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ABSTRACT. In an R-tree setting, we develop fixed point theorems for multivalued
mappings that are strictly contractive, nonexpansive or upper semicontinuous
and satisfy an inward condition. As applications, we obtain common fixed point
theorems for a point-valued and a multivalued mapping that commute.

1. INTRODUCTION

The study of metric spaces without linear structure has played a crucial role in
various branches of pure and applied sciences. One of such space is an R-tree, whose
study found applications in mathematics, biology /medicine and computer science.
It should be worth mentioning that all the edges are assumed to have same length in
the notion of an ordinary tree and so the metric structure is not required, which limit
use of it in many areas. To overcome this problem, an R-tree was introduced as a
generalization of an ordinary tree where edges are of different length. The notion of
an R-tree (metric tree or T-theory) was given by Tits [20] and Dress [7] and further
investigation was made by Mayer, Mohler, Oversteegen, and Tymchatyn [15], Mayer
and Oversteegen [16], Kirk [12], etc. For details on application, we refer the reader
to [4, 10, 18]. Fixed point theory in metric spaces without linear structure has been
developed by a number of authors. For results in R-trees, see e.g., [1, 2, 9, 10, 11]
and the references cited therein. This paper continues the development of fixed
point results for inward type mappings in metric spaces without linear structure.
Previous fixed point results in such spaces were obtained by Bae [3] for a complete
metric space and multivalued mappings that are inward and weakly contractive,
while Dhompongsa, Kaewkhao, and Panyanak [6] considered a CAT(0) space and
multivalued mappings that are inward and nonexpansive. Here we develop similar
results in R-trees for multivalued inward mappings that are strictly contractive,
nonexpansive or upper semicontinuous. Our results weaken the inward condition so
that the values of the multivalued mapping need only intersect the inward set. We
make use of our results to obtain common fixed point theorems for a point-valued
and a multivalued mapping that commute.

Our result for upper semicontinuous mappings depends on the following best
approximation result of Kirk and Panyanak.
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Theorem 1.1 ([13]). Let X be a closed convexr subset of a complete R-tree (M,d),
and assume that X is geodesically bounded. Let F': X — 2M be an upper semi-
continuous mapping whose values are nonempty closed convex subsets of M. Then
there exists a point x € X such that

d(e, F@) = inf d(y, F(@))

2. PRELIMINARIES

For any pair of points x,y in a metric space (M, d), a geodesic path joining these
points is a map ¢ from a closed interval [0,7] C R to M such that ¢(0) =z, ¢(r) =y
and d(c(t),c(s)) = |t — s| for all s,t € [0,7]. The mapping ¢ is an isometry and
d(x,y) = r. The image of ¢ is called a geodesic segment joining = and y which when
unique is denoted by [z, y]. For any x,y € M, denote the point z € [x,y] such that
d(z,z) = ad(z,y) by 2z = (1 — @)z ® ay, where 0 < o < 1. The space (M,d) is
called a geodesic space if any two points of X are joined by a geodesic, and M is
said to be uniquely geodesic if there is exactly one geodesic joining x and y for each
x,y € M. A subset X of M is called convex if X includes every geodesic segment
joining any two of its points.

A geodesic triangle A(z1, x2, x3) in a geodesic metric space (M, d) consists of three
points in M (the vertices of A) and a geodesic segment between each pair of points
(the edges of A). A comparison triangle for A(xy,x9,x3) in (M,d) is a triangle
A(w1,29,73) := A(T1,72,73) in the Euclidean plane R? such that dg2 (7, zj) =
d(zi, xj) for i,j € {1,2,3}.

A geodesic metric space M is called a CAT(0) space if all geodesic triangles of

appropriate size satisfy the following comparison axiom [5]:
Let A be a geodesic triangle in M and let A in R? be its comparison triangle. Then
A is said to satify the CAT(0) inequality if for all z,y € A and all comparison
points 7,7 in A, d(z,y) < dg2(T,%). A subset X of (M,d) is said to be gated [8] if
for any point = & X there exists a unique z € X such that for any y € X,

d(z,y) = d(x, 2) + d(z,y).

The point z is called the gate of z in X.
The following properties of gated sets are useful [8, 9].

(i) Gated sets in a complete geodesic space are always closed and convex.

(ii) Gated subsets of a complete geodesic space (M, d) are proximinal nonexpansive
retracts of M.

(iii) The family of gated sets in a complete geodesic space (M,d) has the Helly
property, that is, if Xq,.., X,, is a collection of gated sets in M with pairwise
nonempty intersection, then N ; X; # 0.

(iv) Let {X4}aer be a collection of nonempty gated subsets of a complete geodesic
space (M,d) which is downward directed by set inclusion. If M (or more
generally, some X,) does not contain a geodesic ray (that is, is geodesically
bounded), then Nye; Xy # 0.

There are many equivalent definitions of R-tree. Here we include the following

definition.

An R-tree is a metric space M such that:
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(i) there is a unique geodesic segment [z, y] joining each pair of points x,y € M.

(i) if [y, 2] N [z, 2] = {}, then [y, 2] U [z, 2] = [y, z].
It follows from (i) and (ii) that

(iii) if w,v,w € M, then [u,v] N [u, w] = [u, 2] for some z € M.

Examples of R-trees can be found in [10].

The following properties of an R-tree are useful [5, 9, 10].

(i) An R-tree is a CAT(0) space.

(ii) The metric d in an R-tree is conver, that is, it satisfies the inequality

dlaz® (1 —a)y,au® (1 — a)v) < ad(z,u) + (1 — a)d(y,v)

for any points x,y,u,v € M.

(iii) A metric space is a complete R-tree if and only if it is hyperconvex and has
unique geodesic segments.

(iv) In an R-tree, the gated subsets are precisely its closed and convex subsets.

For any subset X in a metric space M, we define d(z, X) = infycx d(z,y). De-
note the nonempty subsets of a metric space M by 2. In a metric space M, a
mapping F : X — 2M with closed bounded values is called strictly contractive if
H(F(x),F(y)) < kd(z,y) for a fixed k € [0,1) and any pair z,y € X, where H
denotes the Hausdorfl metric derived from the metric d. F' is called nonexpansive if
H(F(z),F(y)) < d(z,y) for any pair z,y € M. The mapping F' is said to be upper
semicontinuous at a point x € X if for any open set U containing F'(z) there is an
open set V' containing z such that y € V implies F(y) C U. F' is upper semicontin-
uous on X if it is so for every x € X. The mappings f : M — M and F : M — 2M
are said to commute [17] if f(F(z)) C F(f(x)) for all z € M. If X is a closed
convex subset of a metric space M, a mapping F : X — 2M is said to be inward if
for each x € X, F(x) NIx(xz) # 0, where Ix(x) is the metrically inward set of X at
x defined by

Ix(z) ={z € M :z=x or there exists y € X such that y # = and

d(z,z) =d(z,y) + d(y,2)}.

In a metric space M, the e-fized point set of a mapping F : M — 2™ is defined as
{reM:d(x,F(x)) <e€}.

3. FIXED POINTS FOR INWARD MAPPINGS

The following result shows that the metrically inward set of a gated subset of a
complete R-tree is also gated.

Theorem 3.1. Let (M,d) be a complete R-tree and U a closed convex subset of M.
Then Iy (z) is a closed convex set for each x € U.

Proof. For x € U, assume {z,} is a Cauchy sequence in Ij7(z) that converges to a
point p. If p € U, then p € Iy(x) since U C I(z). Otherwise assume p ¢ U, and let
d = d(p,U). Choose a natural number m sufficiently large so that d(p, z,,) < d, and
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let dy = d(zy,, U). Since the sets B(p,d), B(xm,,d;1) and U have pairwise nonempty
intersections, by the Helly property we have
(3.1) B(p,d) N B(xm,d1) NU # 0.

Since the sets B(p, d) and B(x,, d1) each intersect U in a single point, the nonempti-
ness of the set in (3.1) implies that the two points of intersection are the same point
q € U. Since x,, € Iy(x) and x,, € U, by the definition of I;7(x), there is a z € U
such that z # x and

d(z,zy) = d(z,2) + d(z, ),
which implies that
(3.2) z € [z, Tm)].
Since q is the gate of x,, in U and z € U, we have
(3.3) q € [z, Tm].

The inclusions (3.2) and (3.3) imply that ¢ # x. Then, by the fact that ¢ is also
the gate of p in U, it follows that

d(z,p) = d(z,q) + d(g, p),
and therefore, that p € Iy (x).

For any pair of points u,v € Iy (x), we construct a geodesic connecting them that
lies in Iy (z). Considering the metric segments [u,z] and [v,z], by the definition

of an R-tree there is a point w € M such that [u,z] N [v,z] = [w,z]. Then since
[u, w] N [v,w] = {w}, we have [u, w]U[v, w] = [u,v], and by its construction, [u,v] C
Iy(x). O

Remark 3.2. In a complete R-tree M, if U is a gated subset of M, then [;7(x) is
also gated for each x € U.

Theorem 3.3. Let M be a complete R-tree, X a closed conver subset and F' : X —
2M g strictly contractive mapping with values that are nonempty closed bounded
convex subsets of M and that satisfies

Fx)NIx(z)#0 for z € X.
Then F has a fized point in X, that is, there is a z € X such that z € F(z).

Proof. Let P be the proximinal nonexpansive retraction of M onto X. By consider-
ing the mapping F(P(.)) : M — 2M which agrees with F' on the subset X, we can
apply Theorem 3.2 of [14] to obtain a strictly contractive selection f : X — M of the
multivalued mapping F. Define g = Po f. Then g is a strictly contractive mapping
from X into X. Let u € X be the unique fixed point of g. Then f(u) € F(u) and
d(u, f(u)) = d(f(u), X). Let v be the unique closest point in F'(u) to w. Then v is
the gate of v in F'(u), and therefore v lies on the unique metric segment connecting
w and f(u). This implies that u is the closest point to v in the set X. Choosing a
point z € F(u) N Ix(u), the convexity of F(u) implies that [v, z] C F(u). However,
u is the closest point to v in X, and z € Ix(u), which implies that

[v, 2] = [v,u] Uu, 2] C F(u).
It follows that u € F(u). O
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Theorem 3.4. Let (M,d) be a complete R-tree, X a closed convex subset of M that
is geodesically bounded, and F : X — 2M an upper semicontinuous mapping with
values that are nonempty closed convex subsets of M. If ' satisfies the condition:

F(x)NIx(z)#0 for z € X,
then F has a fixed point in X.
Proof. By Theorem 1.1, there is a point v € X such that
d(u, F = inf d(y, F'(u)).
(u, F(u)) = inf dly, F(u))

Let v be the unique closest point in F'(u) to u. Since
F(u)NIx(u)#0,

we can choose a point z € F(u) NIx(u), where by convexity of F(u), [v,z] C F(u).
However, u is the closest point in X to v, and z € Ix(u), which implies that

[v,2] = [v,u] U [u, 2] C F(u).
It follows that u € F'(u). O

Corollary 3.5. Let (M,d) be a complete R-tree, X a closed convex subset of M
that is geodesically bounded, and F : X — 2M a nonexpansive mapping with values
that are nonempty closed convex subsets of M. If F satisfies the condition:

F)nIx(z)#0 for z € X,
then F' has a fized point in X.
Theorem 3.6. Let (M,d) be a complete R-tree, X a closed convex subset of a M
that is geodesically bounded, and F : X — 2™ an upper semicontinuous mapping

with values that are nonempty closed convex subsets of M. Then there exist xg € X
and yo € F(xo) with

d(yo,70) = d(yo, X) = d(yo, Ix(z0))-
Proof. Theorem 1.1 guarantees existence of points xyp € X and yy € F(xg) such
that
d(yo, zo) = d(yo, X).
It remains to show that these same points satisfy
d(yo, X) = d(yo, Ix(x0)) -

Since x is the unique closest point in X to yo, for any y € Ix(xg), we have

d(y07 Z/) = d(y07 SUQ) + d(IOa y)7
which implies that

d(y07 y) > d(yo, I'())
and, therefore, that
d(yo, X) = d(yo, Ix (x0)).
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Theorem 3.7. Let (M,d) be a complete R-tree, X a closed convex subset of M
that is geodesically bounded, and F : X — 2M an upper semicontinuous mapping
with values that are nonempty closed convex subsets of M. If F satisfies any one
of the following conditions:

(i) for any = € X we have d(y,z) < d(y,x) for each y € F(z) and some
z € Ix(x);
(ii) for any z € X, (z,y]NIx(x) # O for each y € F(x);
then F has a fized point.

Proof. By Theorem 3.6, there exist xy and yo € F(z9) with
d(yo, zo) = d(yo, X) = d(yo, Ix(20)).

Suppose F' satisfies condition (i) and assume that zo &€ F(z¢). Then, by condition
(i), we have d(yo,2) < d(yo,xo) for some z € Ix(xo). This contradicts the choice
of zg. Hence F' has a fixed point.

Suppose F satisfies condition (ii), and assume that z¢ ¢ F'(x¢). Then, by condition
(ii), 20 € (z0,y0] N Ix(xo) # 0. This implies that
d(yo, o) < d(yo,20)
= d(yo, o) — d(20,20)
< d(y()v l’o),

which is a contradiction. Hence F' has a fixed point. O

4. FIXED POINTS FOR COMMUTING MAPPINGS

Fixed point theorems for commuting mappings in CAT(0) spaces and R-trees were
given in [6, 19] where the multivalued mapping was assumed to be nonexpansive.
Here we continue the development for R-trees with results for domains that are
geodesically bounded, and for multivalued mappings that are upper semicontinuous
or nonexpansive.

Theorem 4.1. Let (M,d) be a complete R-tree, X a closed convex subset of M
which is geodesically bounded, f : X — X a nonexpansive mapping and F : X —
2X an upper semicontinuous mapping with values that are nonempty closed convex
subsets of M. If f and F commute, then f and F have a common fixed point in X .

Proof. Since f is nonexpansive, the set of fixed points Fiz(f) of f is nonempty,
closed and convex as in [9]. Let € Fiz(f). Then there is a unique y € F'(z) such
that d(y,z) = d(x, F(x)). Since

d(f(y),z) = d(f(y), f(z)) < d(y, z) = d(z, F(z))
and f and F' commute, we have
fly) € f(F(z)) C F(f(z)) = F(x).
This implies that f(y) =y and so
F(z) N Fiz(f) #0 for « € Fiz(f).
Now by Theorem 3.4, there is a z € Fiz(f) such that z € F'(z). O
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Corollary 4.2. Let (M,d) be a complete R-tree, X a closed conver subset of M
which is geodesically bounded, f : X — X a nonexpansive mapping and F : X — 2%
a nonexpansive mapping with values that are nonempty closed convex subsets of M.
If f and F' commute, then f and F' have a common fized point in X.
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