ma P,
2° ”6,),

Journal of Nonlinear and Convex Analysis % Mdm P"“'Shas
Volume 16, Number 2, 2015, 299-309 < wJ ISSN 1880-5221 ONLINE JOURNAL
Yinee |

© Copyright 2015

Yok%

STRONG AND A-CONVERGENCE OF MOUDAFI’'S ITERATIVE
SCHEME IN CAT(0) SPACES

RABIAN WANGKEEREE AND HOSSEIN DEHGHAN

ABSTRACT. In this paper, we first introduce an extension of Moudafi’s iterative
scheme in CAT(0) spaces. Then, we prove several strong and A-convergence
theorems of the proposed iterative scheme for two quasi-nonexpansive mappings
in CAT(0) spaces by using a new method. Our results generalize the recent
results due to Iemoto and Takahashi (2009), and Kim (2012).

1. INTRODUCTION

Let (X, d) be a metric space and C' be a nonempty subset of X. Then a mapping
T of C into itself is called nonexpansive iff d(Tz,Ty) < d(x,y) for all z,y € C. We
denote by F(T') the set of all fixed points of T, i.e., F(T) :={zx € C: Tx = x}. A
mapping 7" from C into C' is also called quasi-nonezpansive iff the set F'(T') of fixed
points of T" is nonempty and d(T'z,p) < d(z,p) for all z € C and p € F(T).

Approximating fixed points of nonexpansive mappings by iterative sequences has
been investigated by several authors, see e.g., [14,18,21-23]. In 2009, Iemoto and
Takahashi [8] studied the approximation of common fixed points of nonexpansive
mappings and nonspreading mappings in a Hilbert space by using Moudafi’s iter-
ative scheme. Recently, Kim [11] generalized results of Iemoto and Takahashi to
quasi-nonexpansive mapping and proved several convergence theorems of Moudafi’s
iterative scheme in Hilbert spaces. Uniform convexity of Hilbert spaces plays im-
portant role in the convergence of iterative schemes. One of the successful attempts
to extend uniform convexity to metric spaces is due to Khamsi and Khan [9]. They
introduced the notion of uniformly convex metric spaces and studied some funda-
mental properties of such spaces. A nice subclass of uniformly convex metric spaces
is the class of CAT(0) spaces which includes all Hilbert spaces.

Motivated by the above works, we introduce an extension of Moudafi’s iterative
scheme in CAT(0) spaces. By using a new method, we prove convergence theorems
of this algorithm for quasi-nonexpansive mappings. Our results generalize the recent
results due to Iemoto and Takahashi [8], and Kim [11].

2. PRELIMINARIES

For a metric space (X, d), suppose that there exists a family § of metric segments
such that any two points z,y in X are endpoints of a unique metric segment [z, y] €
§ ([z,y] is an isometric image of the real line interval [0, d(x,y)]). We shall denote
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by Az @ (1 — A)y the unique point z of [z, y] which satisfies
(2.1) d(z,z) = (1 = N)d(z,y) and d(z,y) = Ad(z,y).

Such metric spaces are usually called convexr metric spaces [15]. Moreover, if we
have
1 1 1 1 1
d| = —x, = —y | < =d(z,y).
<2u@ 5% 2u69 2y> 5 (z,9)

for all u,z,y in X, then X is said to be a hyperbolic metric space (see [19]).
Obviously, normed linear spaces are hyperbolic spaces. One can consider, as non-
linear examples, the Hadamard manifolds [3], the Hilbert open unit ball equipped
with the hyperbolic metric [7].

A hyperbolic metric space X is said to be uniformly convez if for any a € X, for
every r > 0, and for each ¢ > 0,

(2.2) o(r,e) =

2 2

Let us observe that 6(r,0) = 0, and d(r,¢) is an increasing function of ¢ for every
fixed r (for more properties of 4, see [9]).

A metric space (X, d) is a CAT(0) space if it is geodesically connected and if every
geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean
plane. For other equivalent definitions and basic properties, we refer the reader to
standard texts such as [1,2]. Complete CAT(0) spaces are often called Hadamard
spaces. A subset C of a CAT(0) space is convex if [z,y] C C for all x,y € C. we
need the following lemmas.

1 1 1
inf {1 - ;d <:n ® y,a> s d(x,a) <rd(y,a) <7 d(x,y) > re} > 0.

Lemma 2.1 ([2, Proposition 2.2]). Let X be a CAT(0) space, p,q,r,s € X and
A €0,1]. Then

ddp® (1= N)g, \r & (1 —XN)s) < Xd(p,r) + (1 —N)d(q, s)-

Lemma 2.2 ([6, Lemma 2.4]). Let X be a CAT(0) space, x,y,z € X and X € [0,1].
Then

dAzx @ (1 =Ny, 2) < Md(z,2) + (1 = N)d(y, 2).

Lemma 2.3 ([6, Lemma 2.5]). Let X be a CAT(0) space, z,y,z € X and X € [0,1].
Then

P(r @ (1 - Ay, 2) < A2, 2) + (1= N(y, 2) — A1~ N(,y).
For CAT(0) spaces, it follows from Lemma 2.3 that

(2.3) (5(7‘,5):5(5):1—\/1—22

and thus CAT(0) spaces are uniformly convex. From now on, we assume that X is
a CAT(0) space.
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Lemma 2.4. Let X be a CAT(0) space and a € X. Then for any r > 0 and
e > 0 there exists §(r,€) > 0 such that if x,y € X with d(x,a) <7, d(y,a) < r and
d(xz,y) > re, then

dAz @ (1 —Ny,a) <[l —2min{\, (1 —X)}d(e)]
for all A € [0,1].
Proof. Let A< 1/2, u =Xz ® (1 — Ny and

11
v =2\ <x & y) @ (1—2)\)y.

Then, by (2.1), we have d(v,y) = 2Ad (32 @ 3v,y) = Ad(z,y) = d(u,y). Uniqueness
property in (2.1) implies that v = u. Also, by (2.2),

1 1
= - <r(l-— .
d(zx@ 2y,a> r(1—0(e))
This together with Lemma 2.2 implies that
ddx® (1—Ny,a) = d(v,a) < 2)\d( *® y, > (1 —=2XN)d(y,a)

< 22r(1=46(e)) + (1 —=2N)r
= r[l—2min{\, (1 —X)}d(e)].
In the case that A > 1/2, we put @« =1 — A < 1/2 and apply the proved case. O

(1 — 2)8(¢))

Lemma 2.5. Let X be a CAT(0) space, a € X, {x,} and {yn} be two sequences
in X and {\,} be a sequence in [0,1]. If iminf, o Ap(1 — Ay) >0,
limsupd(zy,a) < R, limsupd(yn,a) < R and li_>m dAxn ® (1 — Ap)Yn,a) = R

n—oo n—oo

for some R € [0,00), then lim,,_,o d(zy, yn) = 0.

Proof. Without loss of generality, we may assume that R > 0. Assume that the
conclusion is not true. Then, there exist ¢ > 0 and subsequence {n;} of {n} such
that d(xp,,yn,) = (R+ 1)e for all i > 1. Let v € (0, 1) be arbitrarily chosen. There
exists subsequence {n;} of {n;} such that d(z,;,a) < R+~ and d(y,,,a) < R+~
for all j > 1. Since liminf, oo An(1 — \,) > 0, there exist A > 0 and subsequence
{ni} of {n;} such that A\, (1 — Ay, ) > X for all k£ > 1. It follows from Lemma 2.4
that

. 1
0 <2Xd(e) < 2min{A,,, (1 — A, )}d(e) <1 — Riﬂd()\nka:nk @ (1 — Anp)YUng» @)
Since limy_yo0 d(An, Zn,, @ (1 — Any)Yn,,a) = R, we obtain
g
0 <2X(e) < .
(¢) R+~
Letting v — 0, we get a contradiction. O

Let {x,} be a bounded sequence in a CAT(0) space X. For xz € X, we set
r(z,{x,}) = limsupd(z, z,).
n—oo
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The asymptotic radius r({z,}) of {x,} is given by
r({zn}) = inf{r(z,{z,}) : x € X},
and the asymptotic center A({x,}) of {z,} is the set

A({zn}) ={r e X :r(z {zn}) = r({zn})}-
It is known from Proposition 7 of [5] that in a CAT(0) space, A({xy}) consists of
exactly one point.

A sequence {z,} C X is said to A-converge to z € X if A({z,, }) = {«} for
every subsequence {z,, } of {x,}. Uniqueness of asymptotic center implies that
CAT(0) space X satisfies Opial’s property, i.e., for given {z,,} C X such that {z,}
A-converges to x and given y € X with y # x,

limsup d(zy, ) < limsup d(x,,y).

n—o0 n—o0

Since it is not possible to formulate the concept of demiclosedness in a CAT(0)
setting, as stated in linear spaces, let us formally say that "I — T is demiclosed at
zero” if the conditions, {z,} C C A- converges to x and d(x,,Tz,) — 0 imply
x € F(T).

We need the following lemmas in the sequel.

Lemma 2.6 ([13]). Every bounded sequence in a complete CAT(0) space always
has a A-convergent subsequence.

Lemma 2.7 ([4]). If C is a closed convex subset of a complete CAT(0) space and
if {zn} is a bounded sequence in C, then the asymptotic center of {x,} is in C.

Lemma 2.8 ([22]). Let {a,} and {b,} be sequences of nonnegative real numbers
such that Y7, b, < 0o and

An+41 <ap + bn

for all n > 1. Then lim,_ . a,, exists.

3. CONVERGENCE THEOREMS

Let C be a nonempty closed convex subset of a CAT(0) space X. Let S,T : C' —
C' be two mapping. Define the iterative sequence {x,} as follows:

x1 € C, chosen arbitrary,
Yn = (1 - an)ﬁn @ OlnSl‘n,
zn = (1 — an)xn ® apTay,
Tn4+1 = /Bnyn @ (1 - Bn)zna n = 17

where {ay,} and {8,} are two sequences in [0,1]. If X is a linear space such as
Hilbert space, then iterative scheme (3.1) reduces to Moudafi’s iterative scheme [16]:
T € C s

(3.2) Tnt1 = (1 — ap)xy + an[BnSty + (1 — Bn)Txy], n>1.

The following theorem extends Theorem 3.1(i), (ii) of Kim [11] and hence Theo-
rem 4.1(i), (iii) of Iemoto and Takahashi [8] to CAT(0) spaces.

(3.1)
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Theorem 3.1. Let X be a complete CAT(0) space and C be a nonempty, closed
and conver subset of X, and let S, T be two quasi-nonexpansive mappings of C' into
itself such that I — S, I —T are demiclosed at zero with F(S)NF(T) # 0. Suppose
that {x,} is defined by (3.1). Then the following hold:
(i) Ifliminf, o an(1—ay) > 0 and > 02 (1—Fy) < 0o, then {x,} A-converges
to a fired point of S.
(ii) If iminf, o0 an(l — ap) > 0 and liminf,, o Bn(1 — B,) > 0, then {x,}
A-converges to a common fixed point of S and T.

Proof. Let p € F(S)NF(T). Since S and T' are quasi-nonexpansive, by Lemma 2.2,
we have

d (Bnyn © (1 = Bn)2n,p)

Brnd(Yn,p) + (1 — Bn)d(2n, p)

B [(1 — an)d(zn, p) + and(Szn, p)]

+(1 - ﬁn) (1 = ap)d(zn, p) + and(Txy, p)]
B [(1 — an)d(xn, p) + and(zy, p)]

+(1 = Bn) [(1 — an)d(zn, p) + and(zn, p)]

(3.3) = d(zn,p),

which implies that lim,,_,~ d(zy,p) exists. Repeating (3.3), we obtain

d(l‘n,p) < d($17p)

d(Tnt1,P)

NN

N

/\\_//\\_/

for all n > 1. Therefore,
d(Szp, Txy,) < d(Stp,p) + d(Txy, p) < 2d(xn,p) < 2d(x1,D).
(i) Utilizing (2.1) and Lemma 2.1, we have
d(Tnt1,Yn) = d(Bayn ® (1 = Bn)zn, Yn)
= (1= Bn)d(Yn, 2n)
(1= Bn)d((1 — an)zn & anSzp, (1 — an)x, & anTxy,)

(1 = Bn)and(Sxy, Txy)
(1 = Bn)d(Szp, Tzy).
Since Y 7, (1 — B,) < 00, we obtain

<
<

Z d(Tn+1,Yn) Z (1 — Bn)d(Szy, Txy)
n=1 n=1

[e.e]

(3.4) < 2d(z1,p) Y (1= Bn) < 00,

n=1
which implies that lim,,_, d(zp+1,yn) = 0 and thus
(3.5) Jim d(y,,p) = lim_d(zy,p).
From Lemma 2.3, we have

dQ(yn,p) < (1- an)dz(:rn,p) + ozndQ(an,p) —ap(1 - an)dQ(xn, Sxy)
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< d2($nap) - an(l - an)dQ(:Ena Swn)
It follows that
(1 — an)d*(wn, Szn) < d* (20, p) — d*(Yn, D).

Since liminf,, o an(l — ay) > 0, it follows from (3.5) that

(3.6) lim d(xy,, Sz,) =0.

n—oo
Since {x,} is bounded, by Lemma 2.6, there exists a subsequence {z,,} of {z,}
which A-converges to a point y. By Lemma 2.7, y € C. Since I — S is demiclosed
at zero, it follows from (3.6) that y € F'(S). If {x,,} is another subsequence of {x, }
which A-converges to a point z € C, then by using the same argument as in the
proof above, we get z € F(S). We show that for any g € F(S), lim,_ o d(zp, q)
exists. We note that

d(yn,a) < (1= an)d(@n,q) + and(Szn, q)
< d(ﬂ?n, Q)
< d(yn—1>Q) + d(.%'n,yn_l)-

It follows from (3.4) and Lemma 2.8 that lim, o d(yn, q) exists which together with
limy, 00 d(Zn,Yn—1) = 0 implies that lim,, o d(x,, q) exists. Next, we show y = z.
If not, By Opial’s condition,

lim d(z,,y) = lim d(z,,,y)
n—oo 1—00
< lim d(zp,,z) = lim d(zy, 2)
1—>00 n—o0
= lim d(zy,, 2) < lim d(zn;,y)
j—o00 j—o00
(3.7) = lim d(zn,y).

This contradiction shows y = z and hence {z,,} A-converges to y € F(S).
(ii) For any p € F(S)NF(T), by (3.3), we know that lim,_,~ d(z,,p) exists. Let

(3.8) nh_)rgo d(xn,p) = R.

Moreover, the inequalities d(Sx,,p) < d(xy,p) and d(Txy,p) < d(x,,p) imply that
(3.9) linisup d(Szn,p) <R and lini)sup d(Tzn,p) < R.

Next, we shov: t}i;t

(3.10) nh_)r{)lo d(yn,p) = R and nh_)rrgo d(zn,p) = R.

Using (3.1) and Lemma 2.2, we have

d(ymp) < d(azn,p) and d(Zn,p) < d(.Tn,p).

Also,
d($n+17p) < B’nd(ymp> + (1 - Bn)d(zmp)
< Bnd(ynap) =+ (1 - Bn)d(xmp)

and
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Since liminf,, o0 B (1 — B,) > 0, then

d(l‘nJrl ) p) — d(xnv p)
B

+ d(zp,p) < d(yn,p)

and

d(l‘n+1,p) - d(l’n,p)
(1 - ﬁn)

for sufficiently large numbers n. Taking liminf,,_,,, in both sides, we obtain

+ d(xnap) < d(zrnp)

lim d(x,,p) < liminfd(y,,p) and lim d(zy,p) < liminf d(z,,p).
n—00 n—00 n—00 n—oo

The inequalities (3.8)-(3.10) together with Lemma 2.5 imply that

(3.11) li_>m d(xp,Stp) =0 and  lim d(xy,,Tz,) = 0.

n—o0

Since {x,} is bounded, by Lemma 2.6, there exists a subsequence {z,,} of {z,}
which A-converges to a point y. By Lemma 2.7, y € C'. Since I — S and I — T are
demiclosed at zero, it follows from (3.11) that y € F'(S)N F(T). If {z,,} is another
subsequence of {z,} which A-converges to a point z € C, then z € F(S) N F(T).
Since for any g € F\(S)NF(T), limy,_s00 d(xy, q) exists, by the same argument as in
(3.7) we conclude that y = 2. Hence {x,} A-converges to y € F(S)N F(T). O

The next theorem is a generalization of Theorem 3.2 of Kim [11] and hence
Theorem 4.1(ii) of Iemoto and Takahashi [8].

Theorem 3.2. Let X be a complete CAT(0) space and C be a nonempty, closed
and convex subset of X, and let S be a quasi-nonexpansive mappings of C into itself
and T be a nonexpansive mappings of C into itself such that F(S) N F(T) # 0.
Suppose that {x,,} is defined by (3.1). If Y 70 | an(1 — ) = 00 and Yo7 By < 00,
then {x,} A-converges to a fixed point of T.

Proof. For any p € F(S) N F(T), it follows from (3.3) that lim,_ d(x,,p) exists
and d(zp,p) < d(z1,p) for all n > 1. Utilizing (2.1) and Lemma 2.1, we have

d(l’n+1a Zn) = Bnd(ym Zn) < Bnand(smexn) < ﬁnd(smexn) < Qd(:rl,p)ﬁn.
Since Y 7| fn < 00, then limy, 00 d(Zp41, 2,) = 0 and thus

(3.12) nl;rrgo d(zn,p) = nlgrolo d(xn, p).

From Lemma 2.3, we have

B (zn,p) < (1= an)d®(xn,p) + and*(Txn,p) — an(l — an)d?*(zn, T2y)
< P(@n,p) — an(l = ag)d(zg, Tay)
< (d(wn, 2n-1) + d(20-1,0))* — an(1 — an)d?(zp, Ty,
< (2d(21,p)Bno1 + d(2n-1,0))? — an(l — an)d*(xy, Txy).

It follows that

an(l = an)d*(zn, Tzn) < (2d(21,p) Bt + d(20-1,p))* — d* (2, p)-
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Since Ezozl Brn < oo and lim,_, o d(z,, p) exists, then
oo
Z an(1— oan)dQ(wn,Txn) < 00.
n=2

This together with > 7 | o, (1 — @) = oo implies that
(3.13) lim inf d(zy,, T'zy,) = 0.

n—oo

Moreover,

d(zpt1, Txn) + d(Txps1, Txy)

Brnd(Yn, Txn) + (1 = Bn)d(2n, Tn) + d(Tnt1, Tn)
Bn [(1 — an)d(zy, Txy) + and(Sxy, Tay,))

+(1 = 58n) (1 — ap)d(xy, Txy)

+Bnand(Sxp, xy) + (1 — Bp)and(Txp, x,)

d(xp, Txy) + B [d(STn, xn) + d(STp, Txy))
d(zp, Tzy) + 46pd(x1,p).

Since Y 2, fn < o0, it follows from Lemma 2.8 that lim, oo d(zpn,Txy) exists.
Hence, by (3.13), we obtain

(3.14) lim d(zn, Tay) = 0.

n—oo

d($n+1a TfEnJrl)

INCININ

NN

Since {x,} is bounded, by Lemma 2.6, there exists a subsequence {z,,} of {z,}
which A-converges to a point y. By Lemma 2.7, y € C. we show that y € F(T). If
Ty # y, by Opial’s condition and (3.14), we have
limsupd(zy,y) < limsupd(zy,,Ty)
n—oo

n—o0

< limsupld(zn, Tzy) + d(Tan, Ty)]

n—oo

< limsupd(zy, y).

n—o0

This is a contradiction. Hence we obtain Ty = y. By the same argument as in the
proof of (i) in Theorem 3.1, {z,} A-converges to y € F(T). O

Two mappings S,7T : C — C are said to satisfy Condition A [10,20] iff there
exists a nondecreasing function f : [0,00) — [0,00) with f(0) = 0 and f(r) > 0 for
all » > 0 such that

(d(z, Sz) + d(z,Tx))

DN | =

fld(z, F)) <
for all z € C, where F = F(S)NF

—~

T) # 0 and d(z, F) = inf{d(z,y) : y € F}.

Theorem 3.3. Let X be a complete CAT(0) space and C be a nonempty, closed
and convez subset of X, and let S,T be two quasi-nonexpansive mappings of C into
itself satisfying Condition A with F = F(S)NF(T) # 0. Suppose that {x,} is
defined by (3.1). If iminf, o an(l —ay) > 0 and liminf,,_, B, (1 — 5,) > 0, then
{zn} converges strongly to a common fized point of S and T.
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Proof. By taking infimum over all p € F' on both sides of (3.3), we see that
d(fL‘n+1,F) < d(xnyF)u

which implies that lim,,_,~ d(zy, F') exists. We claim that lim, o d(zp, F') = 0. If
not, there exist ¢gp > 0 and a subsequence {n;} of {n} such that d(x,,, F) > g for
all £ > 1. Using Condition A and (3.11), we obtain

1

0 < f(eo) < fld(wp,, F)) < g(d@nkvsxnk) + d(xp,,, Trp,)) — 0

as k — oo, which is a contradiction. Moreover, {z,} is Cauchy. To see this let
n,m > k > 1. Then, by (3.3), we have

d(Tp, m) < d(Tn, p) + d(Tm, p) < 2d(zk, D)
and thus
d(xn, Tm) < 2d(zk, F).

Since limg_,o d(x, F)) = 0, then {x,} is Cauchy and converges to some g € C.
Since F' is closed, then g € F. This completes the proof. O

The following is an example of a quasi-nonexpansive mapping in a non-Hilbert
CAT(0) space which is not a nonexpansive mapping.

Example 3.4. Consider R? with the usual Euclidean meter d. Let X = R? be an
R-tree with the radial meter d,, where d,(x,y) = d(x,y) if  and y are situated on
a Euclidean straight line passing through the origin and d,(z,y) = d(z,0) + d(y, 0)
otherwise (see [12] and [17, page 65]). We put

C={(t,0):t€[0,3/2]} U{(0,t) : t €[0,3/2]} c R?
and define T : C' — C by

T(t,0) = (0, t;) and T(0,t) = (i,o)

for all t € [0,3/2]. Clearly, F(T') = {(0,0)}. Let = (¢,0) and 0 = (0,0). Since
and 0 are situated on a Euclidean straight line passing through the origin, we have
£2
d.(Tx,0) =d(Tx,0) = B <t=d(z,0).
Similarly, for y = (0,t), d,.(Ty,0) < d,(y,0). Therefore, T is quasi-nonexpansive.
But it is not a nonexpansive mapping. In fact, if z = (5/4,0) and y = (3/2,0), then
we have
11

1
d(Tx,Ty) = 3 >1= dr(z,y).

Also, taking S = T, we see that S and T satisfy Condition A with the function
f:[0,00) — [0,00) defined by f(r) = r. Note that for x = (¢,0) we have d,(z, F) =
d(xz,0) =t and

2

dy(z,Tx) =d(z,0)+ d(Tx,0) =t + 7
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