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Theorem 1.1 ([13]). Let X be a closed convex subset of a complete R-tree (M,d),
and assume that X is geodesically bounded. Let F : X → 2M be an upper semi-
continuous mapping whose values are nonempty closed convex subsets of M . Then
there exists a point x ∈ X such that

d(x, F (x)) = inf
y∈X

d(y, F (x)).

2. Preliminaries

For any pair of points x, y in a metric space (M,d), a geodesic path joining these
points is a map c from a closed interval [0, r] ⊂ R to M such that c(0) = x, c(r) = y
and d(c(t), c(s)) = |t − s| for all s, t ∈ [0, r]. The mapping c is an isometry and
d(x, y) = r. The image of c is called a geodesic segment joining x and y which when
unique is denoted by [x, y]. For any x, y ∈ M , denote the point z ∈ [x, y] such that
d(x, z) = αd(x, y) by z = (1 − α)x ⊕ αy, where 0 ≤ α ≤ 1. The space (M,d) is
called a geodesic space if any two points of X are joined by a geodesic, and M is
said to be uniquely geodesic if there is exactly one geodesic joining x and y for each
x, y ∈ M . A subset X of M is called convex if X includes every geodesic segment
joining any two of its points.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (M,d) consists of three
points in M (the vertices of ∆) and a geodesic segment between each pair of points
(the edges of ∆). A comparison triangle for ∆(x1, x2, x3) in (M,d) is a triangle
∆(x1, x2, x3) := ∆(x1, x2, x3) in the Euclidean plane R2 such that dR2(xi, xj) =
d(xi, xj) for i, j ∈ {1, 2, 3}.

A geodesic metric space M is called a CAT(0) space if all geodesic triangles of
appropriate size satisfy the following comparison axiom [5]:
Let ∆ be a geodesic triangle in M and let ∆ in R2 be its comparison triangle. Then
∆ is said to satify the CAT(0) inequality if for all x, y ∈ ∆ and all comparison
points x, y in ∆, d(x, y) ≤ dR2(x, y). A subset X of (M,d) is said to be gated [8] if
for any point x ̸∈ X there exists a unique z ∈ X such that for any y ∈ X,

d(x, y) = d(x, z) + d(z, y).

The point z is called the gate of x in X.
The following properties of gated sets are useful [8, 9].

(i) Gated sets in a complete geodesic space are always closed and convex.
(ii) Gated subsets of a complete geodesic space (M,d) are proximinal nonexpansive

retracts of M .
(iii) The family of gated sets in a complete geodesic space (M,d) has the Helly

property, that is, if X1, .., Xn is a collection of gated sets in M with pairwise
nonempty intersection, then ∩n

i=1Xi ̸= ∅.
(iv) Let {Xα}α∈I be a collection of nonempty gated subsets of a complete geodesic

space (M,d) which is downward directed by set inclusion. If M (or more
generally, some Xα) does not contain a geodesic ray (that is, is geodesically
bounded), then ∩α∈IXα ̸= ∅.

There are many equivalent definitions of R-tree. Here we include the following
definition.

An R-tree is a metric space M such that:



FIXED POINT THEOREMS 333

(i) there is a unique geodesic segment [x, y] joining each pair of points x, y ∈ M.
(ii) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

It follows from (i) and (ii) that
(iii) if u, v, w ∈ M , then [u, v] ∩ [u,w] = [u, z] for some z ∈ M .

Examples of R-trees can be found in [10].
The following properties of an R-tree are useful [5, 9, 10].

(i) An R-tree is a CAT(0) space.
(ii) The metric d in an R-tree is convex, that is, it satisfies the inequality

d(αx⊕ (1− α)y, αu⊕ (1− α)v) ≤ αd(x, u) + (1− α)d(y, v)

for any points x, y, u, v ∈ M .
(iii) A metric space is a complete R-tree if and only if it is hyperconvex and has

unique geodesic segments.
(iv) In an R-tree, the gated subsets are precisely its closed and convex subsets.

For any subset X in a metric space M , we define d(x,X) = infy∈X d(x, y). De-

note the nonempty subsets of a metric space M by 2M . In a metric space M , a
mapping F : X → 2M with closed bounded values is called strictly contractive if
H(F (x), F (y)) ≤ kd(x, y) for a fixed k ∈ [0, 1) and any pair x, y ∈ X, where H
denotes the Hausdorff metric derived from the metric d. F is called nonexpansive if
H(F (x), F (y)) ≤ d(x, y) for any pair x, y ∈ M . The mapping F is said to be upper
semicontinuous at a point x ∈ X if for any open set U containing F (x) there is an
open set V containing x such that y ∈ V implies F (y) ⊂ U. F is upper semicontin-
uous on X if it is so for every x ∈ X. The mappings f : M → M and F : M → 2M

are said to commute [17] if f(F (x)) ⊂ F (f(x)) for all x ∈ M . If X is a closed
convex subset of a metric space M , a mapping F : X → 2M is said to be inward if
for each x ∈ X, F (x)∩ IX(x) ̸= ∅, where IX(x) is the metrically inward set of X at
x defined by

IX(x) = {z ∈ M : z = x or there exists y ∈ X such that y ̸= x and

d(x, z) = d(x, y) + d(y, z)}.

In a metric space M , the ϵ-fixed point set of a mapping F : M → 2M is defined as
{x ∈ M : d(x, F (x)) ≤ ϵ}.

3. Fixed points for inward mappings

The following result shows that the metrically inward set of a gated subset of a
complete R-tree is also gated.

Theorem 3.1. Let (M,d) be a complete R-tree and U a closed convex subset of M .
Then IU (x) is a closed convex set for each x ∈ U.

Proof. For x ∈ U , assume {xn} is a Cauchy sequence in IU (x) that converges to a
point p. If p ∈ U , then p ∈ IU (x) since U ⊂ I(x). Otherwise assume p ̸∈ U , and let
d = d(p, U). Choose a natural number m sufficiently large so that d(p, xm) < d, and
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let d1 = d(xm, U). Since the sets B(p, d), B(xm, d1) and U have pairwise nonempty
intersections, by the Helly property we have

(3.1) B(p, d) ∩B(xm, d1) ∩ U ̸= ∅.
Since the sets B(p, d) and B(xm, d1) each intersect U in a single point, the nonempti-
ness of the set in (3.1) implies that the two points of intersection are the same point
q ∈ U . Since xm ∈ IU (x) and xm ̸∈ U , by the definition of IU (x), there is a z ∈ U
such that z ̸= x and

d(x, xm) = d(x, z) + d(z, xm),

which implies that

(3.2) z ∈ [x, xm].

Since q is the gate of xm in U and z ∈ U , we have

(3.3) q ∈ [z, xm].

The inclusions (3.2) and (3.3) imply that q ̸= x. Then, by the fact that q is also
the gate of p in U , it follows that

d(x, p) = d(x, q) + d(q, p),

and therefore, that p ∈ IU (x).
For any pair of points u, v ∈ IU (x), we construct a geodesic connecting them that

lies in IU (x). Considering the metric segments [u, x] and [v, x], by the definition
of an R-tree there is a point w ∈ M such that [u, x] ∩ [v, x] = [w, x]. Then since
[u,w]∩ [v, w] = {w}, we have [u,w]∪ [v, w] = [u, v], and by its construction, [u, v] ⊂
IU (x). �
Remark 3.2. In a complete R-tree M , if U is a gated subset of M , then IU (x) is
also gated for each x ∈ U.

Theorem 3.3. Let M be a complete R-tree, X a closed convex subset and F : X →
2M a strictly contractive mapping with values that are nonempty closed bounded
convex subsets of M and that satisfies

F (x) ∩ IX(x) ̸= ∅ for x ∈ X.

Then F has a fixed point in X, that is, there is a z ∈ X such that z ∈ F (z).

Proof. Let P be the proximinal nonexpansive retraction of M onto X. By consider-
ing the mapping F (P (.)) : M → 2M which agrees with F on the subset X, we can
apply Theorem 3.2 of [14] to obtain a strictly contractive selection f : X → M of the
multivalued mapping F . Define g = P ◦f . Then g is a strictly contractive mapping
from X into X. Let u ∈ X be the unique fixed point of g. Then f(u) ∈ F (u) and
d(u, f(u)) = d(f(u), X). Let v be the unique closest point in F (u) to u. Then v is
the gate of u in F (u), and therefore v lies on the unique metric segment connecting
u and f(u). This implies that u is the closest point to v in the set X. Choosing a
point z ∈ F (u) ∩ IX(u), the convexity of F (u) implies that [v, z] ⊂ F (u). However,
u is the closest point to v in X, and z ∈ IX(u), which implies that

[v, z] = [v, u] ∪ [u, z] ⊂ F (u).

It follows that u ∈ F (u). �
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Theorem 3.4. Let (M,d) be a complete R-tree, X a closed convex subset of M that
is geodesically bounded, and F : X → 2M an upper semicontinuous mapping with
values that are nonempty closed convex subsets of M . If F satisfies the condition:

F (x) ∩ IX(x) ̸= ∅ for x ∈ X,

then F has a fixed point in X.

Proof. By Theorem 1.1, there is a point u ∈ X such that

d(u, F (u)) = inf
y∈X

d(y, F (u)).

Let v be the unique closest point in F (u) to u. Since

F (u) ∩ IX(u) ̸= ∅,

we can choose a point z ∈ F (u)∩ IX(u), where by convexity of F (u), [v, z] ⊂ F (u).
However, u is the closest point in X to v, and z ∈ IX(u), which implies that

[v, z] = [v, u] ∪ [u, z] ⊂ F (u).

It follows that u ∈ F (u). �

Corollary 3.5. Let (M,d) be a complete R-tree, X a closed convex subset of M
that is geodesically bounded, and F : X → 2M a nonexpansive mapping with values
that are nonempty closed convex subsets of M . If F satisfies the condition:

F (x) ∩ IX(x) ̸= ∅ for x ∈ X,

then F has a fixed point in X.

Theorem 3.6. Let (M,d) be a complete R-tree, X a closed convex subset of a M
that is geodesically bounded, and F : X → 2M an upper semicontinuous mapping
with values that are nonempty closed convex subsets of M . Then there exist x0 ∈ X
and y0 ∈ F (x0) with

d(y0, x0) = d(y0, X) = d(y0, IX(x0)) .

Proof. Theorem 1.1 guarantees existence of points x0 ∈ X and y0 ∈ F (x0) such
that

d(y0, x0) = d(y0, X).

It remains to show that these same points satisfy

d(y0, X) = d(y0, IX(x0)) .

Since x0 is the unique closest point in X to y0, for any y ∈ IX(x0), we have

d(y0, y) = d(y0, x0) + d(x0, y),

which implies that

d(y0, y) ≥ d(y0, x0)

and, therefore, that

d(y0, X) = d(y0, IX(x0)).

�
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Theorem 3.7. Let (M,d) be a complete R-tree, X a closed convex subset of M
that is geodesically bounded, and F : X → 2M an upper semicontinuous mapping
with values that are nonempty closed convex subsets of M . If F satisfies any one
of the following conditions:

(i) for any x ∈ X we have d(y, z) < d(y, x) for each y ∈ F (x) and some
z ∈ IX(x);

(ii) for any x ∈ X , (x, y] ∩ IX(x) ̸= ∅ for each y ∈ F (x) ;

then F has a fixed point.

Proof. By Theorem 3.6, there exist x0 and y0 ∈ F (x0) with

d(y0, x0) = d(y0, X) = d(y0, IX(x0)).

Suppose F satisfies condition (i) and assume that x0 ̸∈ F (x0) . Then, by condition
(i), we have d(y0, z) < d(y0, x0) for some z ∈ IX(x0) . This contradicts the choice
of x0 . Hence F has a fixed point.

Suppose F satisfies condition (ii), and assume that x0 ̸∈ F (x0) . Then, by condition
(ii), z0 ∈ (x0, y0] ∩ IX(x0) ̸= ∅ . This implies that

d(y0, x0) ≤ d(y0, z0)

= d(y0, x0)− d(z0, x0)

< d(y0, x0),

which is a contradiction. Hence F has a fixed point. �

4. Fixed points for commuting mappings

Fixed point theorems for commuting mappings in CAT(0) spaces and R-trees were
given in [6, 19] where the multivalued mapping was assumed to be nonexpansive.
Here we continue the development for R-trees with results for domains that are
geodesically bounded, and for multivalued mappings that are upper semicontinuous
or nonexpansive.

Theorem 4.1. Let (M,d) be a complete R-tree, X a closed convex subset of M
which is geodesically bounded, f : X → X a nonexpansive mapping and F : X →
2X an upper semicontinuous mapping with values that are nonempty closed convex
subsets of M . If f and F commute, then f and F have a common fixed point in X.

Proof. Since f is nonexpansive, the set of fixed points Fix(f) of f is nonempty,
closed and convex as in [9]. Let x ∈ Fix(f). Then there is a unique y ∈ F (x) such
that d(y, x) = d(x, F (x)). Since

d(f(y), x) = d(f(y), f(x)) ≤ d(y, x) = d(x, F (x))

and f and F commute, we have

f(y) ∈ f(F (x)) ⊂ F (f(x)) = F (x).

This implies that f(y) = y and so

F (x) ∩ Fix(f) ̸= ∅ for x ∈ Fix(f).

Now by Theorem 3.4, there is a z ∈ Fix(f) such that z ∈ F (z). �
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Corollary 4.2. Let (M,d) be a complete R-tree, X a closed convex subset of M
which is geodesically bounded, f : X → X a nonexpansive mapping and F : X → 2X

a nonexpansive mapping with values that are nonempty closed convex subsets of M .
If f and F commute, then f and F have a common fixed point in X.
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