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ABSTRACT. In this paper, we study the minimization of a differentiable epsilon
convex function over a convex set and provide several new and simple charac-
terizations of the set of all epsilon blunt minimizers of the extremum problem.
By using the basic properties of the differentiable epsilon convex functions, we
characterize the set of all epsilon blunt minimizers. We also present some charac-
terizations of epsilon straight functions and characterizations of the epsilon blunt
minimizers of epsilon straight functions over a convex set are obtained. The re-
sults of this paper extend and give approximate version of various results present
in literature.

1. INTRODUCTION

Consider the nonlinear optimization problem
(P) min f(x) subject to z € K,

where K is a nonempty convex subset of R™ and f is a real-valued derivable function
defined on an open subset D D K. A vector & € K is said to be an optimal solution
of the problem (P), if and only if f(z) < f(z) for all x € K.

The characterization of the optimal solutions of the problem (P) is an important
study in optimization and is useful for understanding the behavior of solution meth-
ods. In 1988, Mangasarian [7] presented several characterizations of the problem
(P) involving convex objective function and used these characterizations to study
monotone linear complementarity problems. In 1991, Burke and Ferris [2] extended
the results in [7] for nondifferentiable convex objective functions. Later, Penot [8]
extended the known characterizations in the convex case to a much wider class of
quasiconvex functions using subdifferentials.

On the other hand, Jeyakumar et al. [4] characterized the solution set of a
convex minimization problem involving explicit convex inequality constraints in
terms of the Lagrange multipliers. Later, Dinh et al. [3] established Lagrange
multiplier characterizations of the solution set of the minimization of a pseudolinear
function over a closed convex set subject to explicit linear inequality constraints
and derived corresponding results for fractional programming problems. Further,
Xu and Wu [9] derived various simple Lagrange multiplier based characterizations
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of the solution set of a programming problem under inclusion constraints. Recently,
Yang [10] studied the minimization of a pseudoinvex function over an invex set and
provided several new and simple characterizations of the solution set of pseudoinvex
extremum problems.

In this paper, we use the notion of epsilon convexity for nonconvex and differen-
tiable functions to introduce the concept of epsilon straight functions. We present
some characterizations of epsilon convex and straight functions. The characteriza-
tion of the solution set of epsilon blunt minimizers of a nonconvex and differentiable
scalar-valued epsilon convex and epsilon straight functions are obtained. The re-
sults of this paper extend and give approximate version of various results present
in literature.

2. PRELIMINARIES

In this section, we recall some known definitions and results which will be used
in the sequel.

Definition 2.1 (See [6]). A set K is said to be conver, iff for any =,y € K and
A € [0,1], one has

r+ ANy —1z) € K.
Definition 2.2 (See [5]). Let K C R"™ be a convex set and let ¢ > 0 be given. A

function f : K — R is said to be e—convex on K, iff for any =,y € K and X € [0, 1],
one has

fOz+ (1= XNy) <Af(2) + (1= Nf(y) + el = A) [z -yl

If — f is e—convex on K, then f is said to be e—concave on K. If f is both e—convex
and e—concave on K, then f is said to be e—straight on K.

Lemma 2.3 (See [5]). Let K C R" be an open convex set and let € > 0 be given.
Then, f: K — R is differentiable e—conver on K if and only if for any z,y € K,
one has

flx) = fly) = (Vfy),z—y) —elz—yl.

Lemma 2.4 (See [5]). Let K C R" be an open convex set and let € > 0 be given.
Then, f: K — R is differentiable e—convexr on K if and only if for any z,y € K,
one has

(Vf(y) = Vf(x),y —z) > —2¢l|ly — 2 .

Definition 2.5 (See [1]). Let € > 0 be given. A vector z € K is said to be an
e—blunt minimizer of f: K — R over K, iff for any x € K, one has

[(@) —ellz =zl < f(z).
3. VARIATIONAL INEQUALITIES

In this section, we characterize epsilon blunt minimizers of a differentiable epsilon
convex function over a convex set using variational inequalities of Stampacchia and
Minty type.

Theorem 3.1. Let€,e; > 0 and let K C R™ be an open convex set. Let f: K — R
be e—convex on K. Then, the following implications hold:
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(i) If € K is an e1—blunt minimizer of f over K, then
(Vi@ z ) > —e o —3]| Ve € K
(i) If
(VI(@),2 —7) > —e ||lv — 2| ,Vz € K,
then T is an (€ + €1)—blunt minimizer of f over K.

Proof. (i) Suppose that z € K is an €; —blunt minimizer of f over K. Then, for
any x € K, one has

f(@) - e |1 - 2] < f(a).
Since K is a convex set, for any x € K and A €]0, 1], one has
T4+ ANz —2) €K,
which implies that, for any z € K and A €]0, 1], one has
f(@+ Az —2) - f(@) = —a\ o — 3]l
Dividing throughout by A and passing to the limits as A tends to 0, one has
(VI(@),z—7) > —e [z — Z||.
(ii) Suppose that, for any = € K, one has
(Vi(@),0—5) = —e llo - 7.
By e—convexity of f at T over K, one has
f(@) = f(2) =2 (Vf(Z),2 —Z) — €|z -z,
which implies that
f(@) = (e+ea)lz—z| < flo),

that is, Z is an (€ + €;)—blunt minimizer of f over K. This completes the
proof.
O

Based on Theorem 3.1, for € = ¢; = 0, we have the following result.

Corollary 3.2. Let K C R™ be an open convex set and let f : K — R be a convex
function on K. Then, & € K is an optimal solution of the problem (P) if and only

if
(Vf(Z),z—T) >0,V € K.

Theorem 3.3. Lete,¢; > 0 and let K C R™ be an open convex set. Let f: K — R
be e—convex on K. Then, the following implications hold:

(i) If € K is an e1—blunt minimizer of f over K, then
(Vf(z),x —1) = =2+ &) lz — z| , Vo € K;
(i) If
(Vi(z),z—z) > —2e+e)|z—2z|,V2 € K,

then T is an (3€ + €1)—blunt minimizer of f over K.
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Proof. (i) Suppose that £ € K is an e;—blunt minimizer of f over K. Then,
from Theorem 3.1 (i), it follows that
(Vf(@),z —z) > —€1 ||z — Z|| ,\Vz € K.
Since f is differentiable e—convex on K, by Lemma 2.4, it follows that
(Vf(z),z —z) > —(2c¢+€1) ||z — Z||,Vx € K.
(ii) Suppose that
(Vf(z),z —z) > —(2c¢+€1) ||z — Z||,Vx € K.
Since K is an open convex set, it follows that
(Vi@ +MNzr—2)),z—7) > —(2e+e€) ||z —z|,Vr € K,YX € (0,1).
Letting A — 07, it follows that
(Vf(@),z—z) > —2ec+e) ||z —z||,Vx € K.

From Theorem 3.1 (ii), it follows that, Z is an (3€ + ¢;)—blunt minimizer of
f over K.
U

For € = ¢; = 0, we have the following result.

Corollary 3.4. Let K C R" be an open convex set and let f : K — R be convex
on K. Then, x € K is a minimizer of f over K if and only if

(Vf(z),z —) >0,V € K.
Example 3.5. Consider the optimization problem as follows:

min f(z) s.t.z € R,

3

where f(z) := 23 — 22, It is easy to see that, for any € > 0, there exists 0 < 0; <

’1_7 Vzl% such that, f is e—convex at Z := 0 over B(Z;d1). Now, for any € > 0, one

has
(Vf(Z),z—Z)+el|lzr—Z| =e€lz| >0,Vx € R.
By Theorem 3.1, it follows that, for any € > 0, there exists 0 < §; < ‘%m
that, z := 0 is an e—blunt minimizer of f over B(Z;d;).
Also, for any € > 0, there exists 0 < o < ‘Hﬁ such that

such

(Vf(x),z —Z) + ez — 7| = 32% — 22° + €|x| > 0,Vx € B(Z;52).
Setting ¢ := min {61,092}, by Theorem 3.3, it follows that, Z := 0 is an e—blunt
minimizer of f over B(Z;0).
Example 3.6. Consider the optimization problem as follows:
min f(z) s.t.z € R,
where f(x) := 2% — 22. Tt is easy to see that, for any € > 0, there exists 0 < §; such
that, f is e—convex at T := 1 over B(Z;d1). Now, for any € > 1, one has

(Vf(@),z—z)+e|llz—Z|| =2 —1+¢€¢z—1]>0,Vx € R.
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By Theorem 3.1, it follows that, for any € > 1, there exists 0 < §; such that, z :=1
is an e—blunt minimizer of f over B(Z;d1).
Also, for any € > 1, there exists 0 < d2 such that
(Vf(x),z —Z) +e|z—z| = 32° — 52% + 22 + ¢l — 1| > 0,Vx € B(Z;62).

Setting ¢ := min {01, d2}, by Theorem 3.3, it follows that, for any € > 1, z := 0 is
an e—blunt minimizer of f over B(Z;J).

4. CHARACTERIZATIONS OF THE SOLUTION SETS

In this section, we characterize epsilon blunt minimizers of a differentiable epsilon
convex function over a convex set. Throughout this paper, the solution set of (P)
is denoted by

S = arg min f(z).

For any € > 0, the set of all e—blunt minimizers of f over K is denoted by S(¢). For
e=0,5() =S5,

Theorem 4.1. Let €,¢e1,e9 > 0 be given and let K C R™ be an open convex set. If
f: K — R is differentiable e—convex on K and T € S(e1),y € S(e2), then

—e1 [y =z < (Vf(Z),§ — @) < (24 2€) |y — 2
and

—e2 |2 =yl < (Vf(®), 2 —y) < (e1 +2¢) [z — g
Proof. Suppose that z € S(e1) and y € S(e2). Then, by Theorem 3.1 (i), it follows
that

(Vi@),g—2) 2 —e|ly— 2|
and
(Vi(©),z—g) > —e2||z — gl
By e—convexity of f on K, by Lemma 2.4, one has
(Vi@ = V@), z-y) = 2|z -7,
which implies that
(VI@),z—1) < (1 +2¢) |z — 7
and
(Vf(@), 57— ) < (e2+2¢) |7 — 2.

Hence, one has

—e1 [y =z < (Vf(2),§ — 2) < (24 2¢) |y — 2
and

—e |2 =yl < (Vf(®), 2 —y) < (e1 +2¢) [z — g
This completes the proof. Il

For ¢ = ¢y = €5 = 0, from Theorem 4.1, we have the following result.

Corollary 4.2. Let K C R" be an open convex set. If f: K — R is differentiable
conver on K and z,y € S, then
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Theorem 4.3. Let €, €1,62 > 0 be given and let K C R" be an open conver set. Let
f: K — R be differentiable e—conver on K and & € S(€1), then

S(Gg) - 5(63),
where
€3 := max {2€ + €1, €2}
and
S(es) ={r e K:—e3||z —z|| < (Vf(z),z —z) <es||z—x|}.
Proof. Suppose that § € S(e2). Then, from Theorem 3.1 (i), it follows that
(VI@),z2 -7 = —ellz - 7.
Also, from Theorem 3.3 (i), it follows that
(VI(©®),y—2) > = (2e+ea)lly—z|.
From the above inequalities, one has
—e2 ||z =yl < (Vf(H),2—9) < (e+e)lly—z]|.
Setting €3 := max {2¢ + €1, €2}, it follows that
—esllz — gl <(VI(©),2 -y < eslly— x|,
that is, § € S(e3), where
S(e3) ={r € K:—e3||7 —z|| < (Vf(z),T —z) < e3|7 — ||}

and hence

S(e2) C 5'(63).

For € = ¢ = eo = 0, we have the following result.

Corollary 4.4. Let K C R" be an open convez set and let f: K — R be differen-
tiable convexr on K. If T € S, then

ScCS,
where
S:={reK:(Vf(zx),z—z)=0}.
Theorem 4.5. Let €, €1,€3,e4 > 0 be given and let K C R™ be an open conver set.
Let f : K — R be differentiable e—convex on K and T € S(e1), then
S(es) C S(ea),
where
€4 := max {€3 + €, €1}

and

S(ea) :={w € K : —eg o — 2| < f(2) - f(2) < es |l — 2]} .
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Proof. Suppose that § € S (e3). Then, by e—convexity of f on K, it follows that

(4.1) f@)—f@)  =2(Vf@),z—-79) —ellz -7
> —(es+e)llz -7l

Also, z € S(e1), it follows that
@) - @) <elz—gl.
From the above inequalities, one has
—e ||y =2 < f(H) — f(@) < (e+e3)ly— 2|
Setting €4 := max {e1, € + €3}, it follows that
—e |y =z < f(H) — f(2) <eally — 7],
which implies that

S(es) € S(ea),
where

S(e) ={z € K: —esf|lz — 7| < f(z) - f(7) < eallw -7}
This completes the proof. O

For € = ¢ = 3 = ¢4 = 0, we have the following result.

Corollary 4.6. Let K C R" be an open convez set and let f: K — R be differen-
tiable convexr on K. If T € S, then

SCS.
5. SOME CHARACTERIZATIONS OF EPSILON STRAIGHT FUNCTIONS

In this section, we characterize epsilon blunt minimizers under the assumptions
of epsilon straight functions.

Theorem 5.1. Let € > 0 and let K C R™ be an open convex set. Let f : K — R
be e—straight on K. Then, for any z,y € K, one has

—2ellz —yll < f(x) — fy) < 2l —y||
if and only if
—ellz =yl <(Vf(y),z —y) <ellz—yl.

Proof. Let € > 0 and £ € K C R" be arbitrary. Let f be e—starshaped at = over
K, that is, for all x € K and A €]0, 1], one has

f(@+ Mz =) < f(2) + Mf(2) = f(2)) + A1 = A) [l — ]| .
Dividing throughout by A and passing to the limit as A tends to 0, it follows that
(Vf(@), 2 —7) < f(x) = f(Z) +ellz — 2|,V € K.
Since, for all z € K, —¢ ||z — z|| < (Vf(Z),x — 7), it follows that
2|l — al| < f(z) - £(z), V2 € K.
Similarly, by e—starshapedness of —f at T over K, one has
(Vi(@),a —7) > f(2) - £(@) — |z — ],V € K.
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Since, for all z € K, (Vf(z),z —z) < €el||lz — Z|, it follows that
f(2) - f(z) < 2¢ |l — 3] ¥z € K.

From the above inequalities, for any x € K, one has

—ellz —zl| <(Vf(Z),z —7) <€z -z
implies

—2¢llz — 2| < fz) - f(2) < 26|z —2|.

Conversely, suppose that, for any z,y € K, one has

—2ellz —yl| < f(z) — fy) < 2€llz -y
We have to show that

—ellz -yl <(Vf(y),z—y) <ellz—yl.
We first show that, for any A €]0, 1], one has

—eAlz—yll < fly+ Mz —y) — fly) < edllz—yll.
If fly+Xax—1y))— f(y) > eX||lx —y||, then, by the e—convexity of f on K, one
has
fW) =+ Az —y) 2 (Vfly+ Az —y)), =AMz —y)) + Az -y,
which implies that
2¢(L =N lz =yl < (Vf(y+ Az =),z — (y+ Mz —y))) -
By e—convexity of f on K, one has
(Vi+ Az —y),z—(y+ Az —y)) < fl@) - fly+ Az —y)) —e(l=A) [z =yl
which implies that
Be(L=A) [lz =yl < f(z) = fly + Az —y)),

a contradiction to the assumption that

f@) = fly+ Az —y)) <e(l=A)(z —y).
Similarly, f(y + Mz —y)) — f(y) < —eX ||z — y|| leads to a contradiction by using

the e—concavity of f on K.
Hence, for any X €]0, 1], one has

—eAlz =yl < fly+ Az —y) = fly) < eXllz—y].
Dividing throughout by A and passing to the limits as A tends to 0, one has

—ellz =yl < (VI(),z—y) <elz—yl.
This completes the proof. O
Theorem 5.2. Let € > 0 and let K C R™ be an open convex set. Let f : K — R
be e—straight on K and let S(2¢€) be the set of all 2e—blunt minimizers of f over K
given by
5(2€¢) :={r e K: f(z) = 2¢|lz -yl < f(y),Vy € K}.
If ¢ € S(2¢), then S(2¢) = S1(e) = Sa(e), where
Si(e) i= {v € K : —el|o — 7| < (V/(&),2 — &) < el|o — ]|}
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and
So(e) :={r e K: —e€|lx —z|| < (Vf(x),z —z) <el|lz—Z|}.

Proof. The point x € S(2¢) if and only if —2¢||z — z|| < f(x) — f(Z) < 2¢ljlz — Z]|.
Then, from the above discussion, one has

—2¢llz —z| < fz) - f(z) < 2|z — 2|
if and only if
—ellz —zl| < (Vf(Z),2 —Z) < ellz —Z|.
Also, one has
—2¢llz —z| < f(Z) — flz) < 2|z — 2|
if and only if
—ellz —z|| < (Vf(z),x —Z) <ellz —2Z|.
This completes the proof. O
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