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of the solution set of a programming problem under inclusion constraints. Recently,
Yang [10] studied the minimization of a pseudoinvex function over an invex set and
provided several new and simple characterizations of the solution set of pseudoinvex
extremum problems.

In this paper, we use the notion of epsilon convexity for nonconvex and differen-
tiable functions to introduce the concept of epsilon straight functions. We present
some characterizations of epsilon convex and straight functions. The characteriza-
tion of the solution set of epsilon blunt minimizers of a nonconvex and differentiable
scalar-valued epsilon convex and epsilon straight functions are obtained. The re-
sults of this paper extend and give approximate version of various results present
in literature.

2. Preliminaries

In this section, we recall some known definitions and results which will be used
in the sequel.

Definition 2.1 (See [6]). A set K is said to be convex, iff for any x, y ∈ K and
λ ∈ [0, 1], one has

x+ λ(y − x) ∈ K.

Definition 2.2 (See [5]). Let K ⊆ Rn be a convex set and let ϵ > 0 be given. A
function f : K → R is said to be ϵ−convex on K, iff for any x, y ∈ K and λ ∈ [0, 1],
one has

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ϵλ(1− λ) ∥x− y∥ .
If −f is ϵ−convex on K, then f is said to be ϵ−concave on K. If f is both ϵ−convex
and ϵ−concave on K, then f is said to be ϵ−straight on K.

Lemma 2.3 (See [5]). Let K ⊆ Rn be an open convex set and let ϵ > 0 be given.
Then, f : K → R is differentiable ϵ−convex on K if and only if for any x, y ∈ K,
one has

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩ − ϵ ∥x− y∥ .

Lemma 2.4 (See [5]). Let K ⊆ Rn be an open convex set and let ϵ > 0 be given.
Then, f : K → R is differentiable ϵ−convex on K if and only if for any x, y ∈ K,
one has

⟨∇f(y)−∇f(x), y − x⟩ ≥ −2ϵ ∥y − x∥ .

Definition 2.5 (See [1]). Let ϵ > 0 be given. A vector x̄ ∈ K is said to be an
ϵ−blunt minimizer of f : K → R over K, iff for any x ∈ K, one has

f(x̄)− ϵ ∥x̄− x∥ ≤ f(x).

3. Variational inequalities

In this section, we characterize epsilon blunt minimizers of a differentiable epsilon
convex function over a convex set using variational inequalities of Stampacchia and
Minty type.

Theorem 3.1. Let ϵ, ϵ1 > 0 and let K ⊆ Rn be an open convex set. Let f : K → R
be ϵ−convex on K. Then, the following implications hold:
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(i) If x̄ ∈ K is an ϵ1−blunt minimizer of f over K, then

⟨∇f(x̄), x− x̄⟩ ≥ −ϵ1 ∥x− x̄∥ , ∀x ∈ K;

(ii) If

⟨∇f(x̄), x− x̄⟩ ≥ −ϵ1 ∥x− x̄∥ , ∀x ∈ K,

then x̄ is an (ϵ+ ϵ1)−blunt minimizer of f over K.

Proof. (i) Suppose that x̄ ∈ K is an ϵ1−blunt minimizer of f over K. Then, for
any x ∈ K, one has

f(x̄)− ϵ1 ∥x̄− x∥ ≤ f(x).

Since K is a convex set, for any x ∈ K and λ ∈]0, 1[, one has

x̄+ λ(x− x̄) ∈ K,

which implies that, for any x ∈ K and λ ∈]0, 1[, one has

f(x̄+ λ(x− x̄))− f(x̄) ≥ −ϵ1λ ∥x− x̄∥ .

Dividing throughout by λ and passing to the limits as λ tends to 0, one has

⟨∇f(x̄), x− x̄⟩ ≥ −ϵ1 ∥x− x̄∥ .

(ii) Suppose that, for any x ∈ K, one has

⟨∇f(x̄), x− x̄⟩ ≥ −ϵ1 ∥x− x̄∥ .

By ϵ−convexity of f at x̄ over K, one has

f(x)− f(x̄) ≥ ⟨∇f(x̄), x− x̄⟩ − ϵ ∥x− x̄∥ ,

which implies that

f(x̄)− (ϵ+ ϵ1) ∥x− x̄∥ ≤ f(x),

that is, x̄ is an (ϵ + ϵ1)−blunt minimizer of f over K. This completes the
proof.

�

Based on Theorem 3.1, for ϵ = ϵ1 = 0, we have the following result.

Corollary 3.2. Let K ⊆ Rn be an open convex set and let f : K → R be a convex
function on K. Then, x̄ ∈ K is an optimal solution of the problem (P) if and only
if

⟨∇f(x̄), x− x̄⟩ ≥ 0, ∀x ∈ K.

Theorem 3.3. Let ϵ, ϵ1 > 0 and let K ⊆ Rn be an open convex set. Let f : K → R
be ϵ−convex on K. Then, the following implications hold:

(i) If x̄ ∈ K is an ϵ1−blunt minimizer of f over K, then

⟨∇f(x), x− x̄⟩ ≥ −(2ϵ+ ϵ1) ∥x− x̄∥ , ∀x ∈ K;

(ii) If

⟨∇f(x), x− x̄⟩ ≥ −(2ϵ+ ϵ1) ∥x− x̄∥ , ∀x ∈ K,

then x̄ is an (3ϵ+ ϵ1)−blunt minimizer of f over K.
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Proof. (i) Suppose that x̄ ∈ K is an ϵ1−blunt minimizer of f over K. Then,
from Theorem 3.1 (i), it follows that

⟨∇f(x̄), x− x̄⟩ ≥ −ϵ1 ∥x− x̄∥ , ∀x ∈ K.

Since f is differentiable ϵ−convex on K, by Lemma 2.4, it follows that

⟨∇f(x), x− x̄⟩ ≥ −(2ϵ+ ϵ1) ∥x− x̄∥ , ∀x ∈ K.

(ii) Suppose that

⟨∇f(x), x− x̄⟩ ≥ −(2ϵ+ ϵ1) ∥x− x̄∥ , ∀x ∈ K.

Since K is an open convex set, it follows that

⟨∇f(x̄+ λ(x− x̄)), x− x̄⟩ ≥ −(2ϵ+ ϵ1) ∥x− x̄∥ , ∀x ∈ K, ∀λ ∈ (0, 1).

Letting λ → 0+, it follows that

⟨∇f(x̄), x− x̄⟩ ≥ −(2ϵ+ ϵ1) ∥x− x̄∥ , ∀x ∈ K.

From Theorem 3.1 (ii), it follows that, x̄ is an (3ϵ+ ϵ1)−blunt minimizer of
f over K.

�
For ϵ = ϵ1 = 0, we have the following result.

Corollary 3.4. Let K ⊆ Rn be an open convex set and let f : K → R be convex
on K. Then, x̄ ∈ K is a minimizer of f over K if and only if

⟨∇f(x), x− x̄⟩ ≥ 0, ∀x ∈ K.

Example 3.5. Consider the optimization problem as follows:

min f(x) s.t.x ∈ R,
where f(x) := x3 − x2. It is easy to see that, for any ϵ > 0, there exists 0 < δ1 <∣∣∣1−√

1+4ϵ
2

∣∣∣ such that, f is ϵ−convex at x̄ := 0 over B(x̄; δ1). Now, for any ϵ > 0, one

has

⟨∇f(x̄), x− x̄⟩+ ϵ ∥x− x̄∥ = ϵ|x| ≥ 0, ∀x ∈ R.

By Theorem 3.1, it follows that, for any ϵ > 0, there exists 0 < δ1 <
∣∣∣1−√

1+4ϵ
2

∣∣∣ such
that, x̄ := 0 is an ϵ−blunt minimizer of f over B(x̄; δ1).

Also, for any ϵ > 0, there exists 0 < δ2 <
∣∣∣2−√

4+12ϵ
6

∣∣∣ such that

⟨∇f(x), x− x̄⟩+ ϵ ∥x− x̄∥ = 3x3 − 2x2 + ϵ|x| ≥ 0, ∀x ∈ B(x̄; δ2).

Setting δ := min {δ1, δ2} , by Theorem 3.3, it follows that, x̄ := 0 is an ϵ−blunt
minimizer of f over B(x̄; δ).

Example 3.6. Consider the optimization problem as follows:

min f(x) s.t.x ∈ R,
where f(x) := x3 − x2. It is easy to see that, for any ϵ > 0, there exists 0 < δ1 such
that, f is ϵ−convex at x̄ := 1 over B(x̄; δ1). Now, for any ϵ ≥ 1, one has

⟨∇f(x̄), x− x̄⟩+ ϵ ∥x− x̄∥ = x− 1 + ϵ|x− 1| ≥ 0, ∀x ∈ R.
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By Theorem 3.1, it follows that, for any ϵ ≥ 1, there exists 0 < δ1 such that, x̄ := 1
is an ϵ−blunt minimizer of f over B(x̄; δ1).

Also, for any ϵ ≥ 1, there exists 0 < δ2 such that

⟨∇f(x), x− x̄⟩+ ϵ ∥x− x̄∥ = 3x3 − 5x2 + 2x+ ϵ|x− 1| ≥ 0,∀x ∈ B(x̄; δ2).

Setting δ := min {δ1, δ2} , by Theorem 3.3, it follows that, for any ϵ ≥ 1, x̄ := 0 is
an ϵ−blunt minimizer of f over B(x̄; δ).

4. Characterizations of the solution sets

In this section, we characterize epsilon blunt minimizers of a differentiable epsilon
convex function over a convex set. Throughout this paper, the solution set of (P)
is denoted by

S̄ := argmin
x∈K

f(x).

For any ϵ > 0, the set of all ϵ−blunt minimizers of f over K is denoted by S̄(ϵ). For
ϵ = 0, S̄(ϵ) = S̄.

Theorem 4.1. Let ϵ, ϵ1, ϵ2 > 0 be given and let K ⊆ Rn be an open convex set. If
f : K → R is differentiable ϵ−convex on K and x̄ ∈ S(ϵ1), ȳ ∈ S(ϵ2), then

−ϵ1 ∥ȳ − x̄∥ ≤ ⟨∇f(x̄), ȳ − x̄⟩ ≤ (ϵ2 + 2ϵ) ∥ȳ − x̄∥
and

−ϵ2 ∥x̄− ȳ∥ ≤ ⟨∇f(ȳ), x̄− ȳ⟩ ≤ (ϵ1 + 2ϵ) ∥x̄− ȳ∥ .

Proof. Suppose that x̄ ∈ S(ϵ1) and ȳ ∈ S(ϵ2). Then, by Theorem 3.1 (i), it follows
that

⟨∇f(x̄), ȳ − x̄⟩ ≥ −ϵ1 ∥ȳ − x̄∥
and

⟨∇f(ȳ), x̄− ȳ⟩ ≥ −ϵ2 ∥x̄− ȳ∥ .
By ϵ−convexity of f on K, by Lemma 2.4, one has

⟨∇f(x̄)−∇f(ȳ), x̄− ȳ⟩ ≥ −2ϵ ∥x̄− ȳ∥ ,
which implies that

⟨∇f(ȳ), x̄− ȳ⟩ ≤ (ϵ1 + 2ϵ) ∥x̄− ȳ∥
and

⟨∇f(x̄), ȳ − x̄⟩ ≤ (ϵ2 + 2ϵ) ∥ȳ − x̄∥ .
Hence, one has

−ϵ1 ∥ȳ − x̄∥ ≤ ⟨∇f(x̄), ȳ − x̄⟩ ≤ (ϵ2 + 2ϵ) ∥ȳ − x̄∥
and

−ϵ2 ∥x̄− ȳ∥ ≤ ⟨∇f(ȳ), x̄− ȳ⟩ ≤ (ϵ1 + 2ϵ) ∥x̄− ȳ∥ .
This completes the proof. �

For ϵ = ϵ1 = ϵ2 = 0, from Theorem 4.1, we have the following result.

Corollary 4.2. Let K ⊆ Rn be an open convex set. If f : K → R is differentiable
convex on K and x̄, ȳ ∈ S̄, then

⟨∇f(x̄), ȳ − x̄⟩ = ⟨∇f(ȳ), x̄− ȳ⟩ = 0.
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Theorem 4.3. Let ϵ, ϵ1, ϵ2 > 0 be given and let K ⊆ Rn be an open convex set. Let
f : K → R be differentiable ϵ−convex on K and x̄ ∈ S̄(ϵ1), then

S̄(ϵ2) ⊆ S̃(ϵ3),

where

ϵ3 := max {2ϵ+ ϵ1, ϵ2}
and

S̃(ϵ3) := {x ∈ K : −ϵ3 ∥x̄− x∥ ≤ ⟨∇f(x), x̄− x⟩ ≤ ϵ3 ∥x̄− x∥} .

Proof. Suppose that ȳ ∈ S(ϵ2). Then, from Theorem 3.1 (i), it follows that

⟨∇f(ȳ), x̄− ȳ⟩ ≥ −ϵ2 ∥x̄− ȳ∥ .

Also, from Theorem 3.3 (i), it follows that

⟨∇f(ȳ), ȳ − x̄⟩ ≥ − (2ϵ+ ϵ1) ∥ȳ − x̄∥ .

From the above inequalities, one has

−ϵ2 ∥x̄− ȳ∥ ≤ ⟨∇f(ȳ), x̄− ȳ⟩ ≤ (ϵ+ ϵ1) ∥ȳ − x̄∥ .

Setting ϵ3 := max {2ϵ+ ϵ1, ϵ2} , it follows that

−ϵ3 ∥x̄− ȳ∥ ≤ ⟨∇f(ȳ), x̄− ȳ⟩ ≤ ϵ3 ∥ȳ − x̄∥ ,

that is, ȳ ∈ S̃(ϵ3), where

S̃(ϵ3) := {x ∈ K : −ϵ3 ∥x̄− x∥ ≤ ⟨∇f(x), x̄− x⟩ ≤ ϵ3 ∥x̄− x∥}

and hence

S̄(ϵ2) ⊆ S̃(ϵ3).

�

For ϵ = ϵ1 = ϵ2 = 0, we have the following result.

Corollary 4.4. Let K ⊆ Rn be an open convex set and let f : K → R be differen-
tiable convex on K. If x̄ ∈ S̄, then

S̄ ⊆ S̃,

where

S̃ := {x ∈ K : ⟨∇f(x), x̄− x⟩ = 0} .

Theorem 4.5. Let ϵ, ϵ1, ϵ3, ϵ4 > 0 be given and let K ⊆ Rn be an open convex set.
Let f : K → R be differentiable ϵ−convex on K and x̄ ∈ S̄(ϵ1), then

S̃(ϵ3) ⊆ ¯̄S(ϵ4),

where

ϵ4 := max {ϵ3 + ϵ, ϵ1}
and

¯̄S(ϵ4) := {x ∈ K : −ϵ4 ∥x− x̄∥ ≤ f(x)− f(x̄) ≤ ϵ4 ∥x− x̄∥} .
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Proof. Suppose that ȳ ∈ S̃(ϵ3). Then, by ϵ−convexity of f on K, it follows that

f(x̄)− f(ȳ) ≥ ⟨∇f(ȳ), x̄− ȳ⟩ − ϵ ∥x̄− ȳ∥(4.1)

≥ −(ϵ3 + ϵ) ∥x̄− ȳ∥ .
Also, x̄ ∈ S̄(ϵ1), it follows that

f(x̄)− f(ȳ) ≤ ϵ1 ∥x̄− ȳ∥ .
From the above inequalities, one has

−ϵ1 ∥ȳ − x̄∥ ≤ f(ȳ)− f(x̄) ≤ (ϵ+ ϵ3) ∥ȳ − x̄∥ .
Setting ϵ4 := max {ϵ1, ϵ+ ϵ3} , it follows that

−ϵ4 ∥ȳ − x̄∥ ≤ f(ȳ)− f(x̄) ≤ ϵ4 ∥ȳ − x̄∥ ,
which implies that

S̃(ϵ3) ⊆ ¯̄S(ϵ4),

where
¯̄S(ϵ4) := {x ∈ K : −ϵ4 ∥x− x̄∥ ≤ f(x)− f(x̄) ≤ ϵ4 ∥x− x̄∥} .

This completes the proof. �
For ϵ = ϵ1 = ϵ3 = ϵ4 = 0, we have the following result.

Corollary 4.6. Let K ⊆ Rn be an open convex set and let f : K → R be differen-
tiable convex on K. If x̄ ∈ S̄, then

S̃ ⊆ S̄.

5. Some characterizations of epsilon straight functions

In this section, we characterize epsilon blunt minimizers under the assumptions
of epsilon straight functions.

Theorem 5.1. Let ϵ > 0 and let K ⊆ Rn be an open convex set. Let f : K → R
be ϵ−straight on K. Then, for any x, y ∈ K, one has

−2ϵ ∥x− y∥ ≤ f(x)− f(y) ≤ 2ϵ ∥x− y∥
if and only if

−ϵ ∥x− y∥ ≤ ⟨∇f(y), x− y⟩ ≤ ϵ ∥x− y∥ .

Proof. Let ϵ > 0 and x̄ ∈ K ⊆ Rn be arbitrary. Let f be ϵ−starshaped at x̄ over
K, that is, for all x ∈ K and λ ∈]0, 1[, one has

f(x̄+ λ(x− x̄)) ≤ f(x̄) + λ(f(x)− f(x̄)) + ϵλ(1− λ) ∥x− x̄∥ .
Dividing throughout by λ and passing to the limit as λ tends to 0, it follows that

⟨∇f(x̄), x− x̄⟩ ≤ f(x)− f(x̄) + ϵ ∥x− x̄∥ , ∀x ∈ K.

Since, for all x ∈ K, −ϵ ∥x− x̄∥ ≤ ⟨∇f(x̄), x− x̄⟩ , it follows that
−2ϵ ∥x− x̄∥ ≤ f(x)− f(x̄), ∀x ∈ K.

Similarly, by ϵ−starshapedness of −f at x̄ over K, one has

⟨∇f(x̄), x− x̄⟩ ≥ f(x)− f(x̄)− ϵ ∥x− x̄∥ , ∀x ∈ K.
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Since, for all x ∈ K, ⟨∇f(x̄), x− x̄⟩ ≤ ϵ ∥x− x̄∥ , it follows that
f(x)− f(x̄) ≤ 2ϵ ∥x− x̄∥ , ∀x ∈ K.

From the above inequalities, for any x ∈ K, one has

−ϵ ∥x− x̄∥ ≤ ⟨∇f(x̄), x− x̄⟩ ≤ ϵ ∥x− x̄∥
implies

−2ϵ ∥x− x̄∥ ≤ f(x)− f(x̄) ≤ 2ϵ ∥x− x̄∥ .
Conversely, suppose that, for any x, y ∈ K, one has

−2ϵ ∥x− y∥ ≤ f(x)− f(y) ≤ 2ϵ ∥x− y∥ .
We have to show that

−ϵ ∥x− y∥ ≤ ⟨∇f(y), x− y⟩ ≤ ϵ ∥x− y∥ .
We first show that, for any λ ∈]0, 1[, one has

−ϵλ ∥x− y∥ ≤ f(y + λ(x− y))− f(y) ≤ ϵλ ∥x− y∥ .
If f(y + λ(x− y))− f(y) > ϵλ ∥x− y∥ , then, by the ϵ−convexity of f on K, one

has

f(y)− f(y + λ(x− y)) ≥ ⟨∇f(y + λ(x− y)),−λ(x− y)⟩+ ϵλ ∥x− y∥ ,
which implies that

2ϵ(1− λ) ∥x− y∥ < ⟨∇f(y + λ(x− y)), x− (y + λ(x− y))⟩ .
By ϵ−convexity of f on K, one has

⟨∇f(y + λ(x− y)), x− (y + λ(x− y))⟩ ≤ f(x)− f(y+λ(x− y))− ϵ(1−λ) ∥x− y∥ ,
which implies that

3ϵ(1− λ) ∥x− y∥ < f(x)− f(y + λ(x− y)),

a contradiction to the assumption that

f(x)− f(y + λ(x− y)) ≤ ϵ(1− λ)(x− y).

Similarly, f(y + λ(x − y)) − f(y) < −ϵλ ∥x− y∥ leads to a contradiction by using
the ϵ−concavity of f on K.

Hence, for any λ ∈]0, 1[, one has

−ϵλ ∥x− y∥ ≤ f(y + λ(x− y))− f(y) ≤ ϵλ ∥x− y∥ .
Dividing throughout by λ and passing to the limits as λ tends to 0, one has

−ϵ ∥x− y∥ ≤ ⟨∇f(y), x− y⟩ ≤ ϵ ∥x− y∥ .
This completes the proof. �
Theorem 5.2. Let ϵ > 0 and let K ⊆ Rn be an open convex set. Let f : K → R
be ϵ−straight on K and let S(2ϵ) be the set of all 2ϵ−blunt minimizers of f over K
given by

S(2ϵ) := {x ∈ K : f(x)− 2ϵ ∥x− y∥ ≤ f(y), ∀y ∈ K} .
If x̄ ∈ S(2ϵ), then S(2ϵ) = S1(ϵ) = S2(ϵ), where

S1(ϵ) := {x ∈ K : −ϵ ∥x− x̄∥ ≤ ⟨∇f(x̄), x− x̄⟩ ≤ ϵ ∥x− x̄∥}
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and
S2(ϵ) := {x ∈ K : −ϵ ∥x− x̄∥ ≤ ⟨∇f(x), x− x̄⟩ ≤ ϵ ∥x− x̄∥} .

Proof. The point x ∈ S(2ϵ) if and only if −2ϵ ∥x− x̄∥ ≤ f(x)− f(x̄) ≤ 2ϵ ∥x− x̄∥ .
Then, from the above discussion, one has

−2ϵ ∥x− x̄∥ ≤ f(x)− f(x̄) ≤ 2ϵ ∥x− x̄∥
if and only if

−ϵ ∥x− x̄∥ ≤ ⟨∇f(x̄), x− x̄⟩ ≤ ϵ ∥x− x̄∥ .
Also, one has

−2ϵ ∥x− x̄∥ ≤ f(x̄)− f(x) ≤ 2ϵ ∥x− x̄∥
if and only if

−ϵ ∥x− x̄∥ ≤ ⟨∇f(x), x− x̄⟩ ≤ ϵ ∥x− x̄∥ .
This completes the proof. �
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