeed,

⟨f(x, y)− f(0, 0), (x, y)− (0, 0)⟩
∥(x, y)∥2

=
∥(x, y)∥y + xy

2∥(x, y)∥2

≤ ∥(x, y)∥2 + (1/2)∥(x, y)∥2

2∥(x, y)∥2
= 3/4.

Theorem 3.4. Let K be a closed convex locally weakly compact subset of a Banach
space X with normal structure and T : K → K an asymptotically strongly pseudo-
contractive mapping which satisfies condition (C). Then, T has a fixed point.

Proof. For α ∈ (1/2, 1) denote S = (1 − α)I + αT . We claim that {Snx} is a
bounded sequence. Indeed, otherwise there exists a < 1 such that for large enough
n there exists j ∈ J(Sn−1x− x0) such that

a >
j(Snx− Sx0)

∥Sn−1x− x0∥2

=
j(Snx− Sn−1x) + j(Sn−1x− x0) + j(x0 − Sx0)

∥Sn−1x− x0∥2

≥ 1− ∥Snx− Sn−1x∥
∥Sn−1x− x0∥

− ∥Sx0 − x0∥
∥Sn−1x− x0∥

.

Taking limits as n tends to infinity and using that the sequence ∥Snx− Sn−1x∥ is
nonincreasing (lemma 2.2 (b)) we obtain the contradiction a > 1. By Proposition
2.3 there exists an approximate fixed point sequence {xn} for T in K. The same
argument as above shows that {xn} is bounded. Let C be the asymptotic center
of {xn}. Since K is locally weakly compact, C is convex weakly compact and
nonempty. The existence of a fixed point follows from Proposition 3.4 and Theorem
4.4 in [18]. �

In fact, we have proved above that asymptotically strongly pseudo-contractiveness
implies that there exists a bounded closed subset ofK which is invariant for T . Thus,
the above theorem could be also stated in the following more general (and abstract)
form:

Theorem 3.5. Let K be a closed convex locally weakly compact subset of a Banach
space X and T : K → K an asymptotically strongly pseudo-contractive mapping
which satisfies condition (C). Assume that T belongs to a type of mapping such that
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any convex weakly compact set has the FPP for this class. Then, T has a fixed
point.

Remark 3.6. In [14] a weaker asymptotic condition is considered. To do that, it is
assumed that C is a nonempty unbounded closed convex subset with 0 ∈ C, and
G : X ×X → R is a mapping which satisfies the conditions

(g1) G(λx, y) = λG(x, y) for any x, y ∈ X and λ > 0,
(g2) ∥x∥2 ≤ G(x, x) for any x ∈ X.
For a mapping T : C → C the following asymptotic condition is assumed

lim sup
∥x∥→∞

G(Tx, x)

∥x∥2
< 1.

It is easy to check that asymptotically strongly pseudo-contractiveness can be re-
placed by the above condition and Theorem 3.4 still holds. However, in [7] the
following asymptotic condition is considered to obtain fixed point results for pseudo-
contractive mappings: “There exists R > 0 such that for every x ∈ C with ∥x∥ > R
the inequality j(T (x)) ≤ ∥x∥2 holds for every j ∈ J(x)”. It is a open problem
to know if Theorem 3.4 still holds whenever this condition replaces asymptotically
strongly pseudo-contractiveness.
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